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Abstract— This paper is concerned with the stabilization of 

uncertain discrete-time descriptor models subject to  input 

saturation and external disturbances. The design control 

strategy is based on Takagi-Sugeno (T-S) approach and a non 

parallel distributed compensation (non-PDC) control law. To 

synthesis the fuzzy controller, the stability conditions are 

derived using non-quadratic Lyapunov functions with respect 

to the given saturation constraint on the control input. The 

optimization problem is formulated in terms of linear matrix 

inequalities (LMIs). Numerical examples illustrate the 

efficiency of the proposed approaches. 

 

I. INTRODUCTION 

Recently, Takagi-Sugeno (T-S) models have been widely 
investigated to study nonlinear models [1].  Among nonlinear 
control theory, the T-S model-based approach has attracted 
great interest since it constitutes universal approximation of 
any smooth nonlinear function by a “blending” of some local 
linear system models. This method greatly facilitates 
observer/controller synthesis for complex nonlinear systems 
[2]. Based on this modeling technique, stability conditions 
have been obtained directly from Lyapunov methodology [3, 
4]. For control design, the so-called parallel distributed 
compensation (PDC) has been the most commonly used 
scheme and remain to associate inferred state of output 
feedback to each local subsystem.  Stabilization of T-S 
systems and the control design are investigated via the direct 
Lyapunov method. However, when fuzzy Lyapunov 
functions and parallel distributed compensation function 
(PDC) control are considered, the stabilization conditions are 
generally in terms of bilinear matrix inequalities especially 
for discrete-time T-S fuzzy [13]. To overcome such problem, 
a non-PDC control law can be applied based on non-
quadratic Lyapunov function. Hence, more relaxed 
stabilization condition can be derived [3, 4-5]. The derived 
conditions are formulated into a set of linear matrix 
inequalities (LMI). These LMIs can be solved, when a 
solution exists, by classical convex optimization algorithms. 
In practice, many systems are physically described by 
nonlinear descriptor models. The T-S descriptor model 
representation has also the advantage to decrease the number 
of LMI constraints since it conserves nonlinearities in the 
left-hand side will keeping the original structure of the 
nonlinear model [7, 11-15].      

 
   I. Righi. and S. Aouaouda are with Faculty of Sciences and Technologies 

Univ. Souk Ahras-LEER- BP 1553.Souk-Ahras, 41000. Algeria. {i.righi, 

sabrina.aouaouda@univ-soukahras.dz}.   M. Chadli is with University of 

Picardie Jules Verne, MIS (E.A.4290), 33, rue Saint-Leu, 80039 Amiens, 

France. e-mail: mchadli@u-picardie.fr 

 

      Usually real physical applications suffer from actuator 
saturation and/or sensor saturation. Thus, a great attention has 
been given to the control design of T-S models with input 
saturation constraints [8-9]. Among the most popular works 
dealing with saturated input constraints, the convexity based 
approach to the saturation function (see [9-10] and the 
references therein). The interest of this approach is to 
consider a bounded ellipsoidal symmetric region of stability 
solved by a set of LMIs. Moreover, descriptor design 
approaches has been recently studied in [11] to deal with the 
problem of input saturated T-S systems using a polytopic 
representation of the saturation function. These design 
control approaches are based on state feedback or dynamic 
output feedback with anti-windup (AW) mechanisms.  

In the present paper, stability analysis for uncertain 
discrete-time T-S descriptor models subject to input 
saturation and unknown disturbances is proposed. New LMI 
conditions are derived based on two Lyapunov functions with 
the Finsler’s lemma which allows decoupling the control law 
from the Lyapunov function. The ℒ2-gain performance is 
used to attenuate the extragenous disturbances and the 
derived conditions of asymptotic stability in the presence of 
input saturation are established and solved by means of LMI 
convex optimization.   

This paper is organized as follows: Section II provides 
some useful notation and properties, it also introduces the 
uncertain discrete-time T-S descriptor model; Section III 
presents the LMI-based controller design for discrete-time T-
S descriptor models subject to: uncertainties, input saturation 
and disturbances; Finally in section IV designed examples 
are given to demonstrate the effectiveness of the proposed 
approaches. 

II. NOTATION AND PROBLEM STATEMENT 

Given a set of nonlinear functions ℎ𝑖(. ) ≥ 0, 𝑖 ∈ {1… . 𝑟}  
having the convex sum property, ∑ ℎ𝑖(. ) = 1𝑟𝑖=1 ; a shorthand 
notation will be used in the sequel to represent convex sum of 

matrix expressions:  𝑌ℎ = ∑ ℎ𝑖𝑟𝑖=1 (𝑧(𝑘))𝑌𝑖 and 𝑌𝑣 =∑ 𝑣𝑘𝑟𝑖=1 (𝑧(𝑘))𝑌𝑘 for single convex sum; 𝑌ℎ+ =∑ ℎ𝑙𝑟𝑖=1 (𝑧(𝑘 + 1))𝑌𝑙  for a delayed convex sum; 𝑌ℎ− =(∑ ℎ𝑖𝑧(𝑘)𝑌𝑖𝑟𝑖=1 )−1 for the inverse of a convex sum;  and, 𝑌ℎℎ = ∑ ∑ ℎ𝑖(𝑧(𝑘))ℎ𝑗𝑟𝑗=1𝑟𝑖=1 (𝑧(𝑘))𝑌𝑖𝑗  for a doubled rested 

convex sum. ℋ(𝐴) denotes the Hermitian of the matrixA, i.e. ℋ(A) = A + AT.For a vector 𝑥, 𝑥𝑘 denotes its 𝑘_th entry, 
and  𝑥𝑘+ denotes 𝑥(𝑘 + 1). ℕr Denotes the set {1, 2,⋯ , 𝑟}, I 
denotes the identity matrix.(*) stands for the terms deduced 
by symmetry in symmetric block matrices. 

