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                    POONDRU PRITHVINATH REDDY 

ABSTRACT 

For autonomous vehicles, several real-time systems must work tightly together. These 

real-time systems, include environment mapping and understanding, localization, route 

planning and movement control. All these real-time systems work simultaneously and 

use artificial neural networks which are self-organizing systems. The self-driving car 

itself needs to be equipped with the appropriate computational hardware such as 

parallel computing power of modern graphics processors and software infrastructure for 

supporting implementation of DNN & CNNs. There are two approaches for applying 

deep learning in self-driving cars. The first one is semantic abstraction and the second 

is end-to-end learning system. Our chosen approach is semantic abstraction where the 

problem of autonomous driving is broken down into several components and at the end, 

these components are glued together into master network that makes the driving 

decisions. Also implementation of image classification in traffic signs dataset using 

Deep Neural Network with TensorFlow is presented. 

INTRODUCTION 

A self-driving car, also known as a robot car, autonomous car, or driverless car, is 

a vehicle that is capable of sensing its environment and moving with little or no human 

input. Autonomous cars combine a variety of sensors to perceive their surroundings, 

such as, Lidar, radar, sonar, GPS, Odometry and inertial measurement units. Advanced 

control systems interpret sensory information to identify appropriate navigation paths, as 

well as obstacles .  

CONCEPT OF AUTONOMOUS DRIVING 

A car capable of autonomous driving should be able to drive itself without any human 

input To achieve this, the autonomous car needs to sense its environment, navigate and 

react without human interaction. A wide range of sensors, such as LIDAR, RADAR, 

GPS, wheel odometry sensors and cameras are used by self-driving cars to perceive 

their surroundings. In addition, the autonomous car must have a control system that is 

able to understand the data received from the sensors and make a difference between 



traffic signs, obstacles, pedestrian and other expected and unexpected things on the 

road .  

For a machine to be called a robot, it should satisfy at least three important capabilities: 

to be able to sense, plan, and act . For a car to be called an autonomous car, it should 

satisfy the same requirements . Self-driving cars are essentially robot cars that can 

make decisions about how to get from point A to point B.  

PARALLEL SYSTEMS 

Parallel  Systems are designed to speed up the execution of programs by dividing the 

program into multiple fragments and processing these fragments simultaneously. 

Parallel systems deal with the simultaneous use of multiple computer resources that 

can include a single computer with multiple processors, a number of computers 

connected by a network to form a parallel processing cluster or a combination of both. 

Parallel computing is an evolution of serial computing where the jobs are broken into 

discrete parts that can be executed concurrently. Each part is further broken down to a 

series of instructions. Instructions from each part execute simultaneously on different 

CPUs. 

SELF – ORGANIZING  SYSTEM 

The term Self - Organizing Systems refers to a class of systems that are able to change 

their internal structure and their function in response to external circumstances.By self-

organization it is understood that elements of a system are able to manipulate or 

organize other elements of the same system in a way that stabilizes either structure or 

function of the whole against external fluctuations. 

Self-organization is defined as a process by which systems that are in general 

composed of many parts spontaneously acquire their structure or function without 

specific interference from an agent that is not part of the system. 

Self-organizing systems are dynamic, non-deterministic, open, exist far from 

equilibrium.Often, they are characterized by multiple time-scales of their internal and / or 

external interactions, they possess a hierarchy of structural and / or functional levels 

and they are able to react to external input in a variety of ways.Many self-organizing 

systems are non-teleological, i.e . they do not have a specific purpose except their own 

existence.As a consequence, self-maintenance is an important function of many self-

organizing systems . Most of these systems are complex and use reduncancy to 

achieve resilience. 



There are numerous examples of man-made systems or systems which involve man 

that exhibit self-organization phenomena.Here we shall discuss a few examples from 

various areas,trafic infrastructure,self-organizing neural networks and the development  

of the Internet.All of these examples deal with the trans-portation of matter, energy or 

information in networks. 

