
EasyChair Preprint
№ 8614

Transformation of DPO Grammars into
Hypergraph Lambek Grammars with the
Conjunctive Kleene Star

Tikhon Pshenitsyn

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 7, 2022

Submitted to:
TERMGRAPH 2022

© T. Pshenitsyn
This work is licensed under the
Creative Commons Attribution License.

Transformation of DPO Grammars into Hypergraph Lambek
Grammars With The Conjunctive Kleene Star

Tikhon Pshenitsyn
Department of Mathematical Logic and Theory of Algorithms, Faculty of Mathematics and Mechanics
Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russian Federation

*

ptihon at yandex.ru

We study how to embed well-known hypergraph grammars based on the double pushout (DPO)
approach in the hypergraph Lambek calculus HL. It turns out that DPO rules can be naturally encoded
by types of HL. However, this encoding is not enough to convert a DPO grammar into an equivalent
grammar based on HL: we additionally need a logical operation that would allow making arbitrarily
many copies of types. We develop such an operation called the conjunctive Kleene star and show that
any DPO grammar can be converted into an equivalent HL-grammar enriched with this operation.

1 Introduction

In this paper, we aim to compare two kinds of graph grammars: DPO hypergraph grammars and hyper-
graph Lambek grammars. More precisely, we focus on embedding the former formalism in the latter.

DPO hypergraph grammars are one of the most well-known kinds of graph grammars; they were
introduced in 1973 [2]. They are designed to generalize Chomsky formal grammars from strings to
graphs. Recall that a production in a formal grammar of the form α⇒ β allows one to replace a substring
α in any string γ by a string β . A production of a DPO hypergraph grammar, in turn, can be presented in
the form L⇒ R where L and R are two hypergraphs. The procedure of replacing a hypergraph by another
hypergraph, however, needs further clarification; this is done by using the double pushout approach,
which is widely used in the field of graph grammars.

The hypergraph Lambek calculus HL and hypergraph Lambek grammars are novel approaches de-
scribed in [8]. They are based on logical grounds: HL generalizes the Lambek calculus introduced in [6].
The Lambek calculus L is a substructural logic of intuitionistic logic, and it is designed to model syntax
of natural languages. The hypergraph Lambek calculus HL inherits main principles of L, its structural
and model-theoretic properties. Besides, HL forms the basis for hypergraph Lambek grammars (HL-
grammars). An HL-grammar is defined by an assignment of a finite number of types of HL to symbols
of an alphabet; in order to check that a terminal hypergraph H is generated by a grammar one needs to
replace each symbol in H by one of the types corresponding to it (which results in a hypergraph labeled
by types) and to check that the resulting structure is derivable from axioms by rules of HL.

Our objective is to figure out what class of hypergraph languages HL-grammars generate and how
they are related to other kinds of graph grammars. In particular, it is clearly important to compare
them with widely studied DPO grammars. The following question arises: can we convert each DPO
grammar into an HL-grammar generating the same language? A simple complexity reason shows that
the answer is negative: DPO grammars are universal while the membership problem for HL-grammars

*The study was funded by RFBR, project N20-01-00670; the Interdisciplinary Scientific and Educational School of Moscow
University “Brain, Cognitive Systems, Artificial Intelligence”; the Theoretical Physics and Mathematics Advancement Foun-
dation “BASIS”.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Transformation of DPO Grammars into HL-grammars With The Conjunctive Kleene Star

is NP-complete. Nevertheless, it turns out that there is a way to naturally encode any DPO rule as a type
of HL; however, in order to apply a rule arbitrarily many times using this encoding one needs a logical
operation in HL that would allow copying types in HL arbitrarily many times. Note that, in the string
case, an extension of the Lambek calculus with Kleene star is studied in [5, 7]. Kleene star provides
a possibility to copy a type arbitrarily many times, but the way of copying does not suit our specific
needs when considering DPO rules within HL. This leads us to defining a related operation, which we
call the conjunctive Kleene star and denote as follows: ∗A. The hypergraph Lambek calculus with the
conjunctive Kleene star ∗HLω defined in Section 3 perfectly suits our needs: any DPO grammar can be
transformed into an equivalent ∗HLω -grammar.

2 Preliminaries

Σ∗ is the set of strings over an alphabet Σ including the empty word Λ; if R is a relation, then R∗ is its
transitive reflexive closure. Each function f : Σ→ ∆ can be extended to a homomorphism f : Σ∗→ ∆∗.
By w(i) we denote the i-th symbol of w. Let [n] denote the set {1,2, . . . ,n} (and [0] := /0).