    The uncertain discrete-time T-S fuzzy model in the 

descriptor form subject to input saturation and external 

disturbances is given by following state equations: 
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 {𝐸𝑣𝑥𝑘+ = (𝐴ℎ + ∆𝐴ℎ)𝑥𝑘 + (𝐵ℎ + ∆𝐵ℎ)𝑠𝑎𝑡(𝑢(𝑘)) + 𝐵𝜔𝜔𝑘𝑦𝑘 = 𝐶𝑥                                                                                 (1)  

    where 𝑥 ∈ ℜ𝑛   is the state vector, 𝑢 ∈ ℜ𝑚    is the control 
input vector, 𝑘 is the current sample. Matrices 𝐴𝑖 and  𝐵𝑖 , 𝑖 ∈ ℕr  represent the i-th linear right-hande side model 
and 𝐸𝑣  , 𝑘 ∈ {1… …𝑟𝑒}, represents the k-th linear left-hand 
side model of T-S descriptor models. In the proposed work 
we suppose that 𝐸𝑣 is regular matrix because it contains the 
inertia matrix which is motivated by mechanical systems 
[12]. The membership functions ℎ𝑖(𝑧(𝑘) ) satisfy the convex 
sum property and depend on the known premise variables.  ∆𝐴𝑖(𝑡) ∈ ℜ𝑛𝑥𝑛 and ∆𝐵𝑖(𝑡) ∈ ℜ𝑛𝑥𝑚 contains the bounded 
uncertain terms which can be rewritten as: ∆𝐴𝑖(𝑡) = 𝐻𝑎𝑖𝔇𝑎𝑖(𝑡)𝑁𝑎𝑖  and  ∆𝐵𝑖(𝑡) = 𝐻𝑏𝑖𝔇𝑏𝑖(𝑡)𝑁𝑏𝑖  with  𝐻𝑎𝑖 , 𝐻𝑏𝑖 , 𝑁𝑎𝑖 , 𝑎𝑛𝑑 𝑁𝑏𝑖   are known constant matrices and, 𝔇𝑎𝑖(𝑡) 𝑎𝑛𝑑  𝔇𝑏𝑖(𝑡) are unknown matrices functions 

bounded as: 𝔇𝜀𝑖𝑇 (𝑡)𝔇𝜀𝜃(𝑡) ≤ 𝐼,  for all index 𝜀 = 𝑎, 𝑏. 
The dead-zone nonlinearity 𝜓(. ):ℜ𝑛𝑢 → ℜ𝑛𝑢   is defined by:                                    

  𝝍(𝒖𝒌) = 𝒖𝒌 − 𝒔𝒂𝒕(𝒖𝒌)                                               (2) 

However the saturation function 𝒔𝒂𝒕:𝕽𝒏𝒖 → 𝕽𝒏𝒖
  is written 

as: {𝑠𝑎𝑡(𝑢𝑘) = [𝑠𝑎𝑡1(𝑢1𝑘)……𝑠𝑎𝑡𝑡(𝑢𝑡𝑘)……𝑠𝑎𝑡𝑛𝑢(𝑢𝑛𝑢𝑘)𝑠𝑎𝑡𝑡(𝑢𝑡𝑘) = 𝑠𝑖𝑔𝑛(𝑢𝑡𝑘)𝑚𝑖𝑛(|𝑢𝑡𝑘|, 𝑢𝑡𝑚𝑎𝑥)                               (3) 

with  𝑢𝑡𝑚𝑎𝑥 > 0 , designate the saturation level.   

Remark 1: In control applications, actuator saturation or 
control input saturation both in magnitude and rate usually 
degrades the performance of the closed-loop system, and 
leads to large overshoot, if the controller is designed without 
considering these kinds of nonlinearity. Recently, in the 
closed loop control system, the nonlinear system, behavior of 
the input saturation has been investigated as a convex 
combination of  2m linear models in [10, 11]. 
 
    In this work, in order to derive relaxed LMI conditions, the 
following lemmas will be introduced to reduce significantly 
the computational complexity. 
 

Relaxation Lemma [14]: Let 𝛵𝑖𝑗𝑘 be matrices of appropriate 

dimensions, then for  𝑖, 𝑗 ∈ {1 … . 𝑟}, 𝑘 ∈ {1… . . 𝑟𝑒}: ∑∑ ∑ ℎ𝑖(𝑧(𝑘))𝑟
𝑘=1

𝑟
𝑗=1

𝑟
𝑖=1 ℎ𝑗(𝑧(𝑘))𝑣𝑘(𝑧(𝑘))  
𝑇𝑖𝑗𝑘  < 0 2𝑟−1 𝑇𝑖𝑖𝑘 + 𝑇𝑖𝑗𝑘 + 𝑇𝑗𝑖𝑘 < 0, 𝑖 ≠ 𝑗                                                   (4)    

Finsler’s Lemma [7]. Let 𝑥 ∈ ℜ𝑛 , 𝜚 = 𝜚𝑇 ∈ ℜ𝑛×𝑛 and 𝑅 ∈ ℜ𝑚×𝑛 such that 𝑟𝑎𝑛𝑘(𝑅) <  𝑛 , the following 
expressions are equivalent: a) 𝑥𝑇𝜚𝑥 < 0    ∀𝑥: {𝑥 ∈ ℜ𝑛  ; 𝑥 ≠ 0, 𝑅𝑥 = 0}. b) ∃ Θ ∈ ℜ𝑚𝑥𝑛:   𝜚 + Θ𝑅 + 𝑅𝑇Θ𝑇 < 0. 

Property 1. Let X = XT > 0  , and Y matrices of the 
appropriate size the following expressions holds: (𝑌 − 𝑋)𝑇𝑋−1(𝑌 − 𝑋) ≥ 0 .⇔ 𝑌𝑇𝑋−1𝑌 ≥ 𝑌 + 𝑌𝑇 – 𝑋 

Lemma 1 [16]: Given matrices 𝐹𝑗𝑘 ∈ ℜ𝑚×𝑛  , 𝐻𝑗𝑘 ∈ℜ𝑛×𝑛  and  𝑊𝑗𝑘 ∈ ℜ𝑚×𝑛 , for  𝑖, 𝑗, 𝑘 ∈ ℕ𝑟 , 𝑙 ∈ ℕ𝑚 , let us 

define the following set: 𝒫𝑢 = {𝑥 ∈ ℜ𝑛: |(𝐺𝑗𝑘𝜒𝑗𝑘−1 − 𝑊𝑗𝑘𝜒𝑗𝑘−1)𝑥𝑘| ≤ 𝑢𝑚𝑎𝑥(𝑙) }         (5) 

If 𝑥 ∈ 𝒫𝑢 , then  𝜓(𝑢𝑘)𝑇𝑆𝑗𝑘−1[ 𝜓(𝑢𝑘) − (𝑊𝑗𝑘𝜒𝑗𝑘−1)𝑥𝑘] ≤ 0 

holds of any positive diagonal matrices 𝑆𝑗𝑘 ∈ ℜ𝑚×𝑚 , and for 

any scalar function  𝜒𝑖𝑗 , 𝑖, 𝑗 ∈ ℕ𝑟 , satisfying the convex sum 

property. 