Artificial neural networks as self-organized systems 

As already mentioned,natural neural connection patterns in brains exhibit self-organized 

structures. Self-organization phenomena can be found everywhere in the inanimate and 

animate world.  We provide a particularly interesting example, namely self-organization 

phenomena of the human brain. The human brain is the most complex system we know 

in the world. It is composed of up to 100 billions neurons  which are strongly 

interconnected. For instance, a single neuron can have more than 10,000 connections 

to other neurons. The central question is: who or what steers the numerous neurons so 

that they can produce macroscopic phenomena such as the coherent steering of 

muscles in locomotion, grasping, vision i.e. in particular pattern recognition, decision 

making etc 

SELF – DRIVING  VEHICLES 

 The following sensors should be present in all self-driving cars:  

Global positioning system (GPS). Global positioning system is used to determine the 

position of a self-driving car by triangulating signals received from GPS satellites . It is 

often used in combination with data gathered from an IMU and wheel odometry encoder 

for more accurate vehicle positioning and state using sensor fusion algorithms.  

Light detection and ranging (LIDAR). A core sensor of a self-driving car, this measures 

the distance to an object by sending a laser signal and receiving its reflection . It can 

provide accurate 3D data of the environment, computed from each received laser 

signal. Self-driving vehicles use LIDAR to map the environment and detect and avoid 

obstacles .  

Camera. Camera on board of a self-driving car is used to detect traffic signs, traffic 

lights, pedestrians, etc. by using image processing algorithms .  

RADAR. RADAR is used for the same purposes as LIDAR. The advantages of RADAR 

over LIDAR are that it is lighter and has the capability to operate in different conditions .  

Ultrasound sensors. Ultrasound sensors play an important role in the parking of self-

driving vehicles and avoiding and detecting obstacles in blind spots, as their range is 

usually up to 10 metres .  



Wheel odometry encoder. Wheel encoders provide data about the rotation of car’s 

wheels per second. Odometry makes use of this data, calculates the speed, and 

estimates the car’s position and velocity based on it.   

Inertial measurement unit (IMU). An IMU consists of gyroscopes and accelerometers. 

These sensors provide data on the rotational and linear motion of the car, which is then 

used to calculate the motion and position of the vehicle regardless of speed . 

On-board computer. This is the core part of any self-driving car. As any computer, it can 

be of varying power, All sensors connect to this computer, which has to make use of 

sensor’s data by understanding it, planning the route and controlling the car’s actuators. 

The control is performed by sending the control commands such as steering angle, 

throttle and braking to the wheels, motors and servo of the autonomous car .   
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Figure 1 illustrates the SW block diagram of the standard self-driving car.  
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Each block seen in Figure 1 can interact with other blocks using inter-process 

communication (IPC)  and identified the following blocks for the SW block diagram of a 

typical self-driving car:  

Sensor interface modules. All communication between sensors and the car is performed 

in this block, as it enables data acquired from sensors to be shared with other blocks. 

Perception modules. These modules process perception data from sensors such as 

LIDAR, RADAR and cameras, then segment the processed data to locate different 

objects that are staying still or moving.  

Navigation modules. Navigation modules determine the behaviour of the self-driving 

car, as they have route and motion planners, as well as a state machine of car’s 

behaviour . 

Vehicle interface. This interface’s goal is to send control commands such as steering, 

throttle and braking to the car after the path has been plotted in the navigation module.  

Common services. Common services module controls the car’s SW reliability by 

allowing logging and time-stamping of car’s sensor data. 

Software Modules for Autonomous Driving 

Predetermined shape and motion descriptors are programmed into the system to help 

the car make intelligent decisions. For instance, if the car detects a 2 wheel object and 

determines the speed of the object as 10mph rather than 50 mph, the car instantly 

interprets that this vehicle is a bicycle and not a motorbike and behaves accordingly. 

Several such programs fed into the car’s central processing unit will work 

simultaneously, helping the car make safe and intelligent decisions on busy roads. 

 At the moment, before a self-driven car is tested, a regular car is driven along the route 

and maps out the route and it’s road conditions including poles, road markers, road 

signs and more. This map is fed into the car’s software helping the car identify what is a 

regular part of the road. As the car moves, its Velodyne laser range finder kicks in  and 

generates a detailed 3D map of the environment at that moment. The car compares this 

map with the pre-existing map to figure out the non-standard aspects in the road, rightly 

identifying them as pedestrians and/or other motorists, thus avoiding them. 

While the vehicle does slow down to allow other motorists to go ahead, especially in 4 

way intersections, the car has also been programmed to advance ahead if it detects that 

the other vehicle is not moving. 