Given a set of labels Σ along with a rank function rk : Σ→ N, a hypergraph G over Σ is a tuple
G = 〈VG,EG,attG, labG,extG〉 where VG is a finite set of nodes, EG is a finite set of hyperedges (VG and
EG are always considered to be disjoint), attG : EG → V ∗G assigns a string (understand it as an ordered
multiset) of attachment nodes to each hyperedge, labG : EG→ Σ labels each hyperedge by some element
of Σ in such a way that rk(labG(e)) = |attG(e)| whenever e ∈ EG, and extG ∈ V ∗G is a string of external
nodes. Hypergraphs are always considered up to isomorphism. The set of all hypergraphs with labels
from Σ is denoted by H (Σ). Note that we allow attachment nodes of a hyperedge as well as external
nodes to coincide. The rank function rkG (or rk, if G is clear) is defined as follows: rkG(e) := |attG(e)|.
Besides, rk(G) := |extG|.

In drawings of hypergraphs, black circles correspond to nodes, labeled rectangles correspond to
hyperedges, att is represented by numbered lines, and external nodes are represented by numbers in
brackets. If a hyperedge has exactly two attachment nodes, it is depicted by a labeled arrow that goes
from the first attachment node to the second one.

A handle a• is a hypergraph a•= 〈[n], [1],att, lab,1 . . .n〉where att(1)= 1 . . .n and lab(1)= a (a∈Σ,
rk(a) = n). A hypergraph a◦ is of the form 〈[n], [1],att, lab,Λ〉 where att, lab are as in the definition of
a•. A hypergraph D[k] = 〈[k], /0, /0, /0,Λ〉 is called discrete (k ∈ N).

For a hypergraph H and a function f : EH → Σ a relabeling f (H) of H is a hypergraph f (H) =
〈VH ,EH ,attH , f ,extH〉. It is required that rkH(e) = rk(f (e)) for e ∈ EH .

The replacement of a hyperedge e0 in G by a hypergraph H (such that rk(e0) = rk(H)) is done as
follows: 1. remove e0 from G; 2. insert an isomorphic copy of H (H and G have to consist of disjoint
sets of nodes and hyperedges); 3. for each i, fuse the i-th external node of H with the i-th attachment
node of e0. The result is denoted as G[e0/H]. It is well known that if several hyperedges of a hypergraph
are replaced by other hypergraphs, then the result does not depend on the order of the replacements;
moreover the result is not changed, if replacements are done simultaneously [1]. The following notation
is in use: if e1, . . . ,ek are distinct hyperedges of a hypergraph H and they are simultaneously replaced by
hypergraphs H1, . . . ,Hk resp., then the result is denoted H[e1/H1, . . . ,ek/Hk].

In a special case where a hypergraph G does not have external nodes (extG =Λ) let us call it zero-rank
and denote it using four components: G = 〈VG,EG,attG, labG〉. The following definitions are applicable
for zero-rank hypergraphs H,H1,H2. The disjoint union H1 +H2 is the hypergraph 〈VH1 tVH2 ,EH1 t
EH2 ,att, lab〉 such that att|Hi = attHi , lab|Hi = labHi (i = 1,2); that is, we just put these hypergraphs

T. Pshenitsyn 3

together without fusing any nodes or hyperedges. The disjoint union of H with itself k times is denoted
by k ·H. Besides, we can extend the notion of disjoint union: if H1 is zero-rank, then we can define
H1 +H2 and H2 +H1 assuming that the disjoint union has the set of external nodes equal to extH1 .

2.1 DPO Grammars

Given two zero-rank hypergraphs G and H, a morphism f : G→ H is a pair of functions fV : VG→ VH ,
fE : EG→ EH such that fV (attG(e)) = attH(fE(e)), labH(fE(e)) = labG(e) for all e ∈ EG.

Let I,G1,G2 be zero-rank hypergraphs with morphisms ϕi : I→ Gi, i = 1,2. Let ≡V be the smallest
equivalence relation on the disjoint union VG1 tVG2 that satisfies ϕ1(v)≡ ϕ2(v) for v ∈VI; a relation ≡E

is defined similarly on EG1 tEG2 . 〈x〉 denotes the equivalence class of x w.r.t. ≡V if x is a node, and w.r.t.
≡E if x is a hyperedge. The gluing of G1 and G2 over I denoted as G1 +ϕ1,ϕ2 G2 is a hypergraph G such
that VG = (VG1 tVG2)/ ≡V , EG = (EG1 tEG2)/ ≡E ; given 〈e〉 ∈ EG with rk(e) = k, if e ∈ EGi for some
i = 1,2, then attG(〈e〉) = 〈attGi(e)(1)〉 . . .〈attGi(e)(k)〉 and labG(〈e〉) = labGi(e). This is a well-defined
notion taken from [4] (where it is defined for graphs rather than for hypergraphs). There it is stated that
the gluing of two graphs is a pushout in the category of graphs. In this paper, we do not work within the
categorical approach, so we stick to the set-theoretic definition.