Assumption 1. The validity domain 𝛺𝑥 of the system (1) is 

defined by: 

          𝛺𝑥 = {𝑥 ∈ ℜ𝑛: 𝒬𝑚𝑇 𝑥 ≤ 1,   𝑚 ∈ ℕ𝑞}                              (6) 

where the vectors 𝒬𝑚 ∈ ℜ𝑛 are corresponding to the state 

constraints of system (1). 

 

III. MAIN RESULTS 

    In this section, the objective is to design a non-PDC 

control law guarantying the desired control performance and 

the stability of the closed loop system, despite the presence 

of input control saturation and external disturbances. 

Accordingly, the proposed non-PDC controller law is given 

as follows: 

  𝑢𝑘 = 𝐺ℎ𝑣𝜒(.)−1𝑥𝑘                                                                  (7) 

 In the following we consider that: Ah + ∆Ah = 𝔸, Bh +∆Bh = 𝔹, Ev = E. The combination of the uncertain T-S 

descriptor model (1) with the control law (7) and the 

definition (2) yields: 

 

 {𝐸𝑥𝑘+ = 𝔸𝑥𝑘 + 𝔹(𝐺ℎ𝑣𝜒(.)−1𝑥𝑘  − 𝜓(𝑢𝑘)) + 𝐵𝜔𝜔𝑘𝑦𝑘 = 𝐶𝑥𝑘                                                                                (8) 

                         

Expression (8) can be rewritten as an equality constraint as: 

[𝔸 + 𝔹𝐺ℎ𝑣𝜒(.)−1 −𝐸 −𝔹 𝐵𝜔] [ 𝑥𝑘𝑥𝑘+𝜓(𝑢𝑘)𝜔𝑘 ] = 0                 (9) 

To derive the stability conditions, two different Lyapunov 
functions will be considered [7]: 

 𝑉(𝑥𝑘) = 𝑥𝑘𝑇𝑃ℎ−1𝑥𝑘  𝑤𝑖𝑡ℎ  𝑃ℎ = 𝑃ℎ𝑇 > 0, 𝑃ℎ−1 = 𝑋ℎ 

 𝑉(𝑥𝑘) = 𝑥𝑘𝑇𝜒ℎ−𝑇𝑃ℎ 𝜒ℎ−1𝑥𝑘 , 𝑤𝑖𝑡ℎ  𝑃ℎ = 𝑃ℎ𝑇 > 0  
A. Case 1 

The variation of the Lyapunov function in case 1 is calculated 
as: 

 𝑉(𝑥𝑘) =  𝑥𝑘+𝑇 𝑋ℎ+𝑥𝑘+ − 𝑥𝑘𝑇𝑋ℎ𝑥𝑘 < 0                               (10)  

By taking into consideration Lemma 1, the inequality (10) 
becames:  𝑥𝑘+𝑇 𝑋ℎ+𝑥𝑘+ − 𝑥𝑘𝑇𝑋ℎ𝑥𝑘 − 2.𝜓(𝑢𝑘)𝑇𝑆ℎ𝑣−1𝜓(𝑢𝑘)+𝜓(𝑢𝑘)𝑇𝑆ℎ𝑣−1𝑊ℎ𝑣𝜒ℎ𝑣−1𝑥𝑘+𝑦𝑘𝑇𝑦𝑘 − 𝛾𝜔𝑘𝑇𝜔𝑘 < 0                  (11)      

where the ℒ2 −norm of the output signal 𝑦𝑘  is bounded as 
follows: 



  

‖𝑦𝑘‖2 ≤ 𝛾||𝜔𝑘||2,    ∀𝑘 ≥ 0.                                            (12) 

Consequently, the inequality (11) can be written as:   

[ 𝑥𝑘𝑥𝑘+𝜓(𝑢𝑘)𝜔𝑘 ]𝑇
[  
 −(𝑋ℎ − 𝐶𝑇𝐶) 0 0 00 𝑋ℎ+ 0 0𝑆ℎ𝑣−1𝑊ℎ𝑣𝐺ℎ𝑣−1 0 −2𝑆ℎ𝑣−1 00 0 0 −𝛾𝐼]  

 [ 𝑥𝑘𝑥𝑘+𝜓(𝑢𝑘)𝜔𝑘 ] < 0(13)  

Via the Finsler’s Lemma, equality (9) and inequality (13) 
results in: 

[  
 −(𝑋ℎ − 𝐶𝑇𝐶) 0 0 00 𝑋ℎ+ 0 0𝑊ℎ𝑣 −𝔹𝑇𝑁𝑇 −2. 𝑆ℎ𝑣𝑇 00 𝐵𝜔𝑇 0 −𝛾𝐼]  

 +
[𝑀𝑁00 ] [𝔸 + 𝔹𝐺ℎ𝑣𝜒(.)−1 −𝐸 −𝔹 𝐵𝜔] + (∗) < 0            (14) 

where matrices 𝑀 ∈ ℜ𝑛𝑥𝑛 and 𝑁 ∈ ℜ𝑛𝑥𝑛are free matrices 
fixed later on. Now let 𝜒(.) = 𝜒ℎ𝑣 , two results can be 

obtained depending on different congruence transformation 
of (14). The first one is stated in the following Lemma: 