The main task faced by driverless cars software developers is to make the product that 

will adapt to external environmental factors as quickly as possible.  



Self-Driving car key functions  are – HD_Maps, Route_Planning, Detect_Obstacles, 

Avoid_Obstacles, Detect_Traffic_Signs, Detect_Traffic_Lights, Detect_Pedestrians, 

Distace_Perception, Detect_Road_Edge_Stone, Detect_Road_Markings, Detect_Poles, 

Detect_Other_Motorists, Object_Tracker  (velocity and attitude), and  Object_Predictor 

Perception 

The perception capability of Autonomous Car is composed of Localization, Detection, 

and Prediction. Detection uses cameras and LiDARs with sensor fusion algorithms and 

deep neural networks. Prediction is based on the results of Localization and Detection. 

Localization is achieved by 3D maps and SLAM algorithms. 

object_detector reads image data from cameras, and provides image-based object 

detection capabilities.  Multiple classes of detection are supported, such as cars and 

passengers. 

object_tracker predicts the motion of objects detected and identified by the above 

packages. The result of Prediction is based on the results of Localization and Detection. 

Further it is also used for prediction of the object behavior and estimation of the object 

velocity.  

Prediction 

object_predictor uses the result of object tracking described above to predict the future 

trajectories of moving objects, such as cars and passengers. 

collision_predictor uses the result of object_predictor to predict if the vehicle is involved 

in possible collision against the moving objects. The waypoint and the velocity 

information of the  vehicle is also required as input data in addition to the result of object 

tracking. 

Planning 

The last piece of computing in Autonomous Car is a planning module. The role of this 

module is to make plans of global mission and local  motion based on the results of the 

perception and the decision modules. For example, the velocity of the vehicle is planned 

to become zero in front of an object with a safety margin or at a stop line if the state of 

vehicle is set to "stop". Another example is that the trajectory of the vehicle is planned to 

bypass an obstacle if the state of vehicle is set to "avoid". The primary packages 

included in the planning module are the following. 

route_planner searches for a global route to the destination. The route is represented by 

a set of intersections in the road network. 



lane_planner determines which lanes to be used along with the route published by 

route_planner. The lanes are represented by an array of waypoints, i.e., multiple 

waypoints, each of which corresponds to a single lane. 

Motion 

velocity_planner updates a velocity plan on the waypoints subscribed from 

lane_planner, so as to speed down/up against surrounding vehicles and road features 

such as stop lines and traffic lights.  

Actuation 

The computational output of Autonomous Car is a set of velocity, angular velocity, 

wheel angle, and currvature. These pieces of information are sent as commands to the  

controller through the vehicle interface. Controlling the steering and throttle needs to be 

taken care of by the controller. 

Why ROS is interesting for Autonomous Cars 

Robot Operating System (ROS) is a mature and flexible framework for robotics 

programming. ROS provides the required tools to easily access sensors data, process 

that data, and generate an appropriate response for the motors and other actuators of 

the robot.  

ROS is interesting for autonomous cars because: 

There is a lot  of code for autonomous cars already created. Autonomous cars require 

the creation of algorithms that are able to build a map, localize the robot using lidars or 

GPS, plan paths along maps, avoid obstacles, process pointclouds or cameras data to 

extract information, etc… All kind of algorithms required for the navigation of wheeled 

robots is almost directly applicable to autonomous cars. Hence, since those algorithms 

have already been created in ROS, self-driving cars can just make use of them off-the-

shelf. 

Visualization tools already available. ROS has created a suite of graphical tools that 

allow the easy recording and visualization of data captured by the sensors, and 

represent the status of the vehicle in a comprehensive manner. Also, it provides a 

simple way to create additional visualizations required for particular needs. This is 

tremendously useful when developing the control software and trying to debug the code. 

It is relatively simple to start an autonomous car project with ROS onboard.  

The ROS platform could greatly shorten the robot development cycle, and simultaneous 

localisation and mapping (SLAM) could easily be realised using ROS . This is possible 



because ROS already has ready packages for this purpose called gmapping. By using 

this package, ROS-based self-driving car could simply map the environment by using 

LIDAR sensor .  

NEURAL NETWORKS FOR AUTONOMOUS DRIVING 

There are various tasks that can be solved by DNNs( Deep Neural Networks ) that are 

useful for autonomous driving, but the four fundamental tasks are: Classification, 

detection, segmentation and regression. 