Note that, if I is discrete, then the gluing procedure can be represented as replacement:
Proposition 1. Let I = D[k] and let Gi, ϕi be as above. Let G′1 = 〈VG1 ,EG1 t{e0},attG′1 , labG′1

〉 where
attG′1(e) = attG1(e), labG′1

(e) = labG1(e) for e∈ EG1 , and attG′1(e0) = ϕ1(1) . . .ϕ1(k) (the label of e0 does
not matter). Let G′2 = 〈VG2 ,EG2 ,attG2 , labG2 ,ϕ2(1) . . .ϕ2(k)〉. Then G1 +ϕ1,ϕ2 G2 = G′1[e0/G′2].

This proposition immediately follows from the definitions of gluing and replacement.
In the DPO approach, a hypergraph grammar rule is of the form r = (L

ϕL← I
ϕR→ R) where ϕL, ϕR

are morphisms. A hypergraph G is transformed into H via r if there is a hypergraph C and a morphism
ψ : I→C such that G∼=C+ψ,ϕL L, H ∼=C+ψ,ϕR R [4] (∼= means that hypergraphs are isomorphic). We
draw the reader’s attention to the fact that this can be expressed by a double pushout diagram:

L I R

G C H

m
ϕL

ϕR

ψ n

ηR

ηL

This transformation is denoted as G⇒
r

H or simply as G⇒ H. NB! Hereinafter, we consider only
hypergraph rules with I being discrete. This does not substantially restrict the formalism.
Example 1. Consider the following DPO rule ρ:

ρ =

{1}

{2} {3}

l r ← D[3] →

{1}

t
{2} {3}

f
1

2

3

1

Note that both the leftmost and the rightmost hypergraphs are zero-rank; numbers in braces represent
images of nodes of the interface hypergraph D[3] (i.e. ϕL(1) is the node with the superscript {1} in the
leftmost hypergraph and so on).

A DPO hypergraph grammar HGr is of the form 〈N,Σ,P,Z〉 where N, Σ are disjoint finite alphabets
of nonterminal and terminal labels resp., P is a finite set of hypergraph rules over N∪Σ, and Z is a zero-
rank start hypergraph. The language L(HGr) generated by HGr is the set of all zero-rank hypergraphs
H ∈H (Σ) such that Z⇒∗ H. Note that we can assume without loss of generality that Z = S◦ for S ∈ N.

4 Transformation of DPO Grammars into HL-grammars With The Conjunctive Kleene Star

2.2 Hypergraph Lambek Calculus and Hypergraph Lambek Grammars

Now let us define the hypergraph Lambek calculus. We fix a set Pr of primitive types along with a
function rk : Pr→N; we require that for each k ∈N there are infinitely many p∈ Pr such that rk(p) = k.
Besides, we fix a countable set of labels $n,n ∈N and set rk($n) = n; let us agree that these labels do not
belong to any other set considered in the definition of the calculus. Then the set of types Tp is defined
inductively as follows:

1. All primitive types are types.

2. Let N ∈ Tp be a type, and let D be a hypergraph such that labels of all its hyperedges, except for
one, are from Tp, and one of them equals $d for some d; let also rk(N) = rk(D). Then N÷D is
also a type such that rk(N÷D) := d. The hyperedge of D labeled by $d is denoted by e$

D.

3. If M ∈H (Tp) is a hypergraph labeled by types, then×(M) is also a type, and rk(×(M)) := rk(M).

Example 2 contains an exemplar of a type. A sequent is a structure of the form H → A where H is a
hypergraph labeled by types (called the antecedent of the sequent), and A is a type (called the succedent)
such that rk(H) = rk(A).

The hypergraph Lambek calculus HL deals with hypergraph sequents. The only axiom of HL is of
the form p•→ p where p ∈ Pr. There are four inference rules of HL:

H[e/N•]→ A H1→ labD(d1) . . . Hk→ labD(dk)

H
[
e/D[e$

D/(N÷D)•,d1/H1, . . . ,dk/Hk]
]
→ A

(÷→) D[e$
D/F]→ N

F → N÷D (→÷)

H1→ labM(m1) . . . Hl → labM(ml)

M[m1/H1, . . . ,ml/Hl]→×(M)
(→×)

H[e/M]→ A
H[e/(×(M))•]→ A

(×→)

Here N÷D, ×(M) are types; e ∈ EH ; ED = {e$
D,d1, . . . ,dk}, EM = {m1, . . . ,ml}. In each rule presented

above, the sequents above the line are called premises, and the sequent below the line is called the
conclusion. A hypergraph sequent H → A is said to be derivable in HL (denoted by HL ` H → A) if it
can be obtained from axioms of HL by applications of rules of HL. A corresponding sequence of rule
applications is called a derivation. An example of a derivation is given in Example 3. Motivation of the
introduced rules is explained in [8].

