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Abstract. A smart contract is a computer program that defines an agreement between multiple parties to follow 

specific logic and agreement and executes automatically when certain conditions are met. Recently, block-

chain-based smart contracts have become popular due to their immunity, decentralization, and security insur-

ance in a trust-less environment. However, they are extremely susceptible to various security risks, so it is 

necessary to conduct a systematic investigation of existing security countermeasures and use unified evalua-

tion criteria. Although there have been some security investigations on blockchain-based smart contracts, they 

have failed to conduct a reasonable analysis of existing security solutions with a unified criterion. Therefore, 

in this article, we conduct a comprehensive investigation of the latest work on security in blockchain-based 

smart contracts. We proposed a system and security model representing smart contracts based on blockchain. 

On this basis, we analyzed the security requirements of blockchain and smart contracts, and we use these 

requirements as evaluation criteria to analyze the works under investigation. Based on the results of the anal-

ysis, we have identified a series of open research questions and future directions to stimulate research work 

on protecting blockchain-based smart contracts. 

Keywords: Blockchain, Smart Contracts, Security, Privacy, Cryptocurrency, Vulnerability. 

1 Introduction 

Smart contracts are a computer program proposed by Nick Szabo in 1996, which defines smart contracts as a 

computer program designed to facilitate, verify, and enforce legal contracts and negotiations in the digital world. 

A traditional smart contract was contingent on a centralized trusted party; thus, it confronts a single point of 

failure problem. Also, an untrusted centralized party will cause huge benefit losses to users. Due to this, cooper-

ation among multiple smart contracts platforms is not practical. A centralized smart contracts platform confronts 

severe security and trust problems; hence, ensuring trust is not feasible. To tackle these problems, some research-

ers proposed to used blockchain to build a decentralized smart contracts platform. Blockchain is a decentralized 

ledger that stores data in a decentralized and append-only way. A bitcoin was the first blockchain introduced by 

Satoshi to implement decentralized cryptocurrency and quickly attracts considerable attention in academia and 

industry, due to its decentralization, immunity, consistency, and trust characteristics. These advantages make it 

an ideal platform for deploying smart contracts. A blockchain-based smart contract is a collection of computer 

codes stored on a blockchain, and these codes are only valid when specific terms and conditions are met. The first 

blockchain-based decentralized smart contract platform is Ethereum. Contrary to the centralized smart contracts 

platforms, blockchain-based smart contracts support the trusted execution without any trusted third party (TTP), 

and it avoids security risks raised by untrusted or insecure centralized parties. Despite the popularity of block-

chain-based smart contracts, they are highly vulnerable to various security risks. For instance, the adversary can 

take advantage of code bugs in smart contracts to obtain benefits illegally. Also, they can harm the trusted exe-

cution of contracts by breaking the underlying consensus mechanisms for blockchain. The attacks that target the 

peer-to-peer network can cause inconsistent contracts execution results. Several real-world attacks are aiming at 

blockchain-based smart contracts. Such as the attacks in Ethereum Decentralized Autonomous Organization 

(DAO) in 2016 [3] and the Parity Wallet attacks in 2017. These attacks have resulted in significant losses. For 

example, the DAO attack caused a loss of $ 60 million worth of ether coins. The cause of this attack was the gap 

in the recursive call bug on the smart contract. This attack also forced the Ethereum blockchain to apply a hard 

fork on its chain. Because of this hard fork, the Ethereum blockchain split into two blockchains, i.e., Ethereum 

and Ethereum classic. Therefore, exploring the security and privacy issues and their countermeasures in block-

chain-based smart contracts in a systematic way is vital to alleviate the risks. 

There are several surveys work aiming at blockchain security and privacy [4] [5] [6] [7] [8].  However, they 

have failed to conduct a systematic investigation into blockchain-based Smart contracts and possible attacks and 

security issues. Some works tried to investigate smart contracts code security. They analyzed the security vulner-

abilities of Smart contracts and outlined common program flaws that can lead to vulnerabilities. However, they 
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fail to consider other security issues. To better illustrate the superiority of our work, we have summarized the 

comparison of our work with existing surveys in Table 1. 

Contributions: This paper surveys the potential attacks and their security countermeasures that target block-

chain-based smart contracts. We summarized the existing attacks on blockchain smart contracts, and we proposed 

security requirements for blockchain-based smart contracts. We have utilized these requirements as criteria to 

evaluate the security solutions for blockchain smart contracts. Finally, we point out a series of open issues about 

the security of blockchain-based smart contracts and discuss the future research direction. The remainders of our 

paper are organized as follows. In Section II, we define a system model for blockchain-based smart contract 

platforms and analyze its unique characteristics. In Section III, we propose a security model and summarize the 

potential attacks. Based on the security model, we summarize the security requirements. Section IV presents a 

detailed analysis of existing security countermeasures. In Section V, based on the analysis and comparison, we 

figure out a series of open research issues and future directions. Finally, Section VI the whole paper concludes 

here. 

Table 1. . Comparison of Our Survey with Other Existing Surveys 

 

Topic  [4] [5] [6] [7] [8] Our work 

Summarize smart contracts attack Yes No Yes Yes No Yes 

Propose a set of Evaluation criteria No No Yes Yes No Yes 

Analyze security requirement No No No No No Yes 

Analyze security solution Yes No Yes Yes Yes Yes 

Propose open issue No Yes No Yes Yes Yes 

Propose a taxonomy Yes Yes Yes Yes Yes Yes 

                         Yes; denotes a corresponding topic is satisfied, 

               No; denotes a corresponding topic is not satisfied 

2 System Model and Unique Characteristics 

In this section, we define the system model and analyze the unique characteristics of blockchain-based smart 

contract platforms. 