Other more advanced tasks like scene understanding or path planning build up on those 

basic four. Classification networks identify and categorize objects. A vision classifier 

network for example categorizes objects in a picture frame. 

Networks with detection tasks  in contrast are able to recognize and mark certain 

objects in a frame. Networks with segmentation tasks  partition pictures into sets of 

pixels (segments) to locate boundaries of objects. For this task special CNNs( 

convolutional neural networks)   with Encoder-Decoder architectures are usable . Finally 

regression tasks are often solved in the last layer of a network to map a continuous 

inputs to continuous outputs. 

There are in general four questions a car needs to be able to answer to achieve the final 

goal of autonomy. 

1) Where am I? →Localization and Mapping 

2) Where is everybody else? →Scene Understanding 

3) How do I get from A to B? →Movement Planning 

4) What are the obstructions? →Detection 

Answering those questions can be realized in two different ways. One way is via 

semantic abstraction where each task is executed in a seperate network and afterwards 

combined with classical control & decision-making algorithms . The other approach is 

called end-to-end, where a single DNN takes all the car’s inputs and computes a final 

control command as output. It is important to notice that some applications cannot be 

assigned to only one specific task. Therefore some of the following applications overlap 

in their topics. 

A. Detection and Classification 

One of the first autonomous driving tasks mastered by DNNs was traffic sign 

recognition. In fact CNNs are since 2012 better than humans on recognizing street 



signs with an accuracy of 99,46% . Related topics like line, traffic light and vehicle 

detection have accuracies on a similar level when applied on state-of-art CNN 

architectures . An example of a state-of-the-art CNN for detection and localization tasks, 

developed  is YOLO Darknet v2. It can detect more than 9000 Objects in real-time at 

40- 70 fps with a mean accuracy of nearly 80%, which makes it capable of detecting 

everything necessary for automotive tasks in a video or an onboard-camera. 

B. Scene Understanding 

Semantic segmentation is a technique used for road scene understanding. and  use a 

special CNN encoder-decoder architecture . After the input image is processed through 

the network a pixel wise classification is computed to identify each pixel to the belonging 

object. It achieves a prediction accuracy of around 88% for cars and 96% for roads. 

Although it struggles with pedestrians, the achieved accuracy of 62% still outperforms 

all other tested algorithmic methods by over 10%. Surround Vehicle Trajectory Analysis 

(SVTA) is using Long Short Term Memory (LSTM) in RNNs ( Recurrent Neural 

NETWORKS ) as well as 3D trajectory cues.  The same problem is faced when future 

predictions want to be made about what other road users are up to do. The sensor 

signals are fed into a RNN-LSTM network to predict the trajectories of surrounding 

vehicles. It is concluded that the system was able to make good predictions for coarse 

labels such as turning versus going straight but predicting a finer activity label space 

with more output options was problematic. 

C. Localization and Mapping 

Using the camera signal to get accurate bounding box locations around pixels of 

detected objects also the distance and relative speed is obtainable by matching with the 

radar signal . Besides 2D, also 3D object detection is possible from  single monocular 

images  that objects recognized by the vehicle’s sensors should be on the ground plane 

(zero height). Chenyi Chen et al used this assumption to estimate car distances . Like 

the SVTA sytsm, the camera and lidar signals of the KITTI dataset served as input. For 

this approach a two CCN system was used. One for close range (2-25m) and one for far 

range (15-55m) object detection due to the low resolution of the input images. For the 

final distance projection the output of both CNNs are combined. 

D. Movement Planning 

Another Application is movement planning on small scales like finding a way around 

obstacles using short range sensors like camera, lidar, sonar and radar and navigation 

on the bigger scale with long range sensors like GPS where finding the fastest or most 

efficient route is important. Huang et al.  developed a framework visual path prediction. 

It consists of two CNNs that separately model the spatial and temporal context.  Drive.ai  



let’s their small fleet of four autonomous Audis even take one further step. Their cars do 

decision making and motion planing on difficult situations like the American four way 

stop, where the first come first serve rule is applied, or even turning on red, which is 

allowed in most intersections.  

 

SEMANTIC ABSTRACTION VERSUS END –TO – END DEEP 

LEARNING  

But in what ways is deep learning specifically applied in self-driving cars? There are two 

main approaches, which both have their own advantages and shortcomings.  