An HL-grammar is a tuple HGr = 〈Σ,S,.〉 where Σ is an alphabet along with a rank function, S ∈ Tp
is a distinguished type, and .⊆Σ×Tp is a finite binary relation such that a.T implies rk(a)= rk(T). The
language L(HGr) generated by an HL-grammar HGr = 〈Σ,S,.〉 is the set of all hypergraphs G∈H (Σ)
for which a function fG : EG→ Tp exists such that:

1. labG(e). fG(e) whenever e ∈ EG;

2. HL ` fG(G)→ S (recall that fG(G) is a relabeling of G by means of fG).

3 Encoding DPO Rules in HL With Conjunctive Kleene Star

Inference rules of the hypergraph Lambek calculus are defined as transformations operating on hyper-
graph sequents. All the rules are defined through replacement; besides, after an application of each rule
a new type appears either in the antecedent or in the succedent of a sequent. Let us take a closer look
at two particular rules, namely, at (÷→) and (×→). The rule (÷→) is organized as follows: given a
sequent H[e/N•]→ A (note that H[e/N•] is structurally the same hypergraph H, the replacement only

T. Pshenitsyn 5

changes the label of e) and sequents Hi→ labD(di) for i = 1, . . . ,k, we replace e in H by D, then relabel
the $d-labeled hyperedge by the type (N÷D), and then replace each di by the corresponding antecedent
Hi (i = 1, . . . ,k). Hence, this rule essentially consists of several replacements. In contrast, the rule (×→)
performs a transformation inverse to replacement: if one has a hypergraph G[e/M] in the antecedent,
then he/she can “compress” its subhypergraph M into a single hyperedge e labeled by the type ×(M).

Note that the definition of a hypergraph grammar rule and Proposition 1 imply that the rule appli-
cation of G⇒

r
H for r = (L

ϕL← I
ϕR→ R) consists of an inverse replacement G = C′[e0/L′]⇐C′ and of a

replacement C′⇒C′[e0/R′] = H (where C is as in the definition of a hypergraph rule application, and C′,
e0, L′ and R′ are as in Proposition 1). This shows us a way of encoding each DPO hypergraph rule by a
type of HL with × and ÷. However, firstly we need to slightly enhance DPO hypergraph grammars.

Construction 1. Given a DPO hypergraph grammar 〈N,Σ,P,S◦〉, we convert it into an equivalent gram-
mar 〈N′,Σ,P′,S◦〉, which we call normalized, as follows. For each a∈ Σ we introduce a new nonterminal
label Ta with rk(Ta) = rk(a); let N′ = N t{Ta | a ∈ Σ}. Then for each r = (L

ϕL← D[k]
ϕR→ R) ∈ P we

replace each terminal label a in L, R by Ta. Let us call such new rules nonterminal and denote the set of
nonterminal rules as PN . Finally, we add rules that allow one to replace Ta by a, i.e., rules of the form
(T ◦a

ϕL← D[k]
ϕR→ a◦) where rk(a) = k, ϕL(i) = ϕR(i) = i for i = 1, . . . ,k (here we use the notation of nodes

as in the definitions of D[k] and S◦). These rules are called terminal and are denoted as PT . Finally,
P′ = PN ∪PT . Hereinafter we consider only normalized grammars.

Now we are ready to convert a hypergraph grammar rule into a corresponding type of HL.

Construction 2. Let us consider nonterminal labels of normalized grammars as primitive types (with
the same rank function). If r = (L

ϕL← D[k]
ϕR→ R) is a nonterminal rule, then DPO(r) :=×(L̂)÷ R̂ where

1. L̂ = 〈VL,EL,attL, labL,ϕL(1) . . .ϕL(k)〉;
2. R̂ = 〈VR,ER,attR, labR,ϕR(1) . . .ϕR(k)〉+$•0.

Note that $•0 is a separate hyperedge of rank 0 “floating” in R̂.

Example 2. The nonterminal rule ρ from Example 1 is converted into the following type DPO(ρ):

DPO(ρ) =×

(1)

(2) (3)

l r

÷

(1)

t
(2) (3)

f
1

2

3

1

$0

The main connection between r and DPO(r) is shown in

Lemma 1. Let Y be a zero-rank hypergraph and let Y ⇒
r

Y ′ for r ∈ PN . If HL ` Y → A for some type A,

then HL ` Y ′+DPO(r)•→ A as well.

