
EasyChair Preprint
№ 8591

Evaluating Simple and Complex Models’
Performance When Predicting Accepted Answers
on Stack Overflow

Osayande P. Omondiagbe, Sherlock A. Licorish and
Stephen G. Macdonell

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 3, 2022

Evaluating Simple and Complex Models’ Performance

When Predicting Accepted Answers on Stack Overflow

 Osayande P. Omondiagbe
*†, Sherlock A. Licorish†, and Stephen G. Macdonell†‡

*
 Department of Informatics

 Landcare Research, Lincoln, New Zealand
 omondiagbep@landcareresearch.co.nz

† Department of Information Science

 University of Otago, Dunedin, New Zealand

 sherlock.licorish@otago.ac.nz, stephen.macdonell@otago.ac.nz

 Software Engineering Research Lab

 ‡ Auckland University of Technology, Auckland, New Zealand
 stephen.macdonell@aut.ac.nz

Abstract— Stack Overflow is used to solve programming

issues during software development. Research efforts have looked

to identify relevant content on this platform. In particular,

researchers have proposed various modelling techniques to

predict acceptable Stack Overflow answers. Less interest,

however, has been dedicated to examining the performance and

quality of typically used modelling methods with respect to the

model and feature complexity. Such insights could be of practical

significance to the many practitioners who develop models for

Stack Overflow. This study examines the performance and quality

of two modelling methods, of varying degree of complexity, used

for predicting Java and JavaScript acceptable answers on Stack

Overflow. Our dataset comprised 249,588 posts drawn from years

2014–2016. Outcomes reveal significant differences in models’

performances and quality given the type of features and

complexity of models used. Researchers examining model

performance and quality and feature complexity may leverage

these findings in selecting suitable modelling approaches for Q&A

prediction.

Keywords— Feature Selection; Modelling and Prediction;

Neural Network; Random Forest; Stack Overflow

I. INTRODUCTION

Stack Overflow is one of the most popular question and

answer (Q&A) portals used regularly by software developers

[1]. Studies have shown that most questions that are asked on

Stack Overflow receive an answer [2]; hence, developers turn

to this portal to solve programming-specific issues during

software development [3]. The answer that is accepted by the

user who posted the question is usually regarded as accepted (or

acceptable). This mechanism satisfies the user who created the

post and credits the answer provider. The foregoing process

makes it appropriate for others searching for similar help to

locate solutions that have been accepted by others. Despite

Stack Overflow being popular among software engineers, at

times accepted answers are delayed [4]. This delay could

increase the time it takes software developers to investigate and

assess a working solution when using the platform. To reduce

such issues researchers have proposed various modelling

techniques to predict acceptable answers on Stack Overflow,

and on Q&A portals more generally [5, 6]. The outcome of such

modelling techniques could be useful for software developers

focused on developing plugins that integrate with IDEs that

display Stack Overflow Q&A pairs.

The utility of such modelling techniques is influenced by the

type of features (textual and non-textual) that are available. For

instance, past studies have established that specific non-textual

features affect Q&A portals’ answer quality [7]. Non-textual

features here refer to those that are not textual in nature (e.g.,

answer score, answer count and response time). Other works

have considered only textual features (e.g., text polarity and

length of answer) when exploring the quality of content in Q&A

platforms [8]. Textual and non-textual features have also been

combined in other studies to determine the quality of answers

to questions in a Q&A forum. For instance, Blooma et al. [9]

combined both textual and non-textual features in predicting

answer quality and concluded that both types of features

predicted answer quality. However, these authors noted that, in

their study, the textual features had a greater influence on the

quality of answers than the non-textual features.

In our preliminary work, we found that specific Q&A

features can aid in distinguishing answer acceptability (e.g.,

length of code in answers and reputation of users) [10].

However, this work did not evaluate features’ or models’

complexity. Considering the conduct and outcomes of this and

earlier work, little is known about whether the specific features

selected may have been the driver of the model outcomes when

predicting answer acceptability, or if the complexity of the

model could have been the driver in improving prediction

outcomes. Beyond the provision of knowledge around the use

of different modelling approaches and the prediction value of

different features, such insights could have implications for the

quality of software generally, as Stack Overflow is used

extensively by developers [3]. It would be undesirable if poor-

quality answers are used to inform software development.

Therein exists the opportunity to investigate the performance

and quality of models' complexity when considering a range of

feature complexity.

We investigate the performance and quality of two models

and a range of feature types using a Stack Overflow dataset. In

this paper, we used the following terms: (1) Model Quality:

which refers to the fit of the model and not its correctness (i.e.,

ability to perform false-negative and -positive classification);

(2) Model Performance: which refers to the number of

correctly classified data instances (i.e., accuracy); and (3)

Model Complexity: refers to the computational complexity

and the number of parameters in the predictive model. Beyond

these measures, we validated our outcome via a questionnaire

completed by a sample of software developers in New Zealand.

We believe that our outcomes contribute to the body of

knowledge aimed at understanding the performance and quality

of models with varying degrees of complexity when used in

Q&A settings.
The rest of this paper is arranged as follows: Section II

examines related work, and Section III presents our study

design. Section IV provides our results and we discuss our

outcomes and explore implications in Section V, before

considering threats to the work in Section VI. Section VII

concludes the paper and considers future research.

II. RELATED WORK

A. Evaluating Features and Models

Most studies that have built models to predict acceptable

answers in Q&A settings focus on the semantic relevance of

features (e.g., [11, 12]). These features are usually grouped as

textual or non-textual and are used as input to various models

to predict answer acceptability. Here we regard the answer that

is selected by the user who posed the question as the most

acceptable from the list of answers provided by other users.

Beyond consideration of textual features [13] and non-textual

features [14], a small body of research has also considered

combining textual and non-textual features [14, 15] for building

predictive models to select the best answers on Q&A portals.

The feature extraction methods used are often grouped into the

hand-crafted [16] approach (extracting features manually) or a

deep learning approach (without feature engineering or

specialist linguistic data).

Typically, modelling techniques are applied individually,

rather than providing a comparative evaluation of approaches.

A comparative study done by Calefato et al. [17] revealed that

the choice of a model and its associated parameters affected the

prediction accuracy when determining the best answers. The

need to increase the range of features used for training models

has led researchers to combine both textual and non-textual

features. For instance, the work of Blooma et al. [9] combined

textual and non-textual features to predict the best answer in a

stack of answers by using a Bayesian model, concluding that

best answers were most influenced by textual features. Jizhou

et al. [13] combined structural information with textual and

non-textual features to extract high-quality pairs in discussion

threads from an online discussion forum using a support vector

machine. Using the same method, Buse and Weimer [18] also

combined textual and non-textual features to predict the best

answers in a Yahoo Q&A dataset.