The first one is using semantic abstraction, where the problem of autonomous driving is 

broken down into several components. These are algorithms that are focused only on 

one part of the task. For example, one component could be focused on pedestrian 

detection, another to detecting lane markings and a third one to detecting objects 

beyond the lanes. At the end, these components are “glued together” into a master 

network that makes the driving decisions. On the other hand, a network can be 

constructed that detects and classifies multiple classes or even does semantic 

segmentation.  

The advantages of such a system, is the lower tolerance for mistakes, the ability to 

pinpoint the errors more easily and the capability to manage unpredictable situation 

better. Its shortcomings, however, are also big, since it requires huge pre-work and 

complex programming .  

The second approach is the more “disruptive” end-to-end learning approach. This is 

where the car actually teaches itself how to drive, based on a huge set of human driving 

data. Although this approach also has big shortcomings, such as the requirement of 

having a huge training data set and the difficulty to be trained and tuned properly, it is 

very promising for the future of intelligent vehicles.  

As noted before, an end-to-end learning system especially, requires to be fed a huge 

amount of training data, in order to predict as many driving scenarios as possible and to 

fulfil a minimum safety requirement. 

In this paper our approach is using semantic abstraction, where the problem of 

autonomous driving is broken down into several components. These are algorithms that 

are focused only on one part of the task. At the end, these components are “glued 

together” into a master network that makes the driving decisions. 



 PARALLEL FUNCTIONS IN AUTONOMOUS DRIVING 

Autonomous driving is extremely complex and poses challenging problems and requires 
use of powerful and energy-efficient computer systems that employ several types of 
processor. Central processing units exist alongside graphics controllers and deep 
learning accelerators. Highly automated driving functions are not possible without the 
parallel computing power of modern graphics processors and Graphics processors are 
replacing CPUs in automated vehicles. 

Vehicle's Location  and Environment 

 > 3d image processing with artificial neural networks  

 > Multiprocessor graphics hardware (GPUs) 

Prediction & Decision algorithms  

> artificial neural networks  

 > specialized multiprocessor hardware  

> early, independent hardware validation  

High accuracy,  real-time MAPs  

 > environmental / spatial modeling 

 > simultaneous localization and mapping (SLAM) 

Detect and Avoid Obstacles 

Simultaneous Interpretation of Predetermined Shapes and Motion Descriptors 

Route Planning  

IMAGE CLASSIFICATION USING ARTIFICIAL NEURAL 
NETWOKS  

This is an implementation of one of key tasks of Autonomous Driving. 

This example shows how to build a deep  neural network and also to train, evaluate and 
optimize it with TensorFlow. 

Image classification versus object detection 



 Often people confuse image classification and object detection scenarios. In general, if 
we want to classify an image into a certain category, we use image classification. On 
the other hand, if we aim to identify the location of objects in an image, and count the 
number of instances of an object, we can use object detection. 

With an image classification model, we generate image features (through traditional or 
deep learning methods) of the full image. These features are aggregates of the image. 
With object detection, we do this on a more fine-grained, granular, regional level of the 
image.  

Deep learning is a subfield of machine learning that is a set of algorithms that is inspired 
by the structure and function of the brain. 

TensorFlow is the  machine learning framework that Google created and used to 
design, build, and train deep learning models.  

The following steps will involve in performing deep learning : 

>      We load in data on Belgian traffic signs and explore it with simple statistics and  plotting. 

>     There is a need to change the data in such a way that we can feed it to the  model. That’s                                               

why we’ll  rescale the images and convert them to grayscale. 

      >      Next, we  finally get started on  NN Model and  We’ll build up the model layer per layer; 

      >     Once the architecture is set up, we  use it to train the NN model and to  also evaluate the model                        

by feeding some test data to it. 

We used 62 images of different traffic signs from Belgian Traffic Signs dataset. Let us 
download the Belgian Traffic Signs dataset from https://btsd.ethz.ch/shareddata/. 
We  get the two zip files listed next to "BelgiumTS for Classification (cropped images), 
which are called "BelgiumTSC_Training" and "BelgiumTSC_Testing". We’ll see that the 
testing, as well as the training data folders, contain 61 subfolders, which are the 62 
types of traffic signs that we’ll use for classification . Additionally, we’ll find that the files 
have the file extension .ppm or Portable Pixmap Format.  