Lemma 2. Let Y,Y ′ be zero-rank; let Y ⇒∗ Y ′ in a normalized grammar 〈N,Σ,P,S◦〉 by means of non-
terminal rules. If HL ` Y → A for some type A, then HL ` Y ′+ ∑

r∈PN

kr ·DPO(r)•→ A for some kr ∈ N.

Here the summation symbol stands for multiple disjoint union. Lemma 1 is proved by straightfor-
wardly applying (×→) and then (÷→) to the sequent Y → A. Lemma 2 directly follows from Lemma
1. Note that kr is the number of applications of r in the derivation Y ⇒∗ Y ′.

Therefore, a DPO derivation can be remodeled within HL but each rule application of r leaves a
trace, namely, a floating hyperedge labeled by DPO(r) in the antecedent.

6 Transformation of DPO Grammars into HL-grammars With The Conjunctive Kleene Star

Example 3. The following derivation illustrates Lemma 1:

l•→ l r•→ r p•→ p

l r

p
→×

 l r

p

 (→×)

×(L̂)

p

1

2 3 →×

 l r

p

(×→)

t•→ t f •→ f

t

f

p

1

2 3

1

DPO(ρ) → ×

 l r

p

(÷→)

Here the sequent Y → A equals
l r

p
→×

(
l r

p

)
, and the rule r equals ρ from Example 1.

The next goal is to use the correspondence between rules and types at the grammar level:

Definition 1. Given a DPO hypergraph grammar HGr = 〈N,Σ,P,S◦〉, let Lc(HGr) consist of all hyper-
graphs H ∈ L(HGr) such that there exists a derivation S◦⇒∗ H with no more than c · |EH | steps.

Construction 3. Let HGr = 〈N,Σ,P,S◦〉 be a normalized grammar; let c ∈ N. Then we construct an
HL-grammar LGc(HGr) = 〈Σ,×(S◦),.〉 where . contains exactly the following pairs:

a.×

(
T •a + ∑

r∈PN

kr ·DPO(r)•
)

for kr ≥ 0, ∑
r∈PN

kr ≤ c.

Note that . is a finite relation since there are finitely many kr ∈ N satisfying the above requirements.

Example 4. Consider a DPO grammar HGr = 〈N,Σ,P,S◦〉 where N = {S}, Σ = {a}, and P = {r1,r2,r3}:

1. r1 =
(

S ← D[0] → D[0]
)

;

2. r2 =
(

S ← D[0] → S
)

;

3. r3 =
(
{1} {2} ← D[2] → {1} {2}

a
)

.

It is not hard to see that it generates all graphs (with edges having two attachment nodes): the rule r2
produces nodes while r3 produces edges. Consider e.g. the following derivation:

S ⇒
r2

S ⇒
r2

S ⇒
r1

⇒
r3

a ⇒
r3

aa ⇒
r3

a aa (1)

Note that HGr is not normalized; using Construction 1 we replace r3 by the following two rules:

1. r′3 =
(
{1} {2} ← D[2] → {1} {2}

Ta

)
;

2. r′′3 =

(
{1} {2}

Ta ← D[2] → {1} {2}
a

)
.

T. Pshenitsyn 7

Let us denote a new normalized grammar HGr′. Then we convert its nonterminal rules into types by
using Construction 2:

1. X1 = DPO(r1) =×
(

S
)
÷
(

$0

)
;

2. X2 = DPO(r2) =×
(

S
)
÷
(

S $0

)
;

3. X3 = DPO(r′3) =×
(

(1) (2)
)
÷
(

(1) (2) $0
Ta

)
;

Finally, we introduce an HL-grammar LG2(HGr′) = 〈Σ,×(S◦),.〉 according to Construction 3. The
binary relation . consists of the following 13 pairs (in fact, of the 10 distinct pairs) where i, j ∈ {1,2,3}:

• a.T =×
(

(1) (2)
Ta

)
;

• a.Ti =×
(

(1) (2) Xi
Ta

)
;

• a.Ti j =×
(

(1) (2) Xi X j
Ta

)
.

Recall that in order to check that a hypergraph belongs to L(LG2(HGr′)) we need 1) to replace
labels of its hyperedges by types corresponding to them via .; 2) to construct a sequent with the resulting
hypergraph in the antecedent and with×(S◦) in the succedent; 3) to derive this sequent. Let us check that

H = a aa ∈ L(LG2(HGr′)). We replace each label a by one of the types T , Ti, or Ti j as follows:

T22 T33
T13 (compare the indices of types with the numbers of rules applied in (1)). Finally, we

check that T22 T33
T13 →×(S◦) is derivable:

Ta Ta
Ta X2 X2 X1 X3 X3 X3 → ×(S◦)

Ta T33
Ta X2 X2 X1 X3 → ×(S◦)

(×→)

Ta T33
T13 X2 X2 → ×(S◦)

(×→)

T22 T33
T13 → ×(S◦)

(×→)

The uppermost sequent in the above derivation is derivable, which follows from Lemma 2. This com-
pletes the proof of the fact that H ∈ L(LG2(HGr′)).