Previous studies have found that by using the correct

features the quality of models is improved [19], so it becomes

important for a model to be able to determine the correlation

between the different types of features found during Q&A data

modelling (such as Stack Overflow). However, it is difficult at

times for some models to determine the correlation between

textual and non-textual features [20]. This has led some

researchers to use deep neural networks as a technique to

enhance model outcomes. The intent here is to construct new

valuable features automatically, eliminating the task of

manually selecting the important features to use for training.

For instance, Wang et al. [21] applied a deep belief network in

modelling the semantic relevance of Q&A pairs, while Lei et

al. [15] used a convolutional network to learn a distributional

sentence model for Q&A prediction using a bag-of-words

approach and bigram-based word representations. Gao et al.

[22] proposed a three-stage deep neural network–based

approach to identify the most relevant answer among a set of

answer candidates. Suggu et al. [14] examined deep features

using convolutional networks and then combined these features

with hand-crafted features (textual and non-textual) to

determine the quality of answers. Their outcomes revealed

enhanced performance over other works [23], which may be

attributed to fusing deep learning and hand-crafted features.

B. Features’ and Models’ Behaviours

Reviewing the studies above, it is not clear under which

modelling circumstances complex model such as deep learning

and/or approaches that promote the use of hand-crafted features

will outperform a less complex model which uses only hand-

crafted features. The choice of the model and its associated

parameters affects the model outcomes. On the premise that

developers regularly use Stack Overflow to solve problems

during software development [1, 2], in our preliminary work we

studied the features that distinguish acceptable answers on this

portal [10]. While we found specific Q&A features to predict

answer acceptability (e.g., length of code in answers and

reputation of users), questions remain around how the types of

Q&A features affect the behaviour of various models that are

used to predict acceptable answers in a Q&A setting.

Zou et al. [24] noted that this is an area in need of additional

research. These authors used Stack Overflow data in a

preliminary study examining the impact of the feature

weighting method and feature set on a classifier’s performance,

where outcomes varied depending on those factors. However,

this study only examined a single classifier (Bayesian logistic

regression). The performance of a model should not be judged

only on the availability of certain features, and evaluating a

single classifier does not provide insights around variances in

model performance [25]. It is therefore important to understand

how varying features influence models’ performance, and how

varying the complexity of models in relation to features affects

prediction outcomes. This insight could lead to both informed

model choice and feature selection.

III. STUDY DESIGN

A. Research Questions

The purpose of this paper is to investigate the performance and

quality of models' complexity when considering a range of

features. We performed analysis using two different models of

varying complexities, guided by the following research

questions:

RQ1: How does the degree of model and feature complexity

affect the performance of a Stack Overflow Q&A accepted

answer prediction model?

Motivation: The benefit of accepted answer prediction is

important for Q&A platforms as at times this platform lacks the

features for marking an answer as accepted when there is no

accepted answer. This feature could help to move an accepted

answer to the top of the Q&A thread, thus potentially saving

developers the time and effort of investigating and assessing a

working solution. Accordingly, we investigate how the

different levels of feature and model complexities can affect the

performance of an accepted answer prediction model. Software

developers developing Stack Overflow plugins can leverage the

outcome of this RQ for marking an answer as accepted when

there is no accepted answer in the Q&A thread retrieved from

Stack Overflow. Stack Overflow is typically used by

developers during software development [1], and there is a need

to have reliable accepted answers. For this reason, we define

our second research question as follows:

RQ2: How does the degree of model and feature complexity

affect the quality of a Stack Overflow Q&A accepted answer

prediction model?

Motivation: The Stack Overflow platform has a reputation

system and the reputation ranking of members may enhance

other users’ trust for their contributions on the website. This

could be problematic for new software developers seeking

solutions to their software problems. The benefit of having a

quality accepted answer prediction is important for providing a

reliable accepted answer. Thus, the need to minimise the false

negative and false positive in the prediction model is important.

Therefore, we investigate how the different levels of feature and

model complexities can affect the quality of an accepted answer

prediction model. The findings from this RQ could help

improve the quality of accepted answers predicted in Stack

Overflow plugins.

B. Dataset Features

To enable comparative analysis with earlier outcomes [10],

we used the Stack Overflow dataset that was added on

September 12, 2016. We extracted data for the top two tags

(JavaScript and Java). We used the selection criteria from our

previous study [10] to select the feature sets (see Sections 3 to

4 in our previous study [10] for details). Our final dataset for

1 Similarity between question and text

2 Similarity between question and code

experimentation consisted of 249,588 posts from 2014, 2015

and 2016, which have at least two answers, one of which is an

acceptable answer. We had an imbalanced dataset, where the

number of accepted answers was 88,607, while answers

provided but not labelled as accepted numbered 160,981. We

randomly selected 70% (174,711) of the data for training, and

the remaining 30% (74,877) was used for testing when

performing our predictive modelling. To address the

imbalanced dataset during training, we used the synthetic

minority over-sampling “SMOTE” algorithm [27], and the

adaptive synthetic sampling “ADASYN” algorithm [28]. The

“SMOTE” and “ADASYN” algorithms were chosen because

they are widely used when learning from imbalanced datasets.

For the text preprocessing step, we follow the steps in Section

4.3 from our previous study [10]. For replication purposes, our

dataset is available here: https://tinyurl.com/y7m3k2mk.

C. Feature Selection

1) Hand-Crafted: We follow our previously published work

[10] and so use the same set of features in this study. These

features were grouped into four categories (code, textual, non-

textual and user features) as listed below:
• Code Features: Number of code line, Code Length

(number of identifiers).

• Non-Textual Features: Number of comments, Answer
count, Answer score (score), View count, Response
Time (Timelag).

• Textual Features: Question and Answer Similarity
(TFAnswerText 1 , TFAnswerCode 2), Text Polarity 3 ,
Textual Similarity 4 , Number of Words, Number of
sentences, and Url count.

• User Features: Reputation, Sign up date-time lag.

To avoid multi-collinearity, we follow the method in our
previous work and discard the “NumberOfWords” and
“SignupDateTimeLag” features as they were seen to be
correlated with the Number of sentences and Reputation
features, respectively. This method compared feature pairs with
a Pearson’s correlation plot and discard feature pairs where the
root mean square is <0.7.

