
EasyChair Preprint

№ 622

Eclipse CDT code analysis and unit testing

Shaun D’Souza

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 10, 2018

Eclipse CDT code analysis and unit testing

Shaun C. D’Souza1

Wipro Limited
shaun.dsouza1@wipro.com

Abstract

In this paper we look at the Eclipse IDE and its support for CDT (C/C++ Devel-
opment Tools). Eclipse is an open source IDE and supports a variety of programming
languages including plugin functionality. Eclipse supports the standard GNU environment
for compiling, building and debugging applications. The CDT is a plugin which enables
development of C/C++ applications in eclipse. It enables functionality including code
browsing, syntax highlighting and code completion. We verify a 50X improvement in LOC
automation for Fake class .cpp / .h and class test .cpp code generation.

Keywords— Software Maintenance, Software Testing, Object-oriented, Regression Testing

1 Introduction

Eclipse supports a number of programming languages including C/C++ [8, 2], Java, PHP, XML, and
HTML. It is an open source IDE and can be used on multiple platforms including Windows, Linux. It
supports plugins to extend the functionality of the IDE for source code language modeling and analysis.

In our paper we study the use of Eclipse to enable an automation framework for generation of unit
tests and fake classes for code debug [6]. Eclipse supports the parsing and compilation of code into an
index file. The index file is used to store code binding information including identifiers bindings, source
file location, macros and include files.

2 Stages of compilation parser

Source code
Lexical analysis

Token stream
Syntax analysis

Abstract Syntax Tree
Semantic analysis

Table 1: Stages of compilation parser

Scanning converts the input character stream into a stream of tokens. Eg. ‘I’ ‘n’ ‘t’ is converted
to a token object of type int. Preprocessing involves macro expansion, conditional compilation and
inclusion of header files. Parsing converts the C++ language semantics into an abstract syntax tree
structure [3]. The AST is an intermediate program representation for the code and captures all the
semantic information for the source - Table 2. Source code is optimized for human readability.

2.1 Lexical analysis

Natural language: “I shot an elephant in my pajamas”
I shot an elephant in my pajamas

Programming language: “if (a == 0) a = b + 1”
if (a == 0) a = b + 1

Eclipse CDT code analysis and unit testing D’Souza

2.2 Syntax analysis

Natural Language
The cat sat on the mat

det noun verb prep det noun

subject predicate prep object

Programming language
if (a == 0) a = b + 1

test assignment

if-statement

2.3 Semantic analysis

Natural Language
The green apple ate a juicy bug

det adj noun noun det noun noun

Programming language
if (a == 0) a = foo

test assignment

Semantic analysis will report an error.

3 CDT Core

We use the CDT to function as a compiler frontend and use the AST to generate unit tests [4]. The
CDT uses a translation unit to represent a source file cpp and h. The CDT core supports a Visitor
API which is used to traverse the AST [1]. AST rewrite API is used to update the source code. We
access the code AST using the Eclipse CDT API.

C-Model: ITranslationUnit for a workspace file

IPath path= new Path("project/folder/file.cpp");

IFile file= ResourcesPlugin.getWorkspace().getRoot().getFile(path);

// Create translation unit for file

ITranslationUnit tu= (ITranslationUnit) CoreModel.getDefault().create(file);

C-Model: ITranslationUnit for file in the editor

IEditorPart e= PlatformUI.getWorkbench().getActiveWorkbenchWindow().getActivePage().

getActiveEditor();

// Access translation unit of the editor.

ITranslationUnit tu= (ITranslationUnit) CDTUITools.getEditorInputCElement(editor.

getEditorInput());

C-Index: IIndex for project

ICProject project= CoreModel.getDefault().getCModel().getCProject("project");

IIndex index= CCorePlugin.getIndexManager().getIndex(project);

Eclipse supports the use of IBinding [5]. Binding completely represents the C/C++ entity. It
contains information about the type of a variable, return type and parameters of a function. A compiler
is used to translate one program representation to another. Most commonly the information is a
program. We use the Eclipse CDT in our investigation to process the source tree and generate a set of
Fake class and unit test files [7].

2

Eclipse CDT code analysis and unit testing D’Souza

The CDT is not a compiler and is designed to support compiler frontend features. It is designed
for performance and is able to parse code skipping included header files. The parsers do not perform
any semantic analysis or type checking during the parse. The phases of parsing include scanning and
preprocessing. During the scanning phase a stream of character inputs is converted into a stream of
tokens. Preprocessing also involves macro expansion, conditional compilation and inclusion of header
files. Parsing is used to convert the input token stream to an AST. The parser converts concrete
syntax into an abstract syntax tree representation. The AST is used in semantic analysis of the code
to implement type checking of the code definitions.

We implemented an ASTVisitorImpl class to traverse the code AST. This allows us to obtain all the
declaration information for the functions in a class. We traverse all declarations in the code. Function
and constructor information is used to construct the Fake Class .cpp and .h header files. This is then
integrated into the unit testing framework. We store a list of function declarations and class information
to create the Fake class files and unit tests.