The above example illustrates the following theorem:

Theorem 1. If HGr is a normalized DPO grammar and 1≤ c ∈ N, then L(LGc−1(HGr)) = Lc(HGr).

The inclusion L(LGc−1(HGr)) ⊇ Lc(HGr) is proved by using Lemma 2 in the same way as in Ex-
ample 4. The other inclusion is proved by induction; namely, the following proposition is crucial:

Proposition 2. If HL ` H + ∑
r∈PN

kr ·DPO(r)•→ B where H is labeled by nonterminal symbols, kr ∈ N,

and B is a nonterminal symbol, then for each zero-rank hypergraph G with e0 ∈ EG such that rk(e0) =
rk(B) it holds that G[e0/B•]⇒∗ G[e0/H].

8 Transformation of DPO Grammars into HL-grammars With The Conjunctive Kleene Star

Theorem 1 says that HL-grammars are powerful enough to generate hypergraphs of a language gen-
erated by a DPO grammar such that the number of steps in their derivation is bounded by a linear function
of the number of hyperedges. It might be the case for a DPO grammar HGr that L(HGr) = Lc(HGr)
for some c ∈ N; in fact, we claim that for each HL-grammar HGr = 〈Σ,S,.〉 with rk(S) = 0 there is a
DPO grammar HGr′ and c∈N such that L(HGr) = Lc(HGr′) = L(HGr′), although we do not prove this
(this should be a matter of another paper). In general, however, L(HGr) 6= Lc(HGr) (e.g. in Example 4
Lk+1(HGr) contains only graphs G such that |VG|< k · |EG|). Besides, it follows from complexity reasons
that an arbitrary DPO grammar cannot be converted into an equivalent HL-grammar: it is known that the
membership problem even for a particular DPO grammar is undecidable, while it is NP-complete for HL-
grammars. However, Construction 2 is quite natural, so we would like to modify the hypergraph Lambek
calculus somehow in order to be able to convert any DPO grammar into an equivalent HL-grammar.

The idea of Construction 3 and of Theorem 1 is that we store DPO(r)-labeled hyperedges in each type
corresponding to a terminal symbol; then, for G ∈ L(LGc(HGr)), when we replace each symbol a in G

by a type ×
(

T •a + ∑
r∈PN

kr ·DPO(r)•
)

for some kr, these hyperedges eventually appear in the antecedent

where they play their role shown in Lemma 2. The total number of these hyperedges, however, is limited
by the number of hyperedges in G, hence the language Lc(HGr) is generated instead of L(HGr). To
overcome this limitation we need a way of copying types in antecedents of sequents unlimitedly. Since
HL generalizes the Lambek calculus, we expect that this way must have logical and algebraic grounds.

Any logical calculus is defined syntactically: we must introduce notions of logical formulae, which
are built using some operations, then axioms and inference rules of a calculus (recall e.g. the classical
propositional calculus). The Lambek calculus L introduced in [6] follows the same scheme. There are
different modifications of L; let us start with considering the Lambek calculus with the unit denoted as
L1, which is the logic of residuated monoids. Types of L1 are built from primitive types Pr (here we do
not need the rank function) using binary operations \, ·, /; there is also a constant 1 called the unit. A
sequent is a structure of the form A1, . . . ,An→ A where n≥ 0 and Ai, A are types. Axioms of the calculus
L1 are A→ A and→ 1. There are seven rules of L1:

Π→ A Γ,B,∆→C
Γ,Π,A\B,∆→C

(\→)
Π→ A Γ,B,∆→C

Γ,B/A,Π,∆→C
(/→)

A,Π→ B
Π→ A\B (→\) Π,A→ B

Π→ B/A
(→ /)

Γ,A,B,∆→C
Γ,A ·B,∆→C

(· →) Π→ A Ψ→ B
Π,Ψ→ A ·B (→ ·) Γ,∆→C

Γ,1,∆→C
(1→)