Lemma 2. The closed-loop uncertain T-S descriptor model 

(8) is asymptotically stable if there exist matrices 𝑃𝑗 = 𝑃𝑗𝑇 >0, 𝜒𝑗𝑘 , 𝐺𝑗𝑘,𝑊𝑗𝑘 , a matrix 𝒬𝑚 ∈ ℝ𝑛, 𝑚 ∈ ℕ𝑞 and positive 

diagonal matrices 𝑆𝑗𝑘 ∈ ℝ𝑚×𝑚, for 𝑖, 𝑗, 𝑙 ∈ {1… …𝑟}, 𝑘 ∈{1… …𝑟𝑒} , the scalars 𝛾, ∂1, ∂2 such that conditions 4 are 
satisfied with 

𝑇𝑖𝑗𝑙𝑘 = [𝛹𝑖𝑗𝑙𝑘11 (∗)𝛹𝑖𝑗21 −𝛹22]                                                        (15a) 

where 

𝛹𝑖𝑗𝑙𝑘11 =
[  
   
   
 −ℋ(𝜒𝑗𝑘) + 𝑃𝑗 (∗) (∗) (∗) (∗)𝐶𝜒𝑗𝑘 𝐼 (∗) (∗) (∗)
(𝐴𝑖𝜒𝑗𝑘 + 𝐵𝑖𝐺𝑗𝑘+𝜕1𝐻𝑎𝑖𝐻𝑎𝑖𝑇+𝜕2𝐻𝑏𝑖𝐻𝑏𝑖𝑇 ) 0 −ℋ(𝑃𝑙𝐸𝑇) + 𝑃𝑙 (∗) (∗)

𝑊𝑗𝑘 0 ( −𝑆𝑗𝑘 𝑇 𝐵𝑖−𝜕3𝐻𝑏𝑖𝐻𝑏𝑖𝑇 ) −2𝑆𝑗𝑘𝑇 (∗)0 0 𝐵𝜔𝑇 0 −𝛾𝐼]  
   
   
 
 

                                                                                                    (15b) 

𝛹𝑖𝑗21 = [𝑁𝑎𝑖𝜒𝑗𝑘 0 0 0 0𝑁𝑏𝑖𝐺𝑗𝑘 0 0 0 00 0 𝑁𝑏𝑖𝑆𝑗𝑘 0 0]                                        (15c) 

𝛹22 = 𝑑𝑖𝑎𝑔(𝜕1𝐼     𝜕2𝐼    −𝜕2𝐼)                                               (15d) 

and  [ −𝑃𝑗 (∗)𝒬𝑚𝑃𝑗 −1] ≤ 0,𝑚 ∈ ℕ𝑞 , 𝑗 ∈ ℕ𝑟                                    (16) 

[−𝜒𝑗𝑘𝑇 − 𝜒𝑗𝑘 + 𝑃𝑗 (∗)𝐺𝑗𝑘(𝑡) − 𝑊𝑗𝑘(𝑡) −(𝑢𝑡𝑚𝑎𝑥)2] ≤ 0, 𝑡 ∈ ℕ𝑚, 𝑗, 𝑘 ∈ 𝑁𝑟   17) 

 

Proof. From inequality (16) it can be deduced that 𝑥 ∈ 𝛺𝑥. 
Furthermore, if condition (16) is satisfied, then it follows 
clearly that matrices 𝜒𝑗𝑘 , 𝑗, 𝑘 ∈ ℕr, are regular since 𝑃𝑗 > 0. 

Besides, using Schur complement lemma [15] and matrix 
property 1, it can be deduced from (17) that 𝐺𝑗𝑘𝑇 𝑃𝑗𝐺𝑗𝑘 − (𝐺𝑗𝑘(𝑡) − 𝑊𝑗𝑘(𝑡))𝑇(𝐺𝑗𝑘(𝑡 − 𝑊𝑗𝑘(𝑡))(𝑢𝑡𝑚𝑎𝑥)2 ≥ 0                      (18) 
Pre and post-multiplying (2) with 𝜒𝑗𝑘−𝑇 yields: 

 𝑃𝑗 − (𝐺𝑗𝑘(𝑡)𝜒𝑗𝑘−1 − 𝑊𝑗𝑘(𝑡)𝜒𝑗𝑘−1)𝑇(𝐺𝑗𝑘(𝑡)𝜒𝑗𝑘−1 − 𝑊𝑗𝑘(𝑡)𝜒𝑗𝑘−1)(𝑢𝑡𝑚𝑎𝑥)2 ≥ 0   (19) 

Then, it is easily observed that condition (19) implies the 
inclusion 𝛺𝑥 ⊆ 𝒫𝑢. Now, by using the congruence lemma 
property with the full rank matrix 𝑑𝑖𝑎𝑔 (𝜒ℎ𝑣𝑇 𝑃ℎ+ 𝑆ℎ𝑣𝑇 𝐼) , (14) yields:  

[   
 −𝜒ℎ𝑣𝑇 (𝑋ℎ − 𝐶𝑇𝐶)𝜒ℎ𝑣 0 0 00 𝑃ℎ+𝑋ℎ+𝑃ℎ+ 0 0𝑊ℎ𝑣 – 𝑆ℎ𝑣𝑇 𝔹𝑇 −2𝑆ℎ𝑣𝑇 00 𝐵𝜔𝑇 0 −𝛾𝐼]   

 
+ [𝜒ℎ𝑣+ 𝑀𝑃ℎ+𝑁00 ] [𝔸𝜒ℎ𝑣 + 𝔹𝐺ℎ𝑣 −𝐸𝜒ℎ𝑣 −𝔹𝑆ℎ𝑣 𝐵𝜔] + (∗) < 0 (20) 

The main objective is to design a relaxed LMI optimization 
problem. For that a best choice is to consider 𝑀 = 0 and 𝑁 =  𝑋ℎ+ then (20) yields if: 𝜓ℎ𝑣 + 𝛥𝜓ℎ𝑣 < 0                                                              (21a) 

with 

𝜓ℎ𝑣 = [   
 −𝜒ℎ𝑣𝑇 (𝑋ℎ−𝐶𝑇𝐶)𝜒ℎ𝑣 (∗) (∗) (∗)𝐴ℎ𝜒ℎ𝑣 + 𝐵ℎ𝐺ℎ𝑣 −ℋ(𝑃ℎ+𝐸𝑇) + 𝑃ℎ+ (∗) (∗)𝑊ℎ𝑣 – 𝑆ℎ𝑣𝑇 𝐵ℎ𝑇 −2𝑆ℎ𝑣𝑇 (∗)0 𝐵𝜔𝑇 0 −𝛾𝐼]   