2) Neural Generated Features: To derive the complex

feature which we called “neural-generated feature”; we used a

model called Distributed Memory Model of Paragraph (PV-

DM) to generate a neural generated weight. This was chosen

given the success of the work done by Suggu et al. [14] in

predicting answer quality in a Q&A setting. We used the same

approach as they did, by using the question and answer as input

to a deep model. The model works by taking a question and

answer pair as input to learn a good representation of the pair

(i.e., it learns how questions and answers are related). The PV-

DM model works by remembering the missing context in a

paragraph, or the topic of the paragraph and returns a score for

3 Emotion content of answers
4 Count of every word that occurred in the question and answer separately

https://tinyurl.com/y7m3k2mk

each question and answer pair. This score indicates if the answer

is related to the question.

D. Modelling

Calefato et al. [17] presented 26 models of varying

complexity commonly used in best-answer prediction, where

random forest and recurrent neural networks are established to

have greater complexity. Given that random forest is seen to

have significantly lower complexity than recurrent neural

networks [29] and both methods use similar classifier-specific

feature importance methods, we anticipate that these two

modelling approaches would usefully identify differences in

model complexity in this work. Also, these two approaches

were seen to be among the best-performing simple (random

forest) and complex (RNN) models in a Q&A setting when

compared to other types of models in the work of Calefato et al.

[17] and a previous study [30]. We use the four categories of

features listed in the previous section and a neural network-

generated or derived feature. Our models and features are

combined in various ways to predict acceptable answers, as

described below.

Random Forest Model with Hand-crafted Features: We

started our modelling process by using a random forest model

to build a classifier to classify answers as either accepted or not

accepted (answer acceptability). As noted above, random forest

was chosen as a model with lesser complexity as it takes many

input variables without the need for replacement [31]. Also,

random forest estimates the importance of each variable in the

classifier, while using an out-of-bag estimator to estimate the

classification error when sampled with replacement [32]. As

noted in Section III.A, due to the imbalanced nature of our

dataset, we applied the SMOTE and ADASYN algorithms. We

used Bayesian optimization techniques [33] to find the best set

of hyperparameters to minimise the log loss objective function.

The final hyperparameters chosen were:
n_estimators:240, max_features:16, max_depth:15, Boostrap:
True, min_samples_split:5 and min_samples_leaf:4

Random Forest Model with Hand-crafted and Neural-

generated Features: We repeated the experiment above by

adding the complex feature derived from the PV-DM model.

The mathematical details of the PV-DM may be probed further

by accessing [36].

Recurrent Neural Network (RNN) Model with Hand-

crafted Features: In increasing the complexity of our model,

we repeated our experiment with an RNN model to classify

answers. This model was chosen because RNN is known to

capture the compositional aspects of sentences or paragraphs

when compared to models with less complexity [34]. Again, we

used Bayesian optimization techniques to select the optimal

parameters in our RNN, which had 15 hidden layers. We used

a stochastic gradient descent (SGD) as our optimizer to train

our RNN. SGD was used because it is fast, given that it requires

one data point at a time or a mini-batch of data points, which

also makes it less memory intensive. Also, SGD is less prone to

bad local minima because it converges faster to the local

minimum by taking smaller step sizes to refine the network

[35]. We also applied the two sampling algorithms (SMOTE

and ADASYN) when modelling our RNN (as is the case for the

other modelling tasks below). We seeded the random split

function to have the same split for each execution of our

algorithms. The final hyperparameters chosen for our RNN

were 20, 64 and 0.01 for our epoch, batch size and learning rate,

respectively.

Recurrent Neural Network (RNN) Model with Hand-

crafted and Neural-generated Features: We repeated the

experiment above by including the neural-generated feature

generated from our PV-DM model.

We executed the above models 100 times in keeping with

established recommendations for investigating models’

performance and quality (further considered next) [37].

E. Performance and Quality Measures

Performance: We computed the balanced accuracy of our

models to evaluate their performance. Balanced accuracy

measures model performance by taking into account class

imbalances, and they also overcome bias in binary cases [38].

The balanced accuracy is computed as the average of the

proportion of correct predictions for each class separately.

Quality: To assess the impact of various features in our

models we need models that classify accepted answers as

accepted (few false negatives) and that also minimise

classifying answers that are not accepted as accepted (few false

positives). This ultimately determines model quality. The F1-

score and Matthews Correlation Coefficient (MCC) are used in

this regard. The F1-score is designed to handle data imbalance,

and maximizing the F1-score improves model quality [39]. In

addition, the F1-score is the harmonic mean of precision and

recall, making it relatively precise. The best possible F1-score

is 1 (perfect precision and recall), with the worst being 0. The

MCC was used as a second measure to evaluate the models’

quality because this measure is considered a good metric for

assessing quality when using imbalanced datasets [40]. MCC

values range from −1 to +1; with +1 indicating a perfect model,

0 showing that a model is no better than a random prediction,

and −1 signaling total disagreement between the prediction and

observation. These two measures provide further augmentation

for SMOTE and ADASYN in addressing any threats that may

result due to our imbalanced dataset.

F. Evaluation Via Developers Questionnaire

As a countermeasure to using contributors’ acceptance to

indicate answer acceptability, and to evaluate how the models

perform in terms of performance and quality, a questionnaire

was designed to gather experts’ opinions about the suitability

of answers in our dataset. The questionnaire was anonymous

and targeted Java and JavaScript software developers in New

Zealand. See a sample of the questionnaire here:

https://figshare.com/s/3d9e5a8d49f03a186afb.

The questionnaire was presented as a simple online form asking

developers to rank answers based on how likely an answer was

to be suitable for a given question. The experts ranked the

answers by assigning a value of 1 to 3 in line with the degree to

which they believed an answer was suitable for a given

question. Here an answer scoring 3 was assessed as highly

acceptable, while one given a 2 was assessed as reasonably

https://figshare.com/s/3d9e5a8d49f03a186afb

acceptable, and an answer assigned 1 was assessed as weakly

acceptable. Aware that if the questionnaire took too long to

complete, we would not be able to recruit developers, we

selected questions from our test sample which had three

answers, and each of the answers’ length was <750 characters.

In populating the questionnaire, 236 questions were randomly

selected (of those that had three answers), comprising 150 Java

and 86 JavaScript questions.

The questionnaire was sent to known Java and JavaScript

developers with industry experience in New Zealand

(accessible via software engineering mailing lists). A total of 10

developers participated in our questionnaire. They answered an

average of 11.5 questions each, where the highest number of

questions answered by a single participant was 15, and the

lowest number of questions answered was 9. Over 95% of the

questions answered were Java questions, and the average Java

experience level for all participants was 4 (on a scale of 1 to 5,

where 1 = novice and 5 = expert). Some Java questions were

answered by more than one developer, and so we took the

average score for these answers. We ended up with a total of

110 Java responses, and 5 JavaScript responses, in response to

90 unique questions.