Here capital Latin letters denote types, and capital Greek letters denote sequences of types.
The most common way of modifying L is adding new operations along with new axioms and rules. In

particular, one can extend the Lambek calculus with operations corresponding to set-theoretic operations
like union or intersection [3]. Another operation, which can be added to L, is Kleene star. It turns out that
the Lambek calculus with Kleene star is studied by several researchers, in particular, in [5]. An extension
of L by intersection, union, and Kleene star is known as infinitary action logic [7], or, in the algebraic
setting, as the logic of action algebras. Note that Kleene star can be described in terms of actions within
a transition system: if A is a class of actions, then A∗ means actions from A repeated several times [5].
This understanding is very close to what we search for since our goal is to be able to apply DPO rules
arbitrarily many times within HL using Construction 2. Hence, let us look at the Lambek calculus with
Kleene star L∗1ω

[5]. Types of L∗1ω
are built from primitive types Pr and from 1 using \,/, ·,∗. The set of

axioms and rules is the same as above but with the following additional rules for Kleene star:

Π→ An

Π→ A∗
(→∗), n≥ 0

(Γ,An,∆→ B)∞

n=0

Γ,A∗,∆→ B
(∗→)ω

T. Pshenitsyn 9

Here A0 := 1, An+1 := An ·A. Note that the rule (→∗) is in fact a countable set of rules for each n ≥ 0;
contrarily, (∗→)ω is a sinlge rule with countably many premises. Let us clarify the notion of being
derivable in this calculus: the set of derivable sequents in L∗1ω

is the least set S containing all axioms of
L∗1ω

(i.e., all sequents of the form A→ A and the sequent→ 1) such that it is closed under applications
of all inference rules (i.e., if, for some rule, all sequents above the line belong to S, then the sequent
below the line must also belong to S). In other words, a derivation in L∗1ω

is again a sequence of rule
applications, which now can be countable in size but which does not have branches of infinite length.

Unfortunately, the rules for Kleene star work in an undesirable way: they allow unlimited copying
types in succedents of sequents (namely, if we have n copies of A in a succedent, then we can wrap them
into a single type A∗) but not in antecedents. This motivates us to consider an operation behaving dually:

(Π→ An)∞

n=0

Π→ ∗A
(→∗)ω

Γ,An,∆→ B
Γ, ∗A,∆→ B

(∗→), n≥ 0

The operation ∗A is called the conjunctive Kleene star. Algebraically, it can be defined in complete

residuated lattices using infinitary conjunction as ∗a =
∞∧

n=0
an = inf{an | n ∈ N} (this is why we call it

conjunctive). Note that the language semantics of this operation is poor: if L is a language (L ⊆ Σ∗),
1 equals {Λ}, and multiplication of languages means pairwise concatenation of their words while con-
junction means intersection, then ∗L = {Λ} if Λ ∈ L and ∗L = /0 otherwise. Finding a class of residuated
lattices, in which the conjunctive Kleene star is defined and is meaningful, is a curious open question.

Now we need to generalize the conjunctive Kleene star and inference rules for it to hypergraphs. A
question arises: how should one understand an iteration of a type, namely, An? In the string case, this
means repeating a type n times and writing copies in line connecting them by ·. We need to extend this
iteration procedure to hypergraphs. We suggest the following general definitions:
Definition 2. A template T of rank k is a hypergraph T = 〈VT , [2],attT , labT ,extT 〉 such that rkT (1) =
rkT (2) = rk(T) = k. In other words, T has two hyperedges of the same rank, which coincides with the
rank of T . Hereinafter T (H1,H2) is a shorthand notation for T [1/H1,2/H2].
Definition 3. A template T of rank k is monoidal if for all hypergraphs A,B,C of rank k it holds that 1.
T (A,T (B,C))∼= T (T (A,B),C), 2. a hypergraph UT of rank k exists such that T (UT ,A)∼= T (A,UT)∼= A.
Definition 4. The T -iteration T n(A) of a type A (where T is a monoidal template) such that rk(A) =
rk(T) is defined as follows: T 0(A) :=UT ; T n+1(A) := T (T n(A),A•) (for n≥ 0).
Example 5. Two examples of monoidal templates are

• O = X X (i.e., VO = /0, EO = [2], attO(1) = attO(2) = extO = Λ). Note that UO = D[0].

• Str = (1) (2)
Y Y .

Here X ,Y are arbitrary labels, they do not matter.
Lemma 3. O(H,G) = H +G for zero-rank H,G. Consequently, Om(A) = m ·A• (where rk(A) = 0).

Using monoidal templates we can define the hypergraph conjunctive Kleene star. Types of the hyper-
graph Lambek calculus with the conjunctive Kleene star ∗HLω are built as described in Section 2.2 but
we add one more item to the definition: if A is a type such that rk(A) = n and if T is a monoidal template
of rank n, then ∗T A is also a type of rank n. We also add two inference rules for the new operation:

(H→×(T n(A)))∞

n=0

H→ ∗
T A

(→∗)ω

G[e/T n(A)]→ B
G[e/(∗T A)•]→ B

(∗→), n≥ 0

Usual logical questions concerning ∗HLω arise. In particular, the cut elimination theorem can be proved:

10 Transformation of DPO Grammars into HL-grammars With The Conjunctive Kleene Star

Theorem 2. If ∗HLω ` H→ A and ∗HLω ` G[e/A•]→ B, then ∗HLω ` G[e/H]→ B.