2.1 System Model 

The blockchain contains a summary of all the transactions and smart contracts in the blocks. It is composed of 

several blocks linked together to form a chain with a hashed previous address. Data recorded in blockchain cannot 

be deleted or modified, which ensures the integrity and trust of the data. When someone wants to write a record 

(usually called a transaction) to a blockchain, the miner or validator in the blockchain will verify the validity of 

the transaction based on consensus. A typical blockchain consists of multiple computing devices, each of which 

is connected through a peer-to-peer (P2P) network. There is no centralized party for node management and net-

work maintenance. In order to better analyze its characteristics, we strive to use a multi-layered model to represent 

the conceptual model of the blockchain. The multi-layer blockchain model consists of six layers, i.e., Data Layer, 

Physical Layer, Consensus Layer, Network layer, Presentation layer, and Application Layer, as shown in Figure 

1. 

 

Application Layer: The application layer serves as an interface for users and applications to access blockchain 

blocks. The application layer itself is not an application, but it provides functions for running applications and 

creating transactions. The transaction is an important part of the blockchain ecosystem. In this layer, there is two-

party that have a power to create a transaction, a person who owns a token and smart contract. A smart contract 

can create a transaction to a specific address when a certain conditions set are met. An event that will update the 

state of the blockchain is considered as transaction. In bitcoin, transaction is a transfer of the locked Unspent 



 

Transaction Output (UTXO) or simply bitcoin to the new address. However, in the case of Ethereum, transaction 

is the transfer of ETH from account or contract to another account or contract. Meanwhile, deploying a contract 

to the blockchain is also considered a transaction, but the contract is not transferred to a specific address, instead, 

it will be deployed without the recipient address. One of the functions that have been implemented in Ethereum 

blockchain through this layer is decentralized applications (Dapp). Through this Dapp, many blockchain-based 

applications have been implemented in different fields, such as the Internet of Things (IoT) [23], supply chain 

management systems [26], vehicular ad hoc network (VANET) [24], healthcare [27], Real state [25], and voting 

[22]. 

 

 
 

Fig. 1. Multi-layer Blockchain System Model 

Network Layer: Nodes in the blockchain are identified as computing devices Interconnect with neighbor nodes 

to establish a peer-to-peer (P2P) network. There are many P2P protocols that can facilitate the propagation of data 

between the sender and the receiver. Kadmila [11] P2P protocol is the basis protocol for node lookup process in 

most blockchains ecosystems. The responsibility of this layer is to propagate the transactions and new executed 

transactions between P2P nodes by finding the best route without any central management. Generally, blockchain 

network can be categorized into two group, i.e., public and private blockchains. In the public blockchain network, 

all records are publicly visible. Anyone who wants to join the network can join without permission and can also 

participate in the consensus process. On the contrary, the private blockchain record is invisible to the public, and 

it can only be accessed by nodes with access rights.  Table 2 summarized the current blockchains platform and 

their futures.   Figure 2 (a) shows a permissionless blockchain network model and Figure 2 (b) show a permis-

sioned blockchain network model. In this model, different types of devices are interconnected through the use of 

a P2P connection protocol. 

 

Consensus Layer: Consensus is a set of rules approved by blockchain members to verify transactions in the 

blockchain. Nowadays, different blockchain consensus mechanisms have been proposed and applied. For exam-

ple, Bitcoin chose to apply Proof of Work (POW) for its cryptocurrency [2]. There are other forms of consensus 

protocols applying the concept of Proof of Stake (PoS) [17], Proof of Elapsed Time (PoET) [18], Delegated Proof 

of Stake (DPoS) [19], Proof of Activity (a hybrid of proof of work and proof of stake) [20], Proof of Importance 

[21], proof of storage, etc. The process of verifying and approving transactions in the blockchain is called mining, 

and this process may require high computing power and electricity in case of PoW consensus. Another popular 

consensus algorithm proposed by Ethereum is PoS. PoS provides block verification capabilities for nodes with 

more stake in the blockchain. Nodes with high computing power or more stake perform block verification before 

being added to the chain. A miner or validator is a computing device that has the power to verify transactions or 

execute smart contracts. In the PoW consensus, miners use its computing power to obtain the ability to create the 

next block. On the contrary, in order for miners to mine the next block in PoS, they must deposit a certain amount 

of stake on theirs address, and then, according to the algorithm, others miner will vote to delegate to the next 

miner. 



 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (a) Public Blockchain        (b) Private Blockchain 

Physical Layer: The physical layer in this model is responsible for facilitating the execution of any type of 

transaction on heterogeneous hardware. The smart contract is deployed in the blockchain, and there are different 

types of computers in the P2P network. These computers are called nodes. Most nodes have different working 

environments. Executing smart contracts in this environment will make smart contracts vulnerable to serious 

security attacks. To alleviate this situation, the first smart contract implementation was developed using client 

software with a virtual machine. There are different types of virtual machines in the blockchain ecosystem, which 

are mainly used to execute transactions (smart contracts and chain codes). The Ethereum Virtual Machine (EVM) 

is responsible for running smart contracts written by Solidity and Vyper on the Ethereum blockchain. 