IV. RESULTS

A. Model Performance

As noted above, we evaluated model performance through

the use of the balanced accuracy measure. Here we consider the

outcomes of the models in turn.

Random Forest Model with Hand-crafted Features:

Outcomes of our modelling revealed balanced accuracy

outcomes of 69.89% when sampling was done with ADASYN

and 71.74% when sampling was done with SMOTE. We further

examined the features to derive their contributed coefficient

(Column A in TABLE I). Measurement of this coefficient is

based on the extent to which model accuracy decreases when a

variable is excluded. The outcome is only provided for SMOTE

in TABLE I, given that we recorded better performance

(+1.85% gain) when sampling with this algorithm. In Column

A it is observed that the time it takes to post an answer

(Timelag) and the reputation of the answerer (Reputation) had

the largest coefficients in the random forest (Timelag = 0.179

and Reputation = 0.164). It is also shown that the code length

(Codelength) and textual similarity between question and

answer pairs (TFAnswerText) were noteworthy features in

predicting Stack Overflow acceptable answers, with

coefficients of 0.143 and 0.153 respectively.

RNN Model with Hand-crafted Features: Using a more

complex model (RNN), a balanced accuracy outcome of

62.87% was observed when sampling was done with

ADASYN, and an outcome of 65.89% when sampling was

done with SMOTE (+3.02% gain). Similar to the random forest

outcomes above, we also computed the coefficient for each

feature as shown in TABLE I COLUMN B. Again, it is seen

that the time lag and reputation of the answerer are the largest

coefficients in predicting nswers’ acceptance (Timelag = 0.181

and Reputation = 0.172). Overall, there is a reduction in

balanced accuracy (performance) of the RNN model when

compared to the random forest model (71.74% versus 65.89%).

That said, the coefficients of nine features were of higher

magnitude in the RNN model (refer to TABLE I). This outcome

is plausible, since an answerer with a good reputation is likely

to post a reasonable answer. The answerer’s attempt to address

the question may also result in a substantial amount of code

(Codelength) and an answer with context from the question

(TFAnswerText), to properly address the question.

TABLE I
COEFFICIENTS AND BALANCED ACCURACY OF RANDOM FOREST AND RNN

MODELS FOR HAND-CRAFTED FEATURES

Feature

A B

Random
Forest

Neural
Network

Timelag 0.179 0.181

URLCount 0.032 0.031

CommentCount 0.012 0.021

Reputation 0.164 0.172

TextPolarity 0.054 0.001

AnswerCount 0.012 0.054

ViewCount 0.089 0.043

Score 0.032 0.076

NumberOfcodeLine 0.065 0.054

NumberOfSentence 0.078 0.044

TextualSimilarity 0.031 0.057

Codelength 0.143 0.167

TFAnswerCode 0.024 0.029

TFAnswerText 0.153 0.157

Balanced Accuracy 71.74 65.89

Random Forest Model with Hand-crafted and Neural-

generated Features: To increase the complexity of the features

sets, we combined the hand-crafted features and that generated

via the PV-DM to train another random forest model. Outcomes

of our modelling reveal balanced accuracy outcomes of 58.49%

when sampling was done with ADASYN and 60.30% when

sampling was done with SMOTE (+1.81% gain). As above, we

focus on SMOTE outcomes given the higher performance

observed when sampling with this algorithm. Interestingly, the

60.30% accuracy observed here reflects a decrease in

performance when compared to the random forest and RNN

models that were trained with only hand-crafted features (i.e.,

balanced accuracy of 71.74% and 65.89% respectively).

Examining the coefficients of the random forest model in

TABLE II (Column A), we observed that four features were

dominant: the neural-generated feature (Weight = 0.172), and

hand-crafted features Timelag = 0.189, Reputation = 0.176,

and Codelength = 0.162. Of note is that a similar pattern of

outcomes for the prominent hand-crafted features was observed

in our models above (refer to TABLE I). We observe in TABLE

II that most of the coefficients in Column A were of a higher

order of magnitude than those in TABLE I Column A, in

divergence with the better overall performance of the model

with lesser complexity as noted above (i.e., 71.74% versus

60.30%).

RNN Model with Hand-crafted and Neural-generated

Features: To evaluate the effect of increasing features in a

more complex model, we re-trained a RNN by using the hand-

crafted and neural-generated features. Outcomes of our

modelling reveal balanced accuracy outcomes of 81.52% when

sampling was done with ADASYN and 82.73% when sampling

was done with SMOTE (+1.21% gain). These outcomes are the

most accurate of all the modelling done in the study. TABLE II

Column B shows that the coefficients for the features were of a

higher magnitude in the RNN model, with both hand-crafted

and neural-generated features affected. Of note here also is that

the same features retained their prominence in this model

(Weight, Timelag, Reputation, and Codelength).

TABLE II
COEFFICIENTS OF RANDOM FOREST AND RNN MODELS FOR HAND-CRAFTED

AND NEURAL-GENERATED FEATURES

Feature

A B

Random

Forest

Neural

Network

Timelag 0.189 0.311

URLCount 0.012 0.029

CommentCount 0.043 0.062

Reputation 0.176 0.298

TextPolarity 0.054 0.014

AnswerCount 0.043 0.075

ViewCount 0.024 0.019

Score 0.087 0.043

NumberOfcodeLine 0.076 0.089

NumberOfSentence 0.054 0.132

TextualSimilarity 0.021 0.043

Codelength 0.162 0.252

TFAnswerCode 0.123 0.134

TFAnswerText 0.032 0.176

Weight 0.172 0.276

Balanced Accuracy 60.30 82.73

In striving to rigorously evaluate model performances we

executed the models 100 times, as noted above. Summary

statistics (mean, median (Md), and standard deviation (SD)) for

balanced accuracy are provided in Column A of TABLE III.

Here it is shown that the mean and median are similar to those

recorded in TABLES II and III, with our measurements

indicating an absence of outliers. This is validated with the low

standard deviation values in TABLE III, confirming that the

outcomes of our repeated runs were similar. Formal statistical

testing was done on the balanced accuracy outcomes from our

100 executions of the models. The Kruskal-Wall test was used

to check for statistical differences in outcomes for the four

models, given that our data violated the normality assumption.

Outcomes revealed statistically significant differences between

the model outcomes, X2(3) = 374.07, p < 0.01, with a mean rank

score of 250.5 for the random forest model with hand-crafted

features, 150.5 for the RNN model with hand-crafted features,

50.5 for the random forest model with hand-crafted and neural-

generated features, and 350.5 for the RNN model with hand-

crafted and neural-generated features.