Let’s get started with importing the data into our workspace. Let’s start with  the User-

Defined Function (UDF) load_data(): 

We  start with a pretty simple analysis with the help of the ndim and size attributes of 

the images array: Note that the images and labels variables are lists, so we might need 

to use np.array() to convert the variables to an array in our own workspace. Next, we 

can also take a look at the distribution of the traffic signs: We clearly see that not all 

types of traffic signs are equally represented in the dataset. At first sight, we see that 

there are labels that are more heavily present in the dataset than others: example the 



labels 22, 32, 38, and 61 . But when the data mostly consists of images, the step that 

one should take to explore the data is by visualizing it. 

Let’s check out some random traffic signs: 

First, make sure that we import the pyplot module of the matplotlib package under the 

common alias plt. 

Then, we’re going to make a list with 4 random numbers. These will be used to select 

traffic signs from the images array that we have just inspected in the previous section. 

In this case, we go for 300, 2250, 3650 and 4000. 

Next, we’ll say that for every element in the length of that list, so from 0 to 4, we’re going 

to create subplots without axes . In these subplots, we’re going to show a specific image 

from the images array that is in accordance with the number at the index i. In the first 

loop, you’ll pass 300 to images[], in the second round 2250, and so on. Lastly, we’ll 

adjust the subplots so that there’s enough width in between them. As  guessed  the 62 

labels that are included in this dataset, the signs are different from each other. Also  

These four images are not of the same size! 

Let’s start first with extracting some features - we’ll rescale the images, and we’ll 

convert the images that are held in the images array to grayscale. We’ll do this color 

conversion mainly because the color matters less in classification questions . For 

detection, however, the color does play a big part! So in those cases, it’s not needed to 

do that conversion! 

To tackle the differing image sizes, we’re going to rescale the images; We can  do this 
with the help of the skimage or Scikit-Image library, which is a collection of algorithms 
for image processing. 

In this case, the transform module will come in handy, as it offers  a resize() function; 
We’ll see that we make use of list comprehension  to resize each image to 28 by 28 
pixels. Once again,  for every image that we find in the images array, we’ll perform the 
transformation operation that is borrowed from the skimage library. Finally, we store the 
result in the images28 variable: 

We can check the result of the rescaling operation by re-using the code  to plot the 4 
random images with the help of the traffic_signs variable. But don’t forget to change all 
references to images to images28. 

As said in the introduction , the color in the pictures matters less when we’re trying to 
answer a classification question. That’s why we’ll also go through the trouble of 
converting the images to grayscale. 



Just like with the rescaling, we again count on the Scikit-Image library to help  out; In 
this case, it’s the color module with its rgb2gray() function that we need to use to get 
where we need to be. 

However, don’t forget to convert the images28 variable back to an array, as the 
rgb2gray() function does expect an array as an argument. 

Double check the result of grayscale conversion by plotting some of the images;  

 Deep Learning With TensorFlow 

Now that we have explored and manipulated the data, it’s time to construct  neural 
network architecture with the help of the TensorFlow package! 

Modelling The Neural Network 

 It’s time to build up our neural network, layer by layer.  

Import tensorflow into our workspace under the conventional alias tf. Then, we can 

initialize the Graph with the help of Graph(). We use this function to define the 

computation.  

In this case, we set up a default context with the help of as_default(), which returns a 
context manager that makes this specific Graph the default graph. We use this method 
if we want to create multiple graphs in the same process: with this function, you have a 
global default graph to which all operations will be added if we don’t explicitly create a 
new graph. 

Next, we’re ready to add operations to our graph. As it is remembered from working with 
Keras, we build up our model, and then in compiling it, we define a loss function, an 
optimizer, and a metric. This now all happens in one step when we work with 
TensorFlow: 

 First, we define placeholders for inputs and labels because we won’t put in the 
“real” data yet. Remember that placeholders are values that are unassigned 
and that will be initialized by the session when we run it. So when we finally run 
the session, these placeholders will get the values of our dataset that we pass in 
the run() function! 

 Then, we build up the network. We first start by flattening the input with the help 
of the flatten() function, which will give  an array of shape [None, 784] instead of 
the [None, 28, 28], which is the shape of our grayscale images. 