Table 2. Summary of Blockchain Platforms 

 

Platforms Execution Envi-

ronment 

Smart contracts Lan-

guage 

Type Consensus 

Ethereum[12] 
 

EVM Solidity, Vyper Public PoW(PoS Expected) 

Hyperledger Fabric 
[13] 

Docker JavaScript, Go Private BFT 

Cardano[14] KEVM Haskell Public PoS(ouroboros) 

NEO [15] NeoVM Java, C#, GO, JS Public dBFT 

Data Layer: The data layer contains the data structure of the blockchain. A blockchain is a chain of blocks, and 

each block contains a list of valid transactions recorded in the ledger within a given period of time. A block is the 

basic unit of the blockchain [16]. Each block consists of two parts, namely the block header and the block body. 

The block header consists of the block version, random number, timestamp, previous block hash, and Merkel tree 

root hash. The other part of the block consists of the transaction counter and the transaction history of the block. 

One valid block contains previous block hash to link with the previous block. The root of the Merkle tree retains 

the hash value of each transaction to ensure the immunity of the transactions. The structure of blocks is not similar 

on all blockchain platforms, but most of the block structure consist of the above two main parts and previous 

block hash; therefore, each block linked together and its chain immutable. Figure 3 show the basic block structure.  

To retrieve the created block and transaction each node stores the valid block index and location in their local 

database.  Ethereum uses a database based on Log Structured Merge Tree (LSM) to store an index of valid trans-

actions. 

 

https://www.gartner.com/reviews/market/blockchain-platforms/vendor/ethereum-foundation/product/ethereum


 

 

Fig. 3. Basic block structure 

3 System Requirement  

In this section, we define the security model and summarize the potential attacks on blockchain-based smart 

contracts. Then, we propose a series of security requirements to ensure the security of blockchain-based smart 

contracts. 

3.1 Security Model 

In our security model, there is no fully-trusted centralized entity responsible for system management. All nodes 

are rational and benefit-driven; thus, their trust cannot be ensured. Besides, blockchain nodes do not trust each 

other, and all nodes make decisions based on their benefits and the information recorded in the blockchain. Also, 

an adversary may control a proportion of blockchain node. Furthermore, it can broadcast numerous illegal trans-

actions or block over the network. The smart contract built by the adversary can trigger attacks against smart 

contracts by exploit their code weaknesses. Finally, we consider that the adversary can conduct a series of attacks, 

summarized in the next subsection.  

 

Potential Attacks: In our security model, we consider an adversary who can conduct a series of attacks. In order 

to better demonstrate, we divide potential attacks into several categories, namely, attacks on the blockchain net-

work, attacks on the consensus mechanism, and attacks on smart contracts.  

 

Attacks to blockchain network: Blockchain is based on P2P networking, which lacks a logically centralized 

trusted authority for network maintenance. Therefore, the adversary can take advantage of the weaknesses of the 

P2P network and conduct several attacks, as summarized below:  

 

 Denial of Service (DoS): DoS aim to make the system unobtainable, which is implemented by either forcing a 

victim computer to reset or consuming its resource, e.g., CPU cycles, memory or network bandwidth [29]. DoS 

can be conducted with distributed nodes, which is called Distributed DoS (DDoS). 

 Eclipse Attacks: Eclipse attack refers to that an adversary isolates a blockchain miner from all its incoming 

and outgoing neighbors, thus separating it from other peers in the network [28]. The adversary uses many 

nodes or botnets to exploit the victim’s nodes. Once the adversary effectively isolates the victims from their 

peer network, they can send obsolete/fake information to the victim. Besides, the adversary can use the victims 

compute power for their purpose. 

 Sybil Attack: A Sybil attack is an effort of an adversary to deceive other peers as many distinct identities [30]. 

The adversary creates multiple fake identities for various intentions, e.g., 51% attack. 

Attacks to Consensus Mechanism: The security of blockchain highly relies on the underlying consensus mech-

anism. Especially, in most public blockchain systems, miners can obtain rewards by generating a new block. 

Therefore, an adversary has strong incentives to harm consensus mechanisms for more profits. To better analyze 

the security of blockchain, we discuss the attacks on the consensus mechanism in this section.  

 

 Selfish Mining: The adversary can conduct selfish mining attack by holding the created blocks instead of 

broadcasting to the chain, which causes honest miners to waste their computing resources. In this way, adver-

sary can gain an advantage over other miners with less computing resources. Selfish mining [31] can effec-

tively reduce the rewards of honest miners. It can also cause other problems, such as forks after withholding, 



 

 

honest miners always broadcast the mined blocks on time, but adversary build the longest chain privately. 

Many consensus mechanisms accept that the longest chain is legal. When the adversary broadcasts the hidden 

chain to the blockchain network, the consensus will accept it as a valid chain. 

 Majority Attack: Majority attack refers that an adversary controls a proportion of miners. so that, it can control 

the blockchain system. For example, when an adversary controls over 50% of the computational power in 

Bitcoin system, it can reverse the transactions and interfere with the process of storing new block [32]. Several 

attacks can be performed based on majority attack, e.g., double spending, selfish mining. 

 Double-Spending Attack: Double-spending is a vulnerability in cryptocurrencies or other digital financial sys-

tems in which the same single digital token can often be used [33]. Because of this, two or more conflicting 

blocks with the same height are created, it is possible to cause this kind of attack, resulting in inconsistency, 

called derivation. Therefore, some encryption tokens may be temporarily used in two conflicting blocks, and 

then only one block is included in the honest chain. 