We next performed post hoc pair-wise Wilcoxon testing

with appropriate Bonferroni adjustments. Our outcomes reveal

that there were statistically significant differences in the model

outcomes for all comparisons (p < 0.01). We observed that the

balanced accuracy model outcome was significantly higher for

the RNN with hand-crafted and neural-generated (PV-DM)

features (model 4 in TABLE IV) when compared to the other

models. Also, the random forest with hand-crafted features

model (model 1 in TABLE IV) performed significantly better

than the RNN with hand-crafted features (model 2 in TABLE

IV) and the random forest with hand-crafted and neural-

generated (PV-DM) features (model 3 in TABLE IV). Model

2’s balanced accuracy was also significantly higher than that of

model 3 (refer to TABLE IV for details).

B. Model Quality

To understand if there are differences in the quality of

outcomes of Q&A prediction models with varying degrees of

complexity that are derived using hand-crafted and neural-

generated features, we computed a confusion matrix for all four

models when sampling with the SMOTE technique. TABLE V

shows that all models have acceptable F1-scores, confirming

that they are all better than random guesses. The RNN models

with both hand-crafted and hand crafted and neural-generated

features has the highest F1-scores (0.783 and 0.779

respectively), confirming that the more complex models were

of a higher quality. Even so, the random forest model with

hand-crafted features has higher quality than the random forest

model with hand-crafted and neural-generated (PV-DM)

features (0.708 versus 0.573). Results for MCC in TABLE V

show that all models have positive MCC values. That said, the

random forest model with hand-crafted features and the RNN

model with hand-crafted and neural-generated features record

the highest MCC values (0.722 and 0.711 respectively). The

MCC value for the RNN model with hand-crafted features was

only marginally lower than the aforementioned models (0.681).

However, as with the F1-score measures, the random forest

model with hand-crafted and neural-generated features

recorded the poorest quality (MCC = 0.564).

Performing rigorous statistical testing to evaluate the quality

of our models, we executed the models 100 times. Summary

statistics (mean, median (Md), and standard deviation (SD)) for

the F1-score and MCC values are provided in Columns B and

C of TABLE III. Here it is shown that the mean and median are

similar in each of the two measurements (for F1-Score and

MCC), indicating that there were few outliers. This is validated

by low standard deviation values in TABLE III. Maintaining a

similar pattern to the outcomes in TABLE V, our outcomes in

TABLE III show that the F1-Score was highest for the RNN

model with hand-crafted features (0.781), followed by the RNN

model with the hand-crafted and neural-generated (PV-DM)

features (0.779), and the random forest model with hand-crafted

features (0.706). The random forest model with hand-crafted

and neural-generated (PV-DM) features performed the poorest

(0.574). MCC values in TABLE III are slightly variable, where

the best performance was noticed for the random forest model

with hand-crafted features (0.718). However, again, outcomes

were very similar for three of the models, with the random

forest model with hand-crafted and neural-generated (PV-DM)

features performing the poorest (0.568).

As above, formal statistical testing was conducted on the F1-

Score and MCC outcomes from our 100 executions of the

models. We first executed the Kruskal-Wallis test for F1-

Scores, where outcomes revealed statistically significant

differences between the model outcomes, X2(3) = 374.06,

p < 0.01, with a mean rank score of 150.5 for the random forest

model with hand-crafted features, 350.5 for the RNN model

with hand-crafted features, 50.5 for the random forest model

with hand-crafted and neural-generated features, and 250.5 for

the RNN model with hand-crafted and neural-generated

features.

TABLE III
MODELS’ SUMMARY STATISTIC FOR BALANCED ACCURACY, F1-SCORE AND

MCC VALUES

Model

A B C

Balanced

accuracy

F1-Score MCC

Random
forest with

hand-crafted

features

Mean: 71.185
Md: 71.187

 SD: 0.109

Mean: 0.706
Md: 0.706

SD: 0.228

Mean: 0.718
Md: 0.717

SD: 0.004

Neural
network

with hand-

crafted
features

Mean: 65.887
Md: 65.942

 SD: 0.109

Mean: 0.781
Md: 0.783

SD: 2.075

Mean: 0.686
Md: 0.686

SD: 0.012

Random

forest with
hand-crafted

and neural-

generated
(PV-DM)

features

Mean: 60.670

Md: 60.659
 SD: 0.199

Mean: 0.574

Md: 0.574
SD: 0.065

Mean: 0.568

Md: 0.567
SD: 0.001

Neural

network
with hand-

crafted and

neural-
generated

(PV-DM)

features

Mean: 82.870

Md: 82.873
SD: 0.067

Mean: 0.779

Md: 0.770
SD: 0.003

Mean: 0.715

Md: 0.716
SD: 0.002

TABLE IV
PAIRWISE COMPARISONS RESULTS FOR BALANCED ACCURACY, F1-SCORE

AND MMC VALUES FOR MODELS

Model
Balanced Accuracy, F1-Score, MCC

1 2 3

1. Random forest with

hand-crafted features

2. Neural network with

hand-crafted features

< 0.01

3. Random forest with
hand-crafted and neural-

generated (PV-DM)

features

< 0.01 < 0.01

4. Neural network with
hand-crafted and neural-

generated (PV-DM)
features

< 0.01 < 0.01 < 0.01

Note: Pairwise results were significant at < 0.01 for Balanced accuracy, F1-

Score and MCC values (all outcomes)

MCC outcomes also showed statistically significant

differences between model outcomes, X2(3) = 342.53, p < 0.01,
with a mean rank score of 318.9 for the random forest model
with hand-crafted features, 150.5 for the RNN model with
hand-crafted features, 50.5 for the random forest model with
hand-crafted and neural-generated features, and 282.0 for the
RNN model with hand-crafted and neural-generated features.

We next performed post hoc pair-wise Wilcoxon testing with

appropriate Bonferroni adjustments. TABLE IV provides our

F1-score and MCC outcomes (in addition to those for balanced

accuracy, where the pattern of significance was repeated). Here

it is revealed that there were statistically significant differences

in the model outcomes for all comparisons (p < 0.01). We

observed that for the F1-Score, the quality of the RNN model

with hand-crafted features was significantly better than all the

others (p < 0.01). In TABLE IV it is confirmed that the RNN

model with hand-crafted and neural-generated (PV-DM)

features was of higher quality than both the random forest

model with hand-crafted features (p < 0.01) and the random

forest model with hand-crafted and neural-generated (PV-DM)

features (p < 0.01). Finally, the random forest model with hand-

crafted features produced higher quality outcomes than the

random forest model with hand-crafted and neural-generated

(PV-DM) features (p < 0.01). A slightly different pattern of

outcomes was observed for the MCC outcomes, albeit the three

better performing models above recorded superior scores than

the random forest model with hand-crafted and neural-

generated (PV-DM) features. This outcome suggests that our

predictions are superior to random guesses.