 
 

and    𝛥𝜓ℎ𝑣 = [ 0 0 0 0𝛥𝐴ℎ𝜒ℎ𝑣 + 𝛥𝐵𝐺ℎ𝑣 0 0 00 – 𝑆ℎ𝑣𝑇  𝛥𝐵ℎ𝑇 0 00 0 0 0] 

Recall that for any matrices 𝒢,𝒦 and 𝔇(𝑡) of appropriate 

dimension satisfying 𝔇𝑇(𝑡)𝔇(𝑡) ≤ 𝐼 and any positive scalar 𝜕, the following holds 𝒢𝔇(𝑡)𝒦𝑇 + 𝒦𝔇𝑇(𝑡)𝒢𝑇 ≤ 𝜕𝒢𝒢𝑇 + 𝜕−1𝒦𝒦𝑇                (21b) 

Now, using uncertainties definitions, and by means of the 
previous inequality (21b), it can be stated that:   

𝛥𝜓ℎ𝑣 < [  
  0 0 0 0𝛥21 0 0 00 (−𝜕3−1𝑆ℎ𝑣𝑇  𝑁𝑏ℎ𝑇 𝑁𝑏ℎ𝑆ℎ𝑣−𝜕3𝐻𝑏ℎ𝐻𝑏ℎ𝑇 ) 0 00 0 0 0]  

  
            (21c) 

with 𝛥21 = (𝜕1−1𝜒ℎ𝑣𝑇 𝑁𝑎ℎ𝑇 𝑁𝑎ℎ𝜒ℎ𝑣 + 𝜕2−1𝐺ℎ𝑣𝑇 𝑁𝑏ℎ𝑇 𝑁𝑏ℎ𝐺ℎ𝑣+𝜕1𝐻𝑎ℎ𝐻𝑎ℎ𝑇 + 𝜕2𝐻𝑏ℎ𝐻𝑏ℎ𝑇 ) 



  

Finally, applying property1, the relaxation lemma and Schur 
complement lemma to (21a) by considering (21c), conditions 
(15) holds. This ends the proof. 

Remark 2. A more general result can be reached by 

multiplying by 𝑑𝑖𝑎𝑔 (𝜒ℎ𝑣𝑇 𝐺ℎℎℎ+𝑇 𝑆ℎ𝑣𝑇 𝐼), on the left hand 

side and by its transpose, on the right hand side of (14), 
gives: 

[   
 −𝜒ℎ𝑣𝑇 (𝑋ℎ − 𝐶𝑇𝐶)𝜒ℎ𝑣 0 0 00 𝐺ℎℎℎ+𝑇 𝑋ℎ+𝐺ℎℎℎ+ 0 0𝑊ℎ𝑣 – 𝑆ℎ𝑣𝑇 𝐵𝑇 −2𝑆ℎ𝑣𝑇 00 𝐵𝜔𝑇 0 −𝛾𝐼]   

 +
[ 𝜒ℎ𝑣+ 𝑀𝐺ℎℎℎ+ 𝑁00 ] [𝐴𝜒ℎ𝑣 + 𝐵𝐺ℎ𝑣 −𝐸𝐺ℎℎℎ+ −𝐵ℎ𝑆ℎ𝑣 𝐵𝜔] + (∗) < 0 (22) 

Note that a new matrix 𝐺ℎℎℎ+𝑇  is introduced, thus adding extra 
degree of freedom to the inequality. Therefore, the following 
theorem can be stated: 

Theorem 1. Given the uncertain T-S descriptor system (1) 

whose validity domain is characterized by a matrix 𝒬𝑚 ∈ℜ𝑛 , 𝑚 ∈ ℕ𝑞. If there exist positive definite matrices 𝑃𝑗 ∈ℜ𝑛×𝑛, positive diagonal matrices  𝑆𝑗𝑘 ∈ ℜ𝑚×𝑚, and 

matrices 𝜒𝑗𝑘 ∈ ℜ𝑛×𝑛, 𝐺𝑗𝑘 ∈ ℜ𝑚×𝑛 ,𝑊𝑗𝑘 ∈ ℜ𝑚×𝑛, 𝑖, 𝑗, 𝑘 ∈ ℕr, 

and the scalars 𝛾, ∂1, ∂2, such that conditions 4 are satisfied 

with: 𝑇𝑖𝑗𝑙𝑘 = [𝜙𝑖𝑗𝑙𝑘11 (∗)𝛹𝑖𝑗21 −𝛹22]                                                          (23) 

with 
    𝜙𝑖𝑗𝑙𝑘11 =

[  
   
   
  −ℋ(𝜒𝑗𝑘) + 𝑃𝑗 (∗) (∗) (∗) (∗) (∗)𝐶𝜒𝑗𝑘 𝐼 (∗) (∗) (∗) (∗)
(𝐴𝑖𝜒𝑗𝑘 + 𝐵𝑖𝐺𝑗𝑘+𝜕1𝐻𝑎𝑖𝐻𝑎𝑖𝑇+𝜕2𝐻𝑏𝑖𝐻𝑏𝑖𝑇 ) 0 −ℋ(𝐺𝑖𝑗𝑙𝑇𝐸𝑇) (∗) (∗) (∗)0 0 𝐺𝑖𝑗𝑙 −𝑃𝑙 (∗) (∗)𝑊𝑗𝑘 0 ( −𝑆𝑗𝑘 𝑇 𝐵𝑖−𝜕3𝐻𝑏𝑖𝐻𝑏𝑖𝑇 ) 0 −2𝑆𝑗𝑘𝑇 (∗)0 0 𝐵𝜔𝑇 0 0 −𝛾𝐼]  

   
   
  
                                                                                            

                                                                                       (24) 

 