Attacks to Smart Contract code: Attacks on smart contracts code directly relate to the bugs in contracts, most of 

which are caused by programming language weaknesses [34]. There are many serious attacks on smart contacts 

code in the real world, resulting in huge losses to Ethereum. Therefore, we summarize the typical attacks of this 

type as below: 

 

 Reentrancy: Ethereum smart contracts can call and utilize the codes of other external contracts [35].  Contracts 

regularly handle Ether and other tokens. Based on the conditions set to the contract, these Ether and tokens 

will be sent to various external or contracts addresses. To send Ethers or tokens to another address, the contract 

must submit external calls to another contract. An adversary can intercept these external calls. Then can force 

the contract to execute further code through a fallback function including calls to itself.  The notorious DAO 

hack was one of the victims of this type of attack. A reentrancy attack may occur to a function that makes an 

external call to another untrusted contract before resolving the vulnerability.  An adversary who gains control 

over the contract can steal Ether from another contract by using vulnerable function calls. Listing 1 shows a 

code snippet that can be used to perform a reentrancy attack. This code snippet shows the reentrancy callback 

function vulnerability in line 5 and the attacker's contract starting from line 9. 

1 contract DAO { 

2     fuction withdraw(uint withdrawAmount) public  

3  { 

4        require(withdrawAmount <= balances[msg.sender]); 

5         msg.sender.call.value(withdrawAmount)(""); 

6        balances[msg.sender] -= withdrawAmount; 

7   } 

8  } 

9 contract Attacker { 

10    function attack()public payable{ 

11        DAO.withdraw(amount); 

12   function() public payable { 

13            if(address(DAO).balance>=amount) 

14            DAO.withdraw(amount); 

15       } 

16  } 

17 } 
 

 

Listing 1. Contract with simple reentrancy vulnerability and attack 

 Call Depth Attack: Due to call depth attacks, even completely trusted and accurate calls may not be executed. 

This is because the depth of the "call stack" is limited. If the attacker repeatedly makes several calls and brings 

the depth of the key to 1023, they can call your function and immediately disable all sub-calls. 



 
1 contract auction { 

2     mapping(address => uint) refunds; 

 

3     function withdrawRefund(address recipient){ 

4        uint refund = refunds[recipient]; 

5   refunds[recipient] = 0; 

6        recipient.send(refund); 

7  } 

8 } 

  
Listing 2. contract with call depth attack bug 

 Transaction-Ordering Dependence (TOD): A transaction will store in the mempool for a while. Miners can 

know what will happen in each transaction before being included in a block [37]. This can be dangerous for 

things like decentralized markets. Transactions to purchase certain tokens can be seen by the public, and market 

orders can be modified and executed before other transactions are included. Preventing this situation is difficult 

since every transaction will come down to the specific contract itself.  

 DoS (Denial of Service): Malicious nodes can trigger DoS attacks on smart contracts. For example, malicious 

leaders will always fail by refunding their addresses, and they can prevent other nodes from calling the bid () 

function. Listing 3 shows a code snippet that can be used to perform a DoS attack. Under normal circumstances, 

the node with the highest bid will become the leader, and the previous leader value will be automatically 

refunded. On the contrary, if the current leader is malicious, it can intercept the refund to his address. Therefore, 

the next leader will not be assigned to the bid on time. 

1 contract Auction { 

2     address currentLeader; 

3     uint highestBid; 

 

4     function bid() { 

5         if (msg.value <= highestBid) { throw; 

6         } 

 

7         if (!currentLeader.send(highestBid)) {throw; } 

        // Refund the old leader, and throw if it fails 

 

8         currentLeader = msg.sender; 

9         highestBid = msg.value; 

10     } 

11  } 

  
Listing 3. contract with DoS vulnerability 

 Timestamp Dependence: The average timestamp and block number can be used to estimate time. But The 

timestamp can be exploited by the miner, so it should not be used in the key parts of the contract. Listing 4 

show simple timestamp dependence bug, in line 2 the now (the current time) can be manipulated by the miner.  

 
 

 1 uint startTime = SOME_START_TIME; 

 

 2 if (now > startTime + 1 week) 

 3 { // the now can be manipulated by the miner 

 4 } 

  
Listing 4. contract with timestamp dependence vulnerability 

 Short Addresses: Short address attacks are a side effect of the EVM itself accepting incorrectly padded argu-

ments [36]. Attackers can exploit this by using specially-crafted addresses to make poorly coded clients encode 

arguments incorrectly before including them in transactions. 

 Delegate call: Delegate call is a special variant of message call in the contract. It is the same as message call 

except that the code at the target address is executed in the context of the calling contract. This means that the 

contract can dynamically load code from different addresses at runtime. The storage, current address and bal-

ance still refer to the calling contract, but the code is taken from the called address.  

 Mishandled Exception: Some operations will not throw an exception, but returns a Boolean value. If this return 

value is not checked, the contract will continue to execute even if the payment fails, which can easily lead to 

inconsistencies. 



 

 

3.2 Security Requirements  

 

We explored the potential security risks in blockchain-based smart contracts and summarized the security require-

ments to mitigate these risks. 

 

Integrity (In): Integrity ensures that the block content in the chain is in the correct format when it is first created, 

also, it is a way to protect the unauthorized tampering of information. Attacks like 51% and Sybil attacks will 

challenge the integrity of Block in the blockchain. Malicious nodes try to modify the block, and if they success-

fully modify the block, the integrity will be compromised. In order to avoid such attacks, nodes should support 

the integrity of each block at any time.  

 

Availability (Av): Any node and block token in the blockchain should always be available even the hostile node 

triggered the DoS or DDoS attacks over the network. If the node availability is not protected, the adversaries can 

use them for their purpose.  