The theorem is proved by a transfinite induction in a similar way to that from [7].
Note that we can define the hypergraph Kleene star generalizing A∗ studied in [5, 7] in the same way

as ∗T A, which would also be interesting to study as a more classical operation than ∗A.
At the next step we can define ∗HLω -grammars in the same way as in Section 2.2. Now each DPO

grammar can be naturally transformed into an equivalent ∗HLω -grammar as follows:

Construction 4. Let HGr = 〈N,Σ,P,S◦〉 be a normalized grammar. Then LGω(HGr) = 〈Σ,S′,.〉 where

. consists of pairs a.Ta, and S′ =×(S◦)÷
(

∑
r∈PN

(∗
ODPO(r)

)•
+$•0

)
.

Here we apply the hypergraph conjunctive Kleene star to each type DPO(r) (for r ∈ PN) and store the
result in S′. This trick enables us to prove the following

Theorem 3. If HGr is a normalized DPO grammar, then L(LGω(HGr)) = L(HGr).

Since DPO grammars generate, among others, all recursively enumerable languages, this implies:

Theorem 4. The problem of whether a sequent is derivable in ∗HLω is undecidable.

Acknowledgments

I thank prof. Mati Pentus and Stepan Kuznetsov for fruitful discussions, and anonymous reviewers for
valuable remarks (in particular, for suggesting studying connections with process algebras).

References
[1] Frank Drewes, Hans-Jörg Kreowski & Annegret Habel (1997): Hyperedge Replacement Graph Grammars.

In Grzegorz Rozenberg, editor: Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 1: Foundations, World Scientific, pp. 95–162, doi:10.1142/9789812384720 0002.

[2] Hartmut Ehrig, Michael Pfender & Hans Jürgen Schneider (1973): Graph-Grammars: An Algebraic Ap-
proach. In: 14th Annual Symposium on Switching and Automata Theory, Iowa City, Iowa, USA, October
15-17, 1973, IEEE Computer Society, pp. 167–180, doi:10.1109/SWAT.1973.11.

[3] Makoto Kanazawa (1992): The Lambek calculus enriched with additional connectives. J. Log. Lang. Inf. 1(2),
pp. 141–171, doi:10.1007/BF00171695.

[4] Barbara König, Dennis Nolte, Julia Padberg & Arend Rensink (2018): A Tutorial on Graph Transformation.
In Reiko Heckel & Gabriele Taentzer, editors: Graph Transformation, Specifications, and Nets - In Memory
of Hartmut Ehrig, Lecture Notes in Computer Science 10800, Springer, pp. 83–104, doi:10.1007/978-3-319-
75396-6 5.

[5] Stepan L. Kuznetsov (2021): Complexity of the Infinitary Lambek Calculus with Kleene Star. Rev. Symb. Log.
14(4), pp. 946–972, doi:10.1017/S1755020320000209.

[6] Joachim Lambek (1958): The Mathematics of Sentence Structure. The American Mathematical Monthly 65(3),
pp. 154–170, doi:10.1080/00029890.1958.11989160.

[7] Ewa Palka (2007): An Infinitary Sequent System for the Equational Theory of *-continuous Action Lattices.
Fundam. Informaticae 78(2), pp. 295–309.

[8] Tikhon Pshenitsyn (2021): Grammars Based on a Logic of Hypergraph Languages. In Berthold Hoff-
mann & Mark Minas, editors: Proceedings Twelfth International Workshop on Graph Computational Models,
GCM@STAF 2021, Online, 22nd June 2021, EPTCS 350, pp. 1–18, doi:10.4204/EPTCS.350.1.

http://dx.doi.org/10.1142/9789812384720_0002
http://dx.doi.org/10.1109/SWAT.1973.11
http://dx.doi.org/10.1007/BF00171695
http://dx.doi.org/10.1007/978-3-319-75396-6_5
http://dx.doi.org/10.1007/978-3-319-75396-6_5
http://dx.doi.org/10.1017/S1755020320000209
http://dx.doi.org/10.1080/00029890.1958.11989160
http://dx.doi.org/10.4204/EPTCS.350.1

	Introduction
	Preliminaries
	DPO Grammars
	Hypergraph Lambek Calculus and Hypergraph Lambek Grammars

	Encoding DPO Rules in HL With Conjunctive Kleene Star