   𝛹𝑖𝑗21 and  𝛹22  are given by (15c) and (15d) respectively.                                                     

and [ 𝑃𝑗 (∗)𝒬𝑚𝑃𝑗 1 ] ≥ 0,𝑚 ∈ ℕ𝑞 , 𝑗 ∈ ℕ𝑟                                        (25)   

                 [−𝜒𝑗𝑘𝑇 − 𝜒𝑗𝑘 + 𝑃𝑗 (∗)𝐺𝑗𝑘(𝑡) − 𝑊𝑗𝑘(𝑡) −(𝑢𝑡𝑚𝑎𝑥)2] ≤ 0, 𝑡 ∈ ℕ𝑚, 𝑗, 𝑘 ∈ 𝑁𝑟  (26)                                                           

 

Proof. The result of Theorem 1 is derived from the proof of 

Lemma 2 by choosing 𝑀 = 0 and 𝑁 = 𝐺ℎℎℎ+−𝑇 . Thus, this 

proof is omitted here for brevity.  

.  

B. Case 2 

 Consider 𝜒(.) = 𝜒ℎ in (7). Then the variation of the 

Lyapunov function in case 2 is calculated as: 

 ∆𝑉(𝑥𝑘) = 𝑥𝑘+𝑇 𝜒ℎ+−𝑇𝑃ℎ+ 𝜒ℎ+−1𝑥𝑘+−𝑥𝑘𝑇𝜒ℎ−𝑇𝑃ℎ 𝜒ℎ−1𝑥𝑘  <  0    (27) 

 

By considering lemma1, the inequality (27) becames: 

 ∆𝑉(𝑥𝑘) − 2𝜓(𝑢𝑘)𝑇𝑆ℎ𝑣−1𝜓 + 𝜓(𝑢𝑘)𝑇𝑆ℎ𝑣−1𝑊ℎ𝑣  𝜒ℎ−1𝑥𝑘+𝑦𝑘𝑇 −𝛾𝜔𝑘𝑇𝜔𝑘 < 0                                                                        (28) 

By developing inequality (28), with respect to                          
the Finsler’s Lemma, and expressions (9) one can obtain:  

[   
 −𝜒ℎ−𝑇(𝑃ℎ  − 𝐶𝑇𝐶)𝜒ℎ−1 0 0 00 𝜒ℎ+−𝑇𝑃ℎ+ 𝜒ℎ+−1 0 0𝑆ℎ𝑣−1𝑊ℎ𝑣  𝜒ℎ−1 −𝑆ℎ𝑣𝑇 𝔹𝑇 −2𝑆ℎ𝑣−1 00 𝐵𝜔𝑇 0 −𝛾𝐼]   

 +    
[𝑀𝑁00 ] [𝔸 + 𝔹𝐺ℎ𝑣𝜒(.)−1 −𝐸 −𝔹 𝐵𝜔] + (∗) < 0           (29) 

 

Now, using the property of congruence with 𝑑𝑖𝑎𝑔 (−𝜒ℎ𝑇 𝜒ℎ+𝑇 𝑆ℎ𝑣𝑇 𝐼),  (29) yields: 

 

[   
 −(𝑃ℎ − 𝐶𝑇𝐶) 0 0 00 𝑃ℎ+ 0 0𝑆ℎ𝑣−1𝑊ℎ𝑣 𝐻ℎ−1 −𝑆ℎ𝑣𝑇 𝔹𝑇 −2𝑆ℎ𝑣−1 00 𝐵𝜔𝑇 0 −𝛾𝐼]   

 +                          (30) 
  [𝐻ℎ𝑇𝑀𝐻ℎ+𝑇 𝑁00 ] [𝔸𝜒ℎ + 𝔹𝐹ℎ𝑣 −𝐸𝜒ℎ+ −𝔹𝑆ℎ𝑣 𝐵𝜔] + (∗) < 0     

  Accordingly, with respect to the same development of 
lemma 2 LMI conditions, the following theorem is obtained 
and provides conditions which allow the synthesis of the 
stabilization non-PDC controller satisfying the system 
performance described in the previous section. 

Theorem 2. Given the uncertain T-S descriptor system (1) 

whose validity domain is characterized by a matrix 𝒬𝑚 ∈ℜ𝑛 , 𝑚 ∈ ℕ𝑞. If there exist positive definite matrices 𝑃𝑗 ∈ℜ𝑛×𝑛, positive diagonal matrices 𝑆𝑗𝑘 ∈ ℜ𝑚×𝑚, and 

matrices 𝜒𝑗 ∈ ℜ𝑛×𝑛, 𝐺𝑗𝑘 ∈ ℝ𝑚×𝑛,𝑊𝑗𝑘 ∈ ℜ𝑚×𝑛, 𝑖, 𝑗, 𝑘 ∈ ℕr, 
and positive scalar 𝛾, ∂1, ∂2,such  that conditions 4 are 

satisfied with: 

 𝑇𝑖𝑗𝑙𝑘 = [𝜙𝑖𝑗𝑙𝑘11 (∗)𝛹𝑖𝑗21 −𝛹22]                                                          (31) 

with 



  

𝛹𝑖𝑗𝑙𝑘11

=
[  
   
   
 −𝑃𝑗 (∗) (∗) (∗) (∗)𝐶𝜒𝑗 𝐼 (∗) (∗) (∗)
(𝐴𝑖𝜒𝑗 + 𝐵𝑖𝐺𝑗𝑘+𝜕1𝐻𝑎𝑖𝐻𝑎𝑖𝑇+𝜕2𝐻𝑏𝑖𝐻𝑏𝑖𝑇 ) 0 −ℋ(𝜒𝑙𝑇𝐸𝑇) + 𝑃𝑙 (∗) (∗)

𝑊𝑗𝑘 0 ( −𝑆𝑗𝑘 𝑇 𝐵𝑖−𝜕3𝐻𝑏𝑖𝐻𝑏𝑖𝑇 ) −2𝑆𝑗𝑘𝑇 (∗)0 0 𝐵𝜔𝑇 0 −𝛾𝐼]  
   
   
 
 