4 Fake class plugin UML

discovery/storage/FakeStorageSCSI_DiscoveryAlgorithm.cpp

FakeStorageSCSI_DiscoveryAlgorithm::FakeStorageSCSI_DiscoveryAlgorithm()

: StorageSCSI_DiscoveryAlgorithm()

, fake_run("FakeStorageSCSI_DiscoveryAlgorithm::run")

, fake_associate("FakeStorageSCSI_DiscoveryAlgorithm::associate")

, fake_getDuplicatedHardDriveList("FakeStorageSCSI_DiscoveryAlgorithm::

getDuplicatedHardDriveList")

, fake_addUniqueHardDrive("FakeStorageSCSI_DiscoveryAlgorithm::addUniqueHardDrive")

, fake_isDuplicateBackplane("FakeStorageSCSI_DiscoveryAlgorithm::isDuplicateBackplane"

)

}

void FakeStorageSCSI_DiscoveryAlgorithm::verifyFakeMethodUsage(const std::string&

testCondition)

{

TestUtility::verifyFakeMethodUsage(fake_run, testCondition);

TestUtility::verifyFakeMethodUsage(fake_associate, testCondition);

TestUtility::verifyFakeMethodUsage(fake_getDuplicatedHardDriveList, testCondition);

TestUtility::verifyFakeMethodUsage(fake_addUniqueHardDrive, testCondition);

TestUtility::verifyFakeMethodUsage(fake_isDuplicateBackplane, testCondition);

}

void FakeStorageSCSI_DiscoveryAlgorithm::run(UI_Facade& uiFacade)

{

return fake_run(uiFacade);

}

discovery/storage/StorageSCSI_DiscoveryAlgorithmTest.cpp

StorageSCSI_DiscoveryAlgorithm_data()

: fakeDeviceReporter()

, fakeDiscoveryRepository()

, fakeIoConnectionOperations()

, fakeTransportFactory()

, fakeDiscoveryOperationsFactory()

3

Eclipse CDT code analysis and unit testing D’Souza

Figure 1: Fake class plugin UML.

4

Eclipse CDT code analysis and unit testing D’Souza

Parsing Parsing
Lowering Lowering
Interpreter Analysis + Optimization
JIT compiler Code gen

Table 2: V8 JS, g++ compiler

, fakeDiscoveredDeviceOperationsFactory()

, fakeFusionIO_AcceleratorFactory()

, fakePciOperationsFactoryPtr(new FakePCI_OperationsFactory())

, fakeFileSystemOperations()

, fakeSmbiosOperationsPtr(new FakeSMBIOS_Operations())

, fakeIloOperationsPtr(new iLO::Fake_iLO_Operations())

, fakeTimeOperationsPtr(new FakeTimeOperations())

, failureEventStatus(FakeEvt::failure)

, goodEventStatus()

{

}

Refactoring is changing restructuring existing code without changing its behaviour. We use the
ASTRewrite class functionality to modify code dynamically by describing changes to the AST. Eclipse
supports modification of specific code declarations in the source using the CDT.

IASTTranslationUnit tu = ...;

ASTRewrite r = ASTRewrite.create(tu);

IASTNode lit = r.createLiteralNode(String code);

r.replace(declaration, lit, null);

Change c = r.rewriteAST();

c.perform(new NullProgressMonitor());

New AST nodes can be created using the getASTNodeFactory().

IASTBreakStatement breakStatement = tu.getASTNodeFactory().newBreakStatement();

However for our implementation in Fake class and unit test generation we use ASTRewrite createLit-
eralNode method. We however look at the use of getASTNodeFactory in implementing refactoring and
extending the fake class and unit test functionality.

ASTRerwite uses the following functions to implement code refactoring.

void remove(IASTNode n, TextEditGroup eg)

ASTRewrite replace(IASTNode n, IASTNode repl, TextEditGroup eg)

ASTRewrite insertBefore(IASTNode p, IASTNode insPoint, IASTNode newN, TextEditGroup eg

)

5 Conclusion

We enable an Eclipse CDT framework as a design for performance best practise. The developed unit
test productivity accelerator, framework components facilitate source code integration. The plugin is
developed for generation of unit test code and software engineering. Source files are input to the plugin
in the project. We verify a 50X improvement in LOC automation for Fake class .cpp / .h and class
test .cpp code. The open source plugin automates code analysis and unit test generation.

5

Eclipse CDT code analysis and unit testing D’Souza

References

[1] Api for c/c++ ast. http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.cdt.doc.
isv%2Fguide%2Fdom%2Findex.html.

[2] Gnu g++. http://gcc.gnu.org.

[3] Overview of parsing. http://wiki.eclipse.org/CDT/designs/Overview_of_Parsing.

[4] M. Dickheiser. Game Programming Gems 6, chapter 1. GAME DEVELOPMENT SERIES. Charles
River Media, 2006.

[5] J. Gosling, B. Joy, G.L. Steele, G. Bracha, and A. Buckley. The Java Language Specification, Java
SE 8 Edition. Java Series. Pearson Education, 2014.

[6] Paul Hamill. Unit Test Frameworks. O’Reilly, first edition, 2004.

[7] Guodong Li, Indradeep Ghosh, and Sreeranga P Rajan. Klover: A symbolic execution and au-
tomatic test generation tool for c++ programs. In International Conference on Computer Aided
Verification, pages 609–615. Springer, 2011.

[8] Bjarne Stroustrup. The C++ programming language. Pearson Education, 2013.

6

http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Fguide%2Fdom%2Findex.html
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Fguide%2Fdom%2Findex.html
http://gcc.gnu.org
http://wiki.eclipse.org/CDT/designs/Overview_of_Parsing

	Introduction
	Stages of compilation parser
	Lexical analysis
	Syntax analysis
	Semantic analysis

	CDT Core
	Fake class plugin UML
	Conclusion