 

Non-repudiation (Nr): The adversary node in the blockchain tries to put its illegal block into the legal chain by 

cheating or attacking the honest node. Every node participating in a legal or illegal transactions cannot deny the 

transaction in the blockchain. Non-repudiation is about collecting, maintaining, and providing undeniable evi-

dence about every transaction from sender to receiver. This helps to easily find the adversary's actions.  

 

Confidentiality (Cf): Confidentiality refers to hiding transaction information, smart contract data, and preventing 

it from being exposed to unauthorized parties. 

 

Correctness (Co): The smart contract code should always be correct, otherwise small errors in the code may 

cause significant losses. 

Robustness: The security solution should be able to resist various security attacks against blockchain-based smart 

contracts. 

4 Countermeasures 

In this section, we analyze existing solutions for security vulnerabilities using the proposed security requirement 

as criteria. We searched for relevant papers using blockchain, Smart Contracts Security, Cryptocurrency, and 

Vulnerability as keywords in four databases, i.e., ACM Digital Library, IEEE Library, Elsevier Library, and 

Springer Library. These countermeasures can be roughly divided into three categories according to their design 

goals, Network-Based Attack Solution, Consensus-Based Attacks Solution, and Smart Contracts Based Attacks 

Solution, TABLE 2 summarizes the existing works into three taxonomies. TABLE 3 summarizes and compares 

the existing works based on the proposed security requirements.  

4.1 Network Based Attacks Solutions  

Muhammad et al. [38] proposed two solutions to mitigate Bitcoin DDoS mempool attack, i.e., (fee-based mem-

pool and Age-based mempool). The main idea is to leverage Lyapunov Optimization to control mempool size by 

taking mining fee, relay fee, and age of the transaction as a criterion to detect malicious transactions. Specifically, 

the age-based mempool can filter malicious transactions with a high true positive (TP) rate, which makes the 

miner available in the DDoS attacks environment. The fee-based mempool can only filter legitimate transactions 

from a few numbers of malicious transactions. When the scheme is applied in an idle state, the legitimate trans-

action will be removed from the mempool to fulfill the algorithm requirements. This can be a reason for incon-

sistency problems in the blockchain. This solution can resist DDoS attacks and improve the availability of block-

chain nodes. Hence, it can meet the Av requirements. However, it does not consider other security requirements. 

Wust and Gervais. [39] Launched an eclipse attack using the Ethereum block propagation algorithm over the 

main net active nodes. The node that misses a block in propagation time will start synchronizing the missed block 

from the peer node. In the attack, the attacker sends the forged blockchain to the victim and further uses the 

weakness in the block propagation algorithm to prevent the victim from establishing contact with others. Instead 

of synchronizing the missing block and receiving a new block from one node, this scheme allows the victim node 

to request from many nodes. Also, receiving the missing nodes and new nodes from a different node can reduce 



 

eclipse attacks. Besides, DDoS and double-spend attacks are also able to mitigate. Generally, this countermeasure 

satisfies Av security requirements by using many nodes to broadcast a block. 

Aiming at resisting the three types of eclipse attacks in Ethereum, Marcus et al. [40] proposed a scheme that 

exploits the Kademlia neighbor finding protocols vulnerability. It aims to overcome the risk of establishing max-

peers with the victim node’s TCP connection. To overcome this attack, the upper bound of incoming connections 

is limited. For eclipse by a table poisoning attack, this scheme comes up with five different countermeasures. 

One-to-one mapping is one of the countermeasures used to mitigate eclipse by table poisoning attacks. In this 

countermeasure, the Internet Protocol (IP) address of the node will be mapped with the node ID generated using 

the ECDSA algorithm. This one-to-one scheme can mitigate Sybil and eclipse attacks and it satisfies the Av and 

In requirement at the network layer. The authors also recommend running a seed process to protect victim nodes, 

regardless of whether the node table is empty or full. Timestamps in UDP packets are also used to trigger an 

eclipse attack called manipulating time attack over a blockchain. To alleviate this, the scheme used nonce instead 

of timestamps. These countermeasures have been evaluated using the proposed security requirements and satisfy 

the Availability requirement by protecting the nodes from eclipse attacks and Nonrepudiation requirement by 

mapping the node's IP address with a node's ID. 

Swathi et al. [41] proposed a distributed Sybil attack detection strategy. The scheme tracks the behavior of 

each miner in the transaction mining process and stores it in a public table. For each transaction, the scheme 

includes the address of the miner who confirmed the transaction in the block. The behavior table will be updated 

continuously when a new block is generated. This provides clear information about the responsible nodes for each 

transaction. This scheme can mitigate Sybil attacks by checking the transaction history of nodes from the publicly 

available behavior table. In addition, it can also mitigate DDoS and Eclipse attacks triggered by Sybil nodes. 

However, If the attacker successfully simulates trusted nodes, the trusted node identity will be used by the hostile 

nodes for illegal activity. In addition, the blockchain will be vulnerable to 51% and selfish mining attacks. Be-

cause the attacker deceives other nodes by using the trusted node's identity to modify the behavior table entries 

of trusted nodes by releasing blocks. This will trick other nodes to reject the honest node's transactions. The 

scheme does not provide any node identity authentication mechanisms. Therefore, this will impair the availability 

of the node. The behavior monitoring table does not have a consensus, encryption, or tamper-proof verification 

mechanism. In general, this solution only meets the security requirements of Nr. 

 

Table 3.  