   𝛹𝑖𝑗21 and  𝛹22  are given by (15c) and (15d) respectively.                                                     

and [ −𝑃𝑗 (∗)𝒬𝑚𝑃𝑗 −1] ≤ 0,𝑚 ∈ ℕ𝑞 , 𝑗 ∈ ℕ𝑟                                    (32) 

[−𝜒𝑗𝑘𝑇 − 𝜒𝑗𝑘 + 𝑃𝑗 (∗)𝐺𝑗𝑘(𝑡) − 𝑊𝑗𝑘(𝑡) −(𝑢𝑡𝑚𝑎𝑥)2] ≤ 0, 𝑡 ∈ ℕ𝑚, 𝑗, 𝑘 ∈ 𝑁𝑟  (33) 

 

Proof.  The result of Theorem 2 is derived from the proof of 

Lemma 2 by choosing 𝑀 = 0 and  𝑁 = 𝜒ℎ+−𝑇 = 𝑃ℎ+. Thus, 

this proof is omitted here for brevity.  

 

IV. ILLUSTRATIVE EXAMPLES 

In this section, the proposed solutions are illustrated via the 

following two numerical examples.  

 

Example 1. Consider the uncertain T-S descriptor model 

(1), with: 𝑟 = 𝑟𝑒 = 2  and  a = -1.7 ;  𝑏 = −0.4; 𝑐 = 0.2172. 

 𝐴1 = [ 0 0.5−1.5 −3 + (𝑏2) ∗ (1 − 𝑐)],  𝐵1 = [ 0𝑎2 − 2], 𝐴2 = [ 0 0.5−1.5 −3 + 𝑏 ∗ (1 − 𝑐)], 𝐵2 = [ 1𝑎2 − 2] 𝐸1 = [ 1 0−1 0.5] ,  𝐸2 = [1 −11 0.5]  ,  𝐵𝑤 = [0.050 ]  and C = [0  1]. 𝐻𝑎1 = 𝐻𝑎2 = [1 01 1]  ; 𝑁𝑎1 = [0 0.50 (𝑏2) ∗ (1 + 𝑐)] 𝑁𝑎2 = [0 0.50 𝑏 ∗ (1 + 𝑐)], Δ𝑎1 = Δ𝑎2 = 0.3 ∗ cos(2 ∗ t). 

 𝐻𝑏1 = 𝐻𝑏2 = [0 1]  ;   Δ𝑏1 = Δ𝑏2 = 0.2 ∗ sin (3 ∗ 𝑡) N𝑏1 = N𝑏2 = 12 ∗ 𝑎 . The membership functions are defined 

as follows: 𝑣1𝑘 = 𝑐𝑜𝑠 (𝑥2𝑘)2 + 24 , 𝑣2𝑘 = 1 − 𝑣1𝑘 ,ℎ1𝑘  = 𝑠𝑖𝑛 (𝑥1𝑘)24  , ℎ2𝑘 = 1 − ℎ1𝑘 

The MFs satisfy the convex-sum property on the compact set  ∆ = {𝑥𝑘: |𝑥1𝑘| ≤ 2, |𝑥2𝑘| ≤ 2}, and 𝑢𝑚𝑎𝑥 = 0.05. The 

uncertain T-S descriptor system (1) is subject to amplitude-

bounded disturbance  𝜔(𝑡) defined by  𝜔(𝑡) = 0.1 ∗sin(10 ∗ 𝑡). For this model, only the conditions of 

Theorem1 are feasible, i.e., conditions in Theorem 2 are 

unfeasible. Solving the optimization LMI problem defined 

by Theorem 1 leads to: 𝑃1 = [ 0.64 −0.26−0.26 3.09 ] , 𝑃2 = [0.69 0.360.36 4.76] 𝐻11 = 𝐻12 = [2.15 6.893.24 3.87], 𝐻21 = 𝐻22 = [ 4.41 −3.06−4.13 3.13 ], 𝐹1 = 𝐹2 = [−1.70 −3.45], 𝐹3 = 𝐹4 = [0.24 −0.79]. 
 𝛾 = 1.42 and  𝜕1 = 𝜕2 = 1. Simulation results were 

obtained with initial conditions 𝑥(0)   =  [0.5 −  0.25]𝑇 are 

shown in Figure 1 and 2. The obtained results illustrate the 

effectiveness of the proposed approach for the studied 

example. 

 
 

Figure 1.   Closed loop responses in the presence of 

input saturation and disturbances. 

 

 
Figure 2. Control input. 

 

Example 2. Consider an uncertain discrete-time T-S 

descriptor model as in (1) with r = re = 2, a = -1.7,  𝑏 = −0.4, 𝑐 = 0.2172  and A1 = [ 1 2−1.5 −3 + b ∗ (1 + c)] , A2 = [ 1 1−1.5 −3 + b]    B1 = [ 1−2],   B2 = [ 1−2] , E1 = [ 1 1−1 0] , E2 = [ 1 1−1 1].   Bw = [ 0.10.05], 𝐶 = [0  1]. 𝐻𝑎1 = 𝐻𝑎2 = [1 0.51 1 ],  𝑁𝑎1 = 𝑁𝑎2 = [0 0.51 1.75], Δ𝑎1 = Δ𝑎2 = 0.8 ∗ cos (3 ∗ 𝑡) 𝐻𝑏1 = 𝐻𝑏2 = [0 1],  Δ𝑏1 = Δ𝑏2 = 0.25 ∗ sin (2 ∗ 𝑡) 
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N𝑏1 = N𝑏2 = 12 ∗ 𝑎.  The MFs are defined the same as in 

Example 1 and satisfy the convex-sum property on the 

compact set ∆ = {𝑥𝑘: |𝑥1𝑘| ≤ 1, |𝑥2𝑘| ≤ 1}, and 𝑢𝑚𝑎𝑥 =0.05. For this system LMI conditions in Theorem 1 are 

unfeasible, while applying LMI Theorem 2 gives the 

following gain matrices: 𝑃1  = [ 6.73 −0.44−0.44 0.29 ], 𝑃2  = [0.89 1.601.60 0.62] 𝐻1  = [ 0.98 −0.53−0.47 0.77 ],𝐻2  = [ 0.91 0.79−0.32 0.77], 𝐹1 = 𝐹2 = [−0.74 −0.55], 𝐹3 = 𝐹4 = [−0.20 −0.44]. Simulation results with initial 

conditions 𝑥(0)   =  [0.7  −  0.25]𝑇 are depicted in Figure 3 

and 4. 