 TABLE V F1-SCORE AND MCC VALUES FOR MODELS

Model F1-Score MCC

Random forest with hand-
crafted features

0.708 0.722

Neural network with hand-

crafted features

0.783 0.681

Random forest with hand-

crafted and neural-generated
(PV-DM) features

0.573 0.564

Neural network with hand-

crafted and neural-generated
(PV-DM) features

0.779 0.711

 TABLE VI MODEL BALANCE ACCURACY SUMMARY

Model
Model accuracy for the 90 unique

questions taken from the test

sample
Random forest with hand-crafted

features
 69.37%

Neural network with hand-crafted

features
60.0%

Random forest with hand-crafted
and neural-generated (PV-DM)

features

 68.42%

Neural network with hand-crated

and neural-generated (PV-DM)
features

 72.92%

C. Evaluation Via Developers’ Questionnaire

A total of 90 unique question and answer pairs were

completed and ranked manually by software developers with

vary degree of professional experience. These developers

ranked answers according to how acceptable they were for a

given question. This ranking provides a countermeasure and

triangulation for the accepted answer tag that was used as our

model outcome measure, and so enables further evaluation of

our models. We compare the outcomes of our four approaches

with the results gathered from the questionnaire, and the results

are shown in TABLE VI.

The accuracy for each model was determined by finding

those answers that were predicted to be the accepted answer and

also ranked “3” (highly acceptable) by developers. The total

number of answers satisfying both conditions was divided by

the total number of questions and answers that were evaluated

by the questionnaire (90 pairs). Comparing the result of our

questionnaire with the four models described in Section III.C,

we found that when using the random forest model with hand-

crafted features our model was able to accurately predict the

acceptable answers as ranked by developers 69.37% of the

time. There was, however, less convergence for the RNN model

with hand-crafted features (60.00%). Adding the neural-

generated (PV-DM) with the hand-crafted features when using

random forest modelling recorded a slightly lower accuracy

than the random forest model with hand-crafted features

(68.42%). However, when we combined the feature generated

from the PV-DM model with the hand-crafted features, the

RNN model resulted in the highest accuracy (72.92%). While

we acknowledge that the number of responses obtained from

our questionnaire was small, the pattern of outcomes here

largely mirrors that observed above. Further, developers’

ranking of highly acceptable answers (i.e., assigning a “3”)

converged with Stack Overflow users’ accepted answer label

84% of the time, suggesting that our respondents had a similar

judgement to contributors on Stack Overflow. We further

discuss our outcomes in the next section.

V. DISCUSSION

RQ1. How does the degree of model and feature complexity

affect the performance of a Stack Overflow Q&A accepted

answer prediction model? Reflecting on our outcomes, the

model with lesser complexity (random forest) tended to

outperform our model with more complexity (RNN) when only

simple features were used. This finding suggests that the type

of features (or sampling techniques) used may affect the

performance outcomes of models with varying degrees of

complexity when studying prediction models.

In further exploring how the prediction performance varies

when changing the model complexity, given the availability of

hand-crafted features, we explored the features and their

contributed weight in our random forest and RNN models. Our

outcomes show that the time it takes to post an answer

(Timelag), the textual similarity of a question and answer pair

and the code length and reputation of the answerer were the

most influential predictors of acceptable Stack Overflow

answers in both models. This pattern of outcomes was

confirmed in preliminary work [10], indicating that the

similarity in the text provided in questions and answers

enhanced Stack Overflow answers’ acceptability. Even so, the

reputation of the user was the second most dominating feature

that distinguished a chosen Stack Overflow answer. The current

finding was also supported by previous work, which linked

users’ reputation to post quality in other contexts [41].

While code length [11] or features of code readability, such

as the number of lines of code and the average number of

identifiers per line [18], could be linked to an answer’s quality,

this might not always be true, as evidence shows that such

predictors can be due to chance [42]. The time lag was seen to

be the feature with the highest coefficient. Those posting

questions reflected on the answers available on the community

portal before choosing an acceptable answer. However, on

combining the two features sets (hand-crafted features and

neural-generated features), the dominating coefficients were

the time it takes to post an answer (Timelag), reputation, neural

feature (weight) and code length. Of note here is that the neural-

generated feature had the third-highest magnitude of all

influential features. Also, time lag, reputation and code length

were consistent in their prominence among the four top features

for both models with varying complexity.

While the (less complex) random forest model outperformed

the (more complex) RNN model when hand-crafted features

were used, the opposite was observed when neural-generated

features were added. In fact, the coefficients of features

returned for the RNN model with hand-crafted and neural-

generated features were of a much larger magnitude. We also

observed that the code length feature (among others) gained

prominence when we combined both hand-crafted and neural-

generated features for both models. Overall, when considering

both types of features, the RNN model had a higher balanced

accuracy (i.e., 82.73%) compared to the same model when only

hand-crafted features were used (i.e., 65.89%). This outcome

aligns with the work of Suggu et al. [14], where the authors

proposed that combining features from convolutional networks

with hand-crafted features improves model performance. This

performance gain may be linked to the ability to learn some

features automatically.

These findings are in contrast to those seen for the random

forest models, where there was a decline in performance when

both hand-crafted and neural-generated features were modelled

(performance being 71.74% versus 60.30%). This decline in

performance could be attributed to the model not being able to

learn the features automatically since previous studies have

indicated that it is difficult at times for some models to

determine the correlation between textual features and non-

textual features [20], which may be responsible for the decline

in performance observed. Previous studies have also indicated

that using the best features tends to increase the quality of the

model, although “best” may be hard to decipher given the

difficulty with models in determining the correlation between

textual features and non-textual features. This assessment

aligns with our outcome where our RNN model outperformed

the other models used in this study when we used a combination

of complex and hand-crafted features. That said, the challenge

of determining which features are “best” remains. A reasonable

approach would be to consider the complexity of both the

models and features when choosing a model.

RQ2. How does the degree of model and feature complexity

affect the quality of a Stack Overflow Q&A accepted answer

prediction model? Our findings show that all of our models

were of good quality, and better than random guesses when F1

scores were considered. The RNN models (with hand-crafted

features only, and with hand-crafted and neural-generated

features) recorded the highest F1 scores (0.783 and 0.779

respectively), confirming that the models with a high degree of

complexity were of a higher quality. Despite this, the random

forest model with hand-crafted features performed much better

than the random forest model with hand-crafted and neural-

generated (PV-DM) features (0.708 versus 0.573). Burel et al.