The Classifications of Potential Attack and Existing Solution Summary 

 

Attack’s tar-
get 

Potential attacks Solutions Publication Year 

Network 
Based Attacks 

DDoS Attack [38], [39] 2019,16 

Eclipse Attack [39], [40] 2016,19 

Sybil Attack [41], [43] 2019,20 

Consensus 
Based Attacks 

Selfish Mining [42], [44], [45] 2014,16 

Double-spend Attack [39], [43] 2016,20 

51%(Majority) Attack [46], [47], [43], [45] 2018,19,20,19 

Smart Con-
tracts Based 

Attacks 

Reentrancy [48], [49], [50], [51], 
[52], [53], [54], [55] 

2018,18,18,18,16,18,18,16 

Call Depth Attack [49], [50], [51], [52], 
[53], [55] 

2018,18,18,16,18,16 

DoS(Denial of Service) [54], [55] 2018,16 

Timestamp Depend-
ence 

[49], [50], [52], [53], 
[54] 

2018,16,18,18,18 

Transaction Ordering 
Dependence (TOD) 

[51], [52], [53] 2018,16,18 

Mishandled Exception [49], [50], [51], [52], 
[53], [55] 

2018,18,18,16,18,16 



 

 

4.2 Consensus Based Attacks Solutions  

Heilman. [42] proposed a new scheme against selfish mining called” Freshness Preferred” (FP), which uses ran-

dom beacons to generate unforgeable timestamps. This unforgeable timestamp is used to punish miners who 

detain mined blocks and reduce the profit of selfish mining cartels. The proposed scheme increases the threshold 

of the mining power of the selfish cartel to launch a selfish mining attack from 25% to 32%. Due to the existence 

of thresholds and unforgeable timestamps, the FP scheme can ensure honest nodes to mine transactions without 

worrying about forks related to selfish mining. Therefore, the FP scheme protects the In at the consensus level. 

This scheme can minimize selfish mining activities between miners and timestamp dependence attacks on block 

timestamps. Meanwhile, this scheme uses non-forgeable timestamps to meet the security requirements of block-

chain, In, and Nr. 

Lixiang et al. [43] proposed a consensus that improves the traditional PoS consensus mechanism. This mech-

anism is based on credit rewards and punishments. In this scheme, each node must have an initial stake value of 

50 as a representative for generating the next blocks. The behavior of these representatives has been recorded 

since they joined the mining process. This record will be broadcasted to all nodes through dynamic updates every 

time. If the adversary activity reaches the threshold value of the invalid block, the consensus removes this node 

from the mining process. As well, all nodes must give a vote to the generated block, and the node who could not 

give a vote in the given time interval more than two times will punish. On the contrary, those nodes that can vote 

more than twice will be rewarded. In this consensus, a new block will be accepted only when the generated block 

has more transaction value and votes compared to similar blocks. This scheme can alleviate 51%, double-spend, 

and Sybil attacks on the PoS consensus mechanism by improving the method of selecting miners. It also meets 

Nr and In requirements. 

Olat and Potop-Butucaru. [44] proposed a novel zero block algorithm that can prevent selfish mining attacks 

without using timestamps. The average time of the nonce solution process and the time of information dissemi-

nation between miners are used to generate a fixed time interval. Honest nodes reject blocks that appear after a 

fixed time interval and create a dummy block to notify other nodes. This fixed time interval is used to filter blocks 

and reject block broadcasts after the virtual blocks are released. Even if a selfish miner controls 49% of the hashing 

power, the probability of deliberate forks is reduced to 0.04. Compared with Hellman, this scheme can resist a 

large number of selfish mining pools. Therefore, if a selfish miner fails to tamper with the transaction within a 

given time interval, the possibility of a double suspend attack will be minimized. Therefore, by limiting the time 

required for legally mining blocks, the In and Nr requirements of transactions at the consensus layer are satisfied. 

Generally speaking, these two schemes are impractical to implement in Bitcoin or Ethereum because it requires 

a lot of changes to the blockchain. 

Kim et al. [45] proposed a consensus mechanism based on the Rock-Scissor-Paper (RSP) algorithm. Like 

traditional manual games, this consensus has three balance states: Rock, Scissor, and Paper. The specifications of 

the miner’s computing device will use to identify the next block miner. Each node that wants to take part in 

mining activities will be assigned a unique identifier and request to submit the specifications of the computing 

device with the RSP combinations. The delegated node uses the user RSP combination to generates random RSP 

combinations. Any malicious activity will result in a loss of  

5% of the shares deposited by miners when they first joined. Attacks such as selfish mining and majority attacks 

have been well alleviated. Besides, the required computing power and maintenance costs are also reduced. But 

this consensus is prone to other problems. If many computing devices are identical and choose the same RSP 

combination, the scheme is incapable to select one miner from the list, and any miners will waste their computing 

power. Also, the integrity of the block will compromise. This consensus does not meet the majority of proposed 

requirements. 

Jaewon and Lim. [46] proposed a random mining group selection technique. This scheme uses the public key 

hash value of the miner to find the mining group where it belongs using a hash function. Instead of all miners 

participating in finding the next block, the scheme distributes the hashing power into different groups and ran-

domly assigns the next block to these groups. This reduces the hashing power of the adversary and they will lose 

the ability to attack. Besides, the hushing power to participate in mining has diminished effectively. Therefore, 

this scheme lowers the chance of occurring selfish mining, and 51% of attacks. To check the integrity of blocks, 

all nodes compare the previous hash of the new block to find the block was mined with the proper mining group.  

We evaluated the scheme and found that randomly selecting nodes for mining purposes was able to mitigate 51% 

attack and selfish mining, besides, it satisfies Nr and In from the proposed security requirements at the consensus 

layer level. 