 

 
Figure 3. Uncertain system responses in the presence of 

input saturation and disturbances 
 

 
Figure 4. Control inputs. 

 

        The result demonstrated that, despite the saturation 

limits the designed controller guarantees the closed loop 

system convergence to the zero with a good perturbation 

reject. 

V. CONCLUSION 

   In this paper, a non quadratic Lyapunov functions is used 

to obtain sufficient conditions of asymptotic stability for 

nonlinear uncertain discrete-time systems represented by T-

S descriptor models subject input saturation and external 

disturbances. The main advantage of the proposed 

approaches is to synthesize the control law by considering 

the saturation limits while achieving a guaranteed ℒ2-gain 

performance. A non PDC control law is used to achieve this 

objective. The controller gains are then obtained by solving 

an optimization problem under LMI constraints. Through 

two numerical examples the efficiency of the proposed 

techniques has been demonstrated. 

REFERENCES 

 
[1] K.Tanaka, T. Ikeda. and H.O.Wang, ”Fuzzy regulators and fuzzy 

observers : relaxed stability conditions and LMI-based designs,” IEEE 
Transactions on Fuzzy Systems, vol.6,pp:250-265,1998.  

[2] K.Tanaka and H.O.Wang “Fuzzy Control system, design and 
Analysis: a Linear Matrix Inequality Approach,” Wiley-Interscience, 
2001.  

[3] M. Johansson, A. Rantzer, and K.E. Arzen, “Piecewise quadratic 
stability of fuzzy systems”,  IEEE Transactions on Fuzzy Systems, vol. 
7 (6), pp. 713-722, 1999.   

[4] T.M. Guerra and L.Vermeiren., “LMI based relax non-quadratic 
stabilization for non-linear systems in the Takagi-Sugeno’s form”, 
Automatica, vol.40(5),pp.823-829, May 2004. 

[5] T.M.Guerra, M. Bernal, K. Guelton, and S.Labiod, “Non-quadratic 
local stabilization for continous-time Takagi-Sugeno models”, Fuzzy 
Sets and Systems, 2012. 

[6] T.Taniguchi, K.Tanaka and H.O.Wang, “ Fuzzy Descriptor system 
and nonlinear model following Control,” IEEE transactions on Fuzzy 
Systems, vol.8(4),pp.442-452, 2000. 

[7] V.E.Manzo, Z..Lendek,T.Guerra, and P.Pudlo, “Control design for 
discret-time descriptor models: a systematic LMI approach”, IEEE 
Trans.On Fuzzy Systems, Early Access Online, 2015. 

[8] A-T.Nguyen, M.Damrine,J.Lauber, “Simulataneous design parallel 
distributed output feedback and anti-windup compensators for 
constrained Takagi-Sugeno fuzzy systems,” Asian.J. Control, 
vol.18,pp.1641-1654, 2006. 

[9] A. Benzaouia,A. El hajjaji, and R.Oudah. “Fault tolerant saturated 
control for T-S fuzzy discrete-system with delay,” Nonlinear 
analysis:Hybrid systems, vol.18, pp.60-71, 2015.  

[10] D.Saifia, M.Chadli, S. Labiod, and T.M.Guerra, “Robust H∞ static 
output feedback stabilization of T-S fuzzy system subject t actuator 
saturatio,” Inter.J.Conf,Automation and System, vol.10(3), pp.613-
622, 2012.    

[11] S. Bezzaoucha, B. Marks, D. Maquin,  & J. Ragot, “Stabilization and 
output feedback control for Takagi-Sugeno with saturated actuators”. 
Inter.J.Adaptive control and signal Processing. vol.30, pp.888-905, 
2016. 

[12] T.M. Guerra, V. Estrada-Manzo, and Z. Lendek, “Observer design for 
Takagi-Sugeno descriptor models: An LMI approach” Automatica, 
vol.52,pp.154-159, 2015. 

[13] K. Guelton, S. Delprat, and T.M. Guerra, “An Alternative to inverse 
dynamics joint torques estimation in human stance based on a Takagi-
Sugeno unknow-inputs observer in the descriptor form,” Control 
Engineering Practice, vol.16(12),pp.1414-1426,2008. 

[14] S. Aouaouda, M. Chadli, M. Boukhnifer, H.R. Karimi, “Robuste fault 
tracking controller design for vehicle dynamics: A descriptor 
appraoch”, Mechatronics, vol. 30, pp. 316-326, 2015. 

[15] M.Chadli and M. Darouach, “Novel bounded real lemma for discrete-
time descriptor systems: Application to control-design,” Automatica, 
vol.48, no.2, pp.449-453,Feb.2012. 

[16] Q.V. Dang, L.Vermeiren, A. Dequidt, M. Dambrine, “Robust 
stabilizing controller design for Takagi-Sugeno fuzzy descriptor 
systems under state constraints and actuator saturation,” Fuzzy Sets 
and Systems, vol. 329, pp. 77-90, 2017. 

 

0 2 4 6 8 10 12 14 16 18 20
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K samples

 

 

x
1

Disturbance w

x
2

0 2 4 6 8 10 12 14 16 18 20
-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

K samples

 

 

control u

minimal saturation level u
min

saturated control u
sat


	I. INTRODUCTION
	II. Notation and Problem Statement
	𝝍,,𝒖-𝒌..=,𝒖-𝒌.−𝒔𝒂𝒕,,𝒖-𝒌..                                               (2)
	However the saturation function 𝒔𝒂𝒕:,𝕽-,𝒏-𝒖..→,𝕽-,𝒏-𝒖..  is written as:
	III. Main Results
	A. Case 1
	B. Case 2
	Consider ,𝜒-(.).=,𝜒-ℎ. in (7). Then the variation of the Lyapunov function in case 2 is calculated as:

	IV. Illustrative Examples
	V. Conclusion
	References