[43] reported outcomes with an F1 score of 0.659 when

predicting the best answers using the Multi-Class Alternating

Decision Tree classifier (MADT) with only hand-crafted

features from the Stack Exchange dataset. The MADT is a

classifier that is more advanced than the random forest, as it

combines decision trees with the predictive accuracy of

boosting into a set of interpretable classification rules.

Accordingly, this algorithm can be considered more complex

than the random forest alternative. When the aforementioned

authors increased the feature set by adding other features such

as the “relative position of an answer within a post”, the F1

score of their MADT increased to 0.769. Their result is similar

to those for our RNN classifier, which increases the quality of

the model by increasing feature set complexity. Considering

that the MCC score is also used to measure the quality of a

binary classifier, we examined the MCC score for all our

models. Our outcomes show a strong positive MCC score, with

the random forest model with hand-crafted features and the

RNN model with hand-crafted and neural-generated features

recording almost identical MCC values (0.722 and 0.711

respectively). An MCC score of 1 indicates a perfect prediction,

and both models had very strong positive MCC values. There

was an increase in the RNN MCC score from 0.681 to 0.711

when we increased the complexity of the features by adding the

neural-generated feature. In contrast, there was a decrease in

quality when observing the random forest MCC score, which

reduced from 0.722 to 0.564, as was the case for the F1 score

from 0.708 to 0.573, when the complexity of the features

increased. This indicates that, overall, our random forest

models decreased in quality when neural-generated

features were added. Here we see a correlation between the

quality of models and feature complexity. When we increased

the complexity of our features without increasing the

complexity of the model, there was a decline in the quality

of the model outcomes. The opposite pattern is observed when

we increase feature complexity and model complexity, where

the model quality outcomes increased. These findings converge

with those we observed for model performance, where the same

pattern of outcomes was recorded, pointing to the need to

match the complexity of the features to that of the modelling

techniques.

Our evaluation done via a questionnaire triangulated our

findings, where the same pattern of outcomes was reported,

albeit with our models’ performance and quality outcomes

being slightly lower. Our findings are noteworthy, as a random

sample of software developers labelled our Stack Overflow

answers independently of the contributors on the platform,

where the same pattern of outcomes was observed. Software

engineering researchers should thus be cautious in aligning

specific modelling approaches with specific feature sets.

VI. THREATS TO VALIDITY

Construct Validity: We have used two modelling approaches

in this work, and thus, we cannot definitively say that our

outcomes will hold for other modelling methods (e.g., Bayesian

logistic regression or support vector machines (SVM)). It

should be noted, however, that our approaches were established

to vary widely in complexity based on both their operations and

the evidence returned by Calefato et al. [17]. Also, given the

limited feature set used (only one complex feature), we cannot

guarantee that our outcomes will hold when more complex

features are added.

Internal Validity: Also, our conceptualization of acceptable

answers is based on the answer that was selected by the user

who posted the question. We acknowledge that such answers

may not necessarily be the “best” answer in all cases.

Nevertheless, our evaluation involved software developers who

completed a questionnaire where findings confirmed that 84%

of the answers that were accepted by Stack Overflow users were

also judged as the most acceptable answer by these practioners.

External Validity: Our dataset consisted of 249,588 records

that were posted on Stack Overflow over three years (2014–

2016). This dataset does not represent all the types of questions

and answers that are provided for posts tagged with the Java or

JavaScript label on the Stack Overflow platform. Thus, we do

not claim generalisability of our findings, although recent

findings suggest that there is consistency in trends across

languages for some aspects of Stack Overflow posts [26]. In

addition, we acknowledge that the Stack Overflow dataset is not

representative of all similar portals. However, those portals that

are devoted to addressing technology-related challenges may

possess comparable content (e.g., Yahoo!Answers for

programming). In this way, the features that distinguish

accepted or acceptable answers for such portals are likely to

demonstrate similarities.

VII. CONCLUSION AND FUTURE WORK

By understanding the performance and quality of different

modelling methods with respect to the different features found

in a Q&A forum such as Stack Overflow, the prediction of an

acceptable answer could easily be achieved when there is none

available. Having such answers available early could make it

easier for end-users of such a forum to find suitable solutions to

their problems. However, from prior work, it was not clear

when and/or how features and models with varying degrees of

complexity affect prediction outcomes. We have thus bridged

this gap. In this paper, we were able to determine that the

performance of a model is related to the inputted features’

complexity. We observed that models with higher complexity

performed better when both hand-crafted and neural-generated

features were used. On the other hand, models with lesser

complexity work best when only simple hand-crafted features

were used. The time it takes to post an answer, the textual

similarity of a question and answer pair, code length and

reputation of the answerer were the most influential predictors

of acceptable Stack Overflow answers, with contributors’

reputation standing out as one of the most influential predictors

of answer acceptability. We believe this could represent a threat

to the Stack Overflow community if contributors employ tactics

to game their reputations. Accordingly, our future work will

investigate how using different types of complex features will

affect the performance and quality of answer prediction models.

REFERENCES

[1] Treude C, Barzila O, Storey M-A, editors. How do programmers ask and

answer questions on the web? (nier track). 33rd International Conference on

Software Engineering; 2011: ACM.

[2] 2Cordeiro J, Antunes B, Gomes P, editors. Context-based recommendation to

support problem solving in software development. 2012 3rd International

Workshop on Recommendation Systems for Software Engineering; 2012;

Zurich, Switzerland: IEEE Press.

[3] 3Ponzanelli L, Bacchelli A, Lanza M, editors. Leveraging crowd knowledge

for software comprehension and development. 2013 17th European

Conference on Software Maintenance and Reengineering; 2013; Genova,

Italy: IEEE.

[4] 4Nie L, Wei X, Zhang D, Wang X, Gao Z, Yang YJItok et al. Data-driven

answer selection in community QA systems. 2017;29(6):1186-98.

[5] 5Sahu TP, Nagwani NK, Verma S. Selecting best answer: An empirical

analysis on community question answering sites. IEEE Access. 2016;4:4797-

808.

[6] Dong H, Wang J, Lin H, Xu B, Yang Z, editors. Predicting best answerers for

new questions: an approach leveraging distributed representations of words in

community question answering. 2015 ninth international conference on

frontier of computer science and technology (FCST); 2015: IEEE.

[7] Chirag S, Jefferey P, editors. Evaluating and predicting answer quality in

community QA. In the 33rd International Conference on Research and

development information retrieval on Research and Development in

Information Retrieval (SIGIR’10); 2010.