Yang et al. [47] proposed a new solution to mitigate a 51% attack on PoW by increasing the minimum cost to 

attack. In this scheme, the miner’s block frequency historical weight is used to calculate historical weighted dif-

ficulty (HWD). The HWD is used to determine whether a branch switch is required to select miners. In the pro-

posed scheme to prevent non-repudiation, miners always sign the new block using their private key. In terms of 



 

preventing attacks, this work is not efficient in protecting the system, it only delays the attack. However, Nr is 

satisfied but the remaining other is not considered. 

 

Table 4. 

Comparison of Existing Work Based On Blockchain Security Requirements 
 

Ref In Av Nf Cf 

[38] × ✓ × × 

[39] × ✓ × × 

[40] × ✓ × × 

[41] × × ✓ × 

[42] ✓ × ✓ ✓ 

[43] ✓ × ✓ × 

[44] ✓ × ✓ ✓ 

[45] × × × × 

[46] ✓ × ✓ ✓ 

[47] × × ✓ × 

                                   ✓; denotes a corresponding requirement is satisfied, 

     ×; denotes a corresponding requirement is not satisfied 

4.3 Smart Contract-Based Attack Solutions  

A lot of work is required to update the source code of the smart contract after deployment. The reason behind this 

difficulty is the immutable nature of the blockchain. Once we deploy a smart contract with some vulnerabilities 

on the blockchain, we have no chance to modify the contract. Therefore, to detect vulnerabilities and verify the 

correctness of smart contracts, most research focuses on detecting vulnerabilities and verifying the correctness of 

smart contracts before deploying smart contracts to the blockchain. In this section, we will review research papers 

that mainly use fuzzy methods, symbolic execution methods, and formal verification methods to verify the cor-

rectness of smart contracts and detect vulnerabilities. To better show the analysis results in Table 4, we summarize 

the existing smart contract analysis tools and the vulnerabilities that can be detected using these tools. 

Fuzzing Method: Liu et al. [48] introduce a fuzzy-based dynamic analyzer to detect the reentrancy bug in the 

smart contract. This analyzer translates the smart contract to the C++ equivalent code. The scheme identifies 

reentrancy vulnerability in smart contracts dynamically by leveraging a fuzzy model and flag bugs in code. The 

execution traces of code are maintained and the reentrancy automata use it for potential bug identification. The 

tool can only identify reentrancy errors but does not consider the most common smart contract errors.  The cor-

rectness of the smart contracts with only identifying one bug is not possible to verify. Therefore, this scheme is 

unqualified to verify the correctness of smart contracts. 

Jiang et al. [49] proposed a new static analysis framework for fuzzers, called Contract Fuzzer, to test security 

vulnerabilities in Ethereum smart contracts. This scheme uses a fuzzy technique to generate input for vulnerability 

analysis related to application binary interface (ABI) files of smart contracts to determine whether smart contracts 

are being executed correctly for testing purposes. For certain types of vulnerabilities (such as timestamp depend-

ency), it is prone to high false-positive rates. 

In another study, Xiupei et al. [50] have made progress for this framework by utilizing test oracle. Instead of 

the Black Box approach, this scheme implements a White box approach and shows a high true positive rate. 

However, these analyzers identified common Ethereum vulnerabilities, i.e., exception disorder, reentrancy, 

timestamp dependency, dangerous delegate call, and freezing ether vulnerabilities. This framework notifies po-

tential vulnerabilities in the smart contracts at the pre-deployment stage. However, some vulnerabilities may not 

be detected by this tool.  

Therefore, the correctness of the smart contracts is not verified. 

 

 

 

 



 

 

Table 5.  

Summary of Smart Contracts Analyzing Tools  

 

Ref  Identified Attack  Method 

[48] Reentrancy Fuzzing method 

[49],[50] Mishandled Exception, Reentrancy, Timestamp Depend-
ency, Delegate call, freezing Ether 

Fuzzing Method 

[51] Transaction Ordering Dependency (TOD), Reentrancy, 
Mishandled Exception, 

Symbolic Method 

[52] Transaction Ordering Dependency (TOD), Timestamp De-
pendency, Mishandled Exception, Reentrancy 

Symbolic Method and For-
mal Method 

[53] Transaction Ordering Dependency (TOD), Timestamp De-
pendency, Mishandled Exception, Reentrancy 

Symbolic Method 

[54] Timestamp Dependency, DoS, Reentrancy Symbolic Method 

[55] Mishandled Exception, Out of Gas DoS, Reentrancy Formal Method 

Symbolic execution Method: Tsankov et al. [51] proposed a fully automated smart contract analyzer. The frame-

work ensures that the behavior of the contract is safe or unsafe based on the provided security properties. In this 

scheme, the semantic information of the given smart contract bytecode or source code dependency graph is sym-

bolically encoded to layered Data log, and it is expressed in a designated domain-specific language (Securify 

language). Compliance and violation patterns are suitable for checking whether the semantic information of the 

code is safe or unsafe. These patterns efficiently identify transaction order dependency (TOD), Reentrancy, Han-

dling Exception, and Restricted Transfer. This work guarantees the correctness of the contract to a certain extent. 

Luu et al. [52] proposed a dynamic smart contract analyzer, called Oyente. Symbolic execution tools are used 

to improve the operational semantics of the Ethereum Virtual Machine (EVM) to analyze and identify security 

vulnerabilities in contracts sources code. This scheme identifies transaction-ordering dependence, timestamp de-

pendence, mishandled exceptions, and reentrancy vulnerabilities. But it is highly prone to false-negative results. 