 Activation function :The activation function of a node defines the output given a 
set of inputs. We need an activation function to allow the network to learn non-
linear pattern. A common activation function is a Relu, Rectified linear unit. The 
function gives a zero for all negative values.  



  After we have flattened the input, we construct a fully connected layer that 
generates logits of size [None, 62]. Logits is the function operates on the 
unscaled output of previous layers, and that uses the relative scale to 
understand the units is linear. 

 With the multi-layer perceptron built out we can define the loss function. Loss 
function - after we have defined the hidden layers and the activation function, we 
need to specify the loss function and the optimizer. The loss function is a 
measure of the model's performance. The choice for a loss function depends on 
the task that we have at hand: in this case, you make use of 

sparse_softmax_cross_entropy_with_logits() 

 This computes sparse softmax cross entropy between logits and labels. In other 
words, it measures the probability error in discrete classification tasks in which 
the classes are mutually exclusive. This means that each entry is in exactly one 
class. Here, a traffic sign can only have one single label. Remember that, while 

regression is used to predict continuous values, classification is used to predict 
discrete values or classes of data points. We wrap this function with 
reduce_mean(), which computes the mean of elements across dimensions of a 
tensor. 

  The optimizer will help improve the weights of the network in order to decrease 
the loss. Some of the most popular optimization algorithms used are the 
Stochastic Gradient Descent , ADAM and RMSprop. Depending on whichever 
algorithm we choose, we’ll need to initialize certain parameters, such as learning 
rate or momentum. In this case, we pick the ADAM optimizer, for which we 
define the learning rate at 0.001. 

 Lastly, we initialize the operations to execute before going over to the training. 
 # Import `tensorflow`  

 import tensorflow as tf  

  

 # Initialize placeholders  

 x = tf.placeholder(dtype = tf.float32, shape = [None, 28, 28]) 

 y = tf.placeholder(dtype = tf.int32, shape = [None]) 

  

 # Flatten the input data 

 images_flat = tf.contrib.layers.flatten(x) 

  

 # Fully connected layer & apply relu activation function as tf.nn.relu 

 logits = tf.contrib.layers.fully_connected(images_flat, 62, tf.nn.relu) 

  

 # Define a loss function 

 loss = 

tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels = 

y,  

                                                                     

logits = logits)) 

 # Define an optimizer  

 train_op = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) 



  

 # Convert logits to label indexes 

 correct_pred = tf.argmax(logits, 1) 

  

 # Define an accuracy metric 

 accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) 

 We have now successfully created our first neural network with TensorFlow! 

Now that we have built up our model layer by layer, it’s time to actually run it! To do this, 
we first need to initialize a session with the help of Session() to which we can pass our 
graph that we defined in the previous section. Next, we can run the session with run(), 
to which we pass the initialized operations in the form of the init variable that we also 
defined. 

Next, we can use this initialized session to start epochs or training loops. In this case, 
we pick 201 because we want to be able to register the last loss_value; In the loop, we 
run the session with the training optimizer and the loss (or accuracy) metric that we 
defined in the previous section. We also pass a feed_dict argument, with which we feed 
data to the model. After every 10 epochs, we’ll get a log that gives us more insights into 
the loss or cost of the model. 

As we have seen  on the TensorFlow basics, there is no need to close the session 
manually; this is done for us.  

We have now successfully trained our model. 

We’re not entirely there yet; We still need to evaluate our neural network. In this case, 
we can already try to get a glimpse of how well our model performs by picking 10 
random images and by comparing the predicted labels with the real labels. 

We can first print them out, but using matplotlib to plot the traffic signs themselves and 
to make a visual comparison. 

However, only looking at random images don’t give us many insights into how well our 
model actually performs. That’s why we’ll load in the test data and  Run predictions 
against the full test set. Finally calculate the accuracy. 

CONCLUSION 

Autonomous driving is extremely complex and poses challenging problems, 

 Core software modules running on Autonomous Vehicles are parallel in nature and run 
simultaneously. 

Autonomous vehicles are modelled on artificial neural networks which have a 
phenomena of self – organizing system. 



The two approaches for deep learning in self – driving cars has been discussed. Our 
approach is Semantic Abstraction where the problem of Autonomous Driving is broken 
down into several components. 

Finally, Image Classification in Traffic Signs Dataset using Deep Neural Network with 
TensorFlow has been discussed. 
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