[8] Harper FM, Raban D, Rafaeli S, Konstan JA, editors. Predictors of answer

quality in online Q&A sites. SIGCHI Conference on Human Factors in

Computing Systems; 2008: ACM New York, NY.

[9] Blooma MJ, Chua AY, Goh DH-L, editors. A predictive framework for

retrieving the best answer. Proceedings of the 2008 ACM symposium on

Applied computing; 2008: ACM.

[10] Omondiagbe, O. P., Licorish, S. A., & MacDonell, S. G. (2019). Features that

Predict the Acceptability of Java and JavaScript Answers on Stack Overflow.

Evaluation and Assessment on Software Engineering.

[11] Jeon J, Croft WB, Lee JH, Park S, editors. A framework to predict the quality

of answers with non textual features. 29th annual international ACM SIGIR

conference on Research and development in information retrieval; 2006;

Seattle,USA: ACM New York, NY

[12] Larkey LS, editor Automatic essay grading using text categorization

techniques. 21st annual international ACM SIGIR conference on Research and

development in information retrieval; 1998.

[13] Jizhou H, Ming Z, Dan Y, editors. Extracting chatbot knowledge from online

discussion forums. . International Joint Conference on Artificial Intelligence;

2007; Indian.

[14] Suggu SP, Goutham KN, Chinnakotla MK, Shrivastava M. Deep feature fusion

network for answer quality prediction in community question answering. arXiv

preprint arXiv:160607103. 2016.

[15] Lei Y, Karl MH, Phil B, Stephen P, editors. Deep learning for answer sentence

selection. Neural Information Processing Systems (NIPS): Deep Learning and

Representation Learning Workshop; 2014; Montreal, Quebec, Canada.

[16] Wang X-J, Tu X, Feng D, Zhang L, editors. Ranking community answers by

modeling question-answer relationships via analogical reasoning. 32nd

international ACM SIGIR conference on Research and development in

information retrieval; 2009: ACM.

[17] Calefato F, Lanubile F, Novielli NJESE. An empirical assessment of best-

answer prediction models in technical Q&A sites. 2019:1-48.

[18] Buse RPL, Weimer WR. Learning a metric for code readability. IEEE

Transactions on Software Engineering. 2010;36(4):546-58.

[19] Ghazy RA, El-Rabaie E-SM, Dessouky MI, El-Fishawy NA, Abd El-Samie

FEJWPC. Feature selection ranking and subset-based techniques with different

classifiers for intrusion detection. 2020;111(1):375-93.

[20] Haifeng H, Bingquan L, Baoxun W, Ming L, Xiaolong W, editors. Multimodal

DBN for Predicting High-Quality Answers in cQA portals. Association of

Computational Linguistics; 2013.

[21] Wang B, Liu B, Wang X, Sun C, Zhang D. Deep learning approaches to

semantic relevance modeling for chinese question-answer pairs. ACM

Transactions on Asian Language Information Processing (TALIP).

2011;10(4):21.

[22] Gao Z, Xia X, Lo D, Grundy JJAToSE, Methodology. Technical Q8A Site

Answer Recommendation via Question Boosting. 2020;30(1):1-34.

[23] Xiaoqiang Z, Baotian H, Jiaxin L, xiang Y, Xiaolong W. A Deep Learning

based Comment Sequence Labeling System for Answer Selection Challenge.

ICRC-HIT:. 2015.

[24] Zou Y, Ye T, Lu Y, Mylopoulos J, Zhang L, editors. Learning to rank for

question-oriented software text retrieval (t). 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE); 2015:

IEEE.

[25] Schaffer C. A conservation law for generalization performance. Machine

Learning Proceedings 1994: Elsevier; 1994. p. 259-65.

[26] Lotter A, Licorish SA, Savarimuthu BTR, Meldrum S, editors. Code Reuse in

Stack Overflow and Popular Open Source Java Projects. 2018 25th

Australasian Software Engineering Conference (ASWEC); 2018: IEEE.

[27] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic

minority over-sampling technique. Journal of artificial intelligence research.

2002;16:321-57.

[28] He H, Bai Y, Garcia EA, Li S, editors. ADASYN: Adaptive synthetic sampling

approach for imbalanced learning. IEEE International Joint Conference on

Neural Networks; 2008: IEEE.

[29] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data

mining, inference, and prediction: Springer Science & Business Media; 2009.

[30] Rajbahadur GK, Wang S, Ansaldi G, Kamei Y, Hassan AEJIToSE. The impact

of feature importance methods on the interpretation of defect classifiers. 2021.

[31] Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random

forest: a classification and regression tool for compound classification and

QSAR modeling. Journal of chemical information and computer sciences.

2003;43(6):1947-58.

[32] Cutler A, Cutler R, Stevens JR. Random forests. Ensemble machine learning:

Springer; 2012. p. 157-75.

[33] Dewancker I, McCourt M, Clark S. Bayesian Optimization for Machine

Learning: A Practical Guidebook. arXiv preprint arXiv:161204858. 2016.

[34] Iyyer M, Boyd-Graber JL, Claudino LMB, Socher R, Daumé III H, editors. A

Neural Network for Factoid Question Answering over Paragraphs. EMNLP;

2014.

[35] Léon B. Stochastic gradient learning in neural networks. Neuro-Nımes.

1991;91(8).

[36] Le QV, Mikolov T, editors. Distributed Representations of Sentences and

Documents. ICML; 2014.

[37] Kim D, Nam J, Song J, Kim S, editors. Automatic patch generation learned

from human-written patches. 2013 International Conference on Software

Engineering; 2013: IEEE Press.

[38] Brodersen KH, Ong CS, Stephan KE, Buhmann JM, editors. The balanced

accuracy and its posterior distribution. 2010 20th International Conference on

Pattern Recognition; 2010: IEEE.

[39] Lipton ZC, Elkan C, Naryanaswamy B, editors. Optimal thresholding of

classifiers to maximize F1 measure. Joint European Conference on Machine

Learning and Knowledge Discovery in Databases; 2014: Springer.

[40] Ding Z. Diversified ensemble classifiers for highly imbalanced data learning

and their application in bioinformatics. 2011.

[41] Lin Z, Li D, Janamanchi B, Huang WJDSS. Reputation distribution and

consumer-to-consumer online auction market structure: an exploratory study.

2006;41(2):435-48.

[42] Chen W, Zeng Q, Wenyin L, Hao TJC, Practice C, Experience. A user

reputation model for a user‐interactive question answering system.

2007;19(15):2091-103.

[43] Burel G, He Y, Alani H, editors. Automatic Identification of Best Answers in

Online Enquiry Communities. 9th Semantic Web:Research and Applications:

9th Extended SemanticWeb Conference; 2012: Springer