This false-negative result indicates that this scheme does not have the power to identify the reentrancy bugs at the 

expected level. Because of this, this scheme has limitations in verifying the Co of the contract. In another study, 

Zhou et al. [53] extended the Oyente tool aiming to detect the bugs in smart contracts that are not been well 

identified before. The scheme utilizes static analysis methods and extra patterns. The scheme generates a topology 

diagram for smart contracts by analyzing it, this helps the developer to understand their contracts deeply. Besides, 

it is used to provide visualized information of the detected risks in the smart contract. This tool can guarantee the 

correctness of the contract to a certain extent. 

Tikhomirov et al. [54] proposed a static smart contract analysis tool called SmartCheck. This scheme converts 

the contract source code into an XML-based parse tree. Besides, the translated code checks against specific XPath 

patterns to identify vulnerabilities. This scheme detects reentrancy, timestamp dependency, and DOS vulnerabil-

ities. However, this scheme cannot define more complex rules correctly. Therefore, the procedure is susceptible 

to false-positive rates. By identifying these vulnerabilities in the pre-deployment stage of the contracts, this tool 

guarantees the correctness of the contract to a certain extent. 

Formal verification Method: A formal verification tool proposed by Bhargavan et al. [55] able detects three 

types of vulnerabilities in Ethereum smart contracts, namely, mishandled exceptions, out-of-gas DoS, and reen-

trancy. The source code or the bytecode of the smart contracts translate to F* code and the scheme use this code 

to analyze the vulnerable patterns in F*. The shallow embedding and type checking approaches are used for 

exploring the formal verification of contracts coded in Solidity and EVM bytecode. The formal verification 

method in this scheme is exploited to analyze contracts, that notify the above three vulnerabilities. However, this 

tool only detects three code bugs successfully. Therefore, the correctness of the contract verifies to a certain 

extent. 



 

5 Open Issues and Future Research Directions  

Based on the analyses and comparisons listed in Section IV, we have discovered some open issues related to 

the security of blockchain-based smart contracts, and proposed a series of future research directions. 

5.1 Open Research Issues 

In this subsection, we describe four open research issues related to the security of blockchain smart contracts.  

First, the countermeasures for the security vulnerabilities on each layer are not comprehensive. The researchers 

did not conduct a comprehensive study but chose to deal with each potential attack in the same layer separately. 

This problem requires a framework to resolve similar security holes in the blockchain. 

Second, the timestamp in the block can be modified by the miner and this issue sometimes motivates the miner 

to use this advantage. Third, each transaction in the blockchain is queued in sequence in the miner’s memory pool 

follows the principle of sequential token verification. This method allows the adversary to compromise the pro-

posed security requirements and trigger an attack on the contracts. The parallel execution method will be consid-

ered here. Fourth, the smart contract vulnerability analysis tool is not mature enough to detect unknown vulnera-

bilities. Most smart contract analysis tools convert the bytecode or source code of the contract into a compatible 

language. The converted code may not be the same as the original smart contract. There are indeed some analysis 

tools that use the source code of the contract. However, they are still prone to false positives. Therefore, the 

vulnerability scanning technology needs further research. 

5.2 Future Research Directions  

According to the open issues, we further suggest three research directions on blockchain and smart contracts 

security.  

 

Parallel mining: Executing transactions parallel at run-time is a better way to implement block creation and 

verification in transactions. Parallel execution minimizes the chance of attacker miners destroying tokens queued 

in the memory pool. Transactions will be executed simultaneously instead of waiting in the memory pool. 

Design a new language: the process of finding bugs and validating the code's correctness can be made easier by 

creating a new programming language. Smart contracts are supposed to always return the same outputs for the 

same input, however, the present programming language paradigm produces unexpected outcomes. Most of the 

common vulnerabilities we have seen in our research are originated from programming languages' unexpected 

behavior. Certain types of bugs can be tolerated in object-oriented programming languages. However, a minor 

bug in the smart contract could result in a multimillion-dollar loss. Because smart contracts interact with digital 

currency and tokens more frequently. As a result, smart contracts must verify that each activity is secure. Func-

tional programming languages, which emphasize the use of pure functions, or functions that always return the 

same result for the same input, could be used to construct smart contracts. Smart contracts written in functional 

programming languages can be analyzed directly without the need to convert them to another language using 

formal verification methods. As a result, from the beginning, the smart contract code could be rigorously verified 

with a high level of assurance.  

Confidentiality Preservation: The confidentiality of the data entered by the user into the smart contract and the 

smart contract workflow is not considered. Some studies have proposed an off-chain framework to execute smart 

contracts using a secure network. However, this kind of off-chain code execution does not fully guarantee the 

security of data and code. For future research, on-chain code execution with confidentiality preservation must be 

considered. 

6 Conclusion  

Blockchain has emerged as a perfect platform to smart contract deployment due to its decentralization, immunity, 

security, and trust. Currently, blockchain-based smart contracts have attracted considerable attention. However, 

they also confront severe security problems in terms of security because of its openness and decentralization. 

There are still many issues that have t yet been deeply investigated in academia and industry. In this paper, we 

performed a thorough survey on the security in blockchain-based smart contracts. We introduced the basic system 



 

 

model of the blockchain-based smart contract platform. Based on the security model and threat analysis, we fur-

ther proposed the requirements for a security countermeasure. Taking the requirements as essential criteria, we 

extensively reviewed the current literature and commented the pros and cons of existing work. Finally, we ex-

plored the open issues that have t yet been seriously investigated and proposed a number of research directions to 

stimulate future efforts. 
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