
EasyChair Preprint
№ 4707

Data Transformation: An Overview

Deni Daja

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 7, 2020

Data Transformation: An Overview

Deni Daja

December 4, 2020

Abstract

With the accelerated need for scalability and reliability in todays growing systems, most
modern services are shifting towards a microservice-based approach as opposed to a monolithic
approach. While the benefits of this new paradigm are undeniable, we also have to be aware
of a new set of challenges that microservices bring. To support the need for microservice
deployment in scale, data centers and their internal network (DCN) are usually the preferred
approach. This network can become especially a bottleneck in microservices deployed in a
data center, as their communication needs to be as real-time as possible. In order to improve
network latency, data transformation capabilities are needed to convert messages back and
forth between microservices from their internal formats. This paper discusses the current
approaches on data transformation, the bottlenecks that come with current solutions and then
explore a new paradigm for Data Transformation, namely Optimus Prime, that introduces a
new approach on Data Transformation by using a new transformation schema and a hardware
accelerator for optimal optimal cross-microservice communication.

Contents

1 Introduction of the Research Field 2

2 Basics 3
2.1 General Terms . 3
2.2 OS Concepts . 3

3 Previous and Related Work 4
3.1 Popular Data Transformation Frameworks . 4
3.2 New Paradigms on Data Transformation . 5

4 Optimus Prime’s Approach 5
4.1 Motivation . 5
4.2 The Current Bottleneck . 5
4.3 Software Component: Schema Abstraction . 6
4.4 DTA General Architecture . 6
4.5 Optimus Prime Implementation . 7
4.6 Optimizations . 8

5 Evaluation 8
5.1 Evaluation Basis . 8
5.2 Single Pipeline Results . 9
5.3 Multi Pipeline Results . 9

6 Discussion 10

7 Conclusion 10

1

2 1 INTRODUCTION OF THE RESEARCH FIELD

1 Introduction of the Research Field

A microservice architecture is a style of building applications that functionally decomposes an ap-
plication into a set of services. Each of these services might be written in a different programming
language and can be deployed, scaled and maintained independently. This architectural style is
undeniably a perfect candidate for tackling issues that come with the ever-increasing demands on
scalability, fast iterations, agility, reliability and cross-functional teams. But every silver lining has
a cloud, the microservice approach brings a whole new set of problems to the table for engineers.
Managing a growing number of services, monitoring, tracing, testing and handling cyclic depen-
dencies are only a set of problems that need to be handled. Another critical concern is raised by
the question: How will the services communicate?

In a monolithic paradigm, network is not an issue to be handled. On the other hand, in mi-
croservices, network and the accompanying latency might become a huge pain point for companies
that aim to provide the best service to their customers. For this reason, an ever-growing approach
is to deploy every service in the same Data Center. The Data Center Network (DCN) has tremen-
dous bandwidth capabilities, reaching up to 100Gbps and currently underway to support up to
1Tbps [AGM+10, inf18, eth18]. This means that the services deployed in a Data Center have the
potential to communicate in a lightning-fast manner, of course, if they are able to capitalise and
make use of this tremendous bandwidth.

Unfortunately, this is not the case. While microservice communication in a data center is indeed
fast, it is still far away from the real potential offered. And because networks and protocols have
already been refined to a point of almost no further possible improvements, the only remaining
candidate to be improved is the server-side itself, and more precisely, the data transformation
protocol between each machine before they send the data via the network.

As it stands, there are currently several ways that services use to communicate with each
other, with the most prevalent methods being REST and gRPC. REST uses string-based serial-
ization or message format, while gRPC uses binary-based serialization, also called protocol-buffer
or Protobuf. As string-based serialization usually comes with performance bottlenecks (text en-
code/decode, complex parse code, more bandwidth consumption) - gRPC is a better candidate
for achieving higher transfer rates between microservices. A typical RPC communication process
is also illustrated on Figure 1.

But apparently, even the most optimized data transformation frameworks like Protobuf do
not give us the desired communication speed that a data center network can handle. Given the
improvements of networks and protocol, the next step to look for improvements is obviously the
Data Transformation frameworks and see why they are currently failing to achieve higher rates,
and how can these barriers be broken.

Today’s research has been showing that the issue with the current data transformation frame-
works is mostly the fact that the current frameworks delegate the transformation process to the
CPU, which has inherent limitations related to implicit instruction-level parallelization and high
instruction count per serialized field. New approaches like Optimus Prime [PGK+20], Intel Data
Streaming Accelerator [Cor19] and even new CPU ISA [isa16] instructions are bringing a new
paradigm to the table, which integrate new hardware-related methods that are specialized in
transforming data in parallel and acheiving maximal rates. In this paper, we will take a closer
look at Optimus Prime and its innovative approach to Data Transformation.

3

Figure 1: RPC communication protocol

2 Basics

The upcoming topic of hardware-accelerated data transformation touches on several critical con-
cepts that need to be understood before diving deeper.

2.1 General Terms

A Data center is a pool of resources (computational, storage, network) interconnected using
a communication network. This network, called Data Center Network (DCN) , holds a pivotal
role in a data center as it interconnects all of the data center resources together. DCNs need to
be scalable and efficient to connect tens or even hundreds of thousands of servers to handle the
growing demands of Cloud Computing [dat20a].

Data Transformation is the process of changing the format, structure, or values of data
[dat20b]. Because code written in microservices is often in different languages with their own data
formats, data transformation is needed to convert to and from the desired format. This process is
often called serialization.

Accelerators in general have the goal to help in boosting the overall performance of a com-
puter. Hardware accelerators are used to enhance the speed and performance of the computer as
it works by performing functions faster than the central processing unit (CPU). So basically, a
hardware accelerator, is an optimized and specialized hardware device that intends to perform a
specific action faster than the CPU.

Network terms like network speed, bandwidth and throughput will be used in the upcom-
ing evaluations. Network speed measures the transfer rate of data from a source system to a
destination system, while network bandwidth is the amount of data that can be transferred per
second. Combine the two, and you have what is known as network throughput - which is the main
evaluation criteria used in this paper.

2.2 OS Concepts

A clock cycle indicates a single tick of the internal system clock. Cycles per second are also
called Hertz. Some instructions on a CPU take multiple cycles to execute, and optimization means
in most cases multiple instructions are executed in a single cycle.

ISA (Instruction Set Architecture) is the list of commands that are hard-wired in to the
CPU. It is part the processor that the programmer or compiler writer leverages to run programs.

Speculative execution is an optimization technique where a computer system performs
some task that may not be needed to improve concurrency [spe20].

A data buffer (or just buffer) is a region of a physical memory storage used to temporarily
store data while it is being moved from one place to another.

Time-sharing is the sharing of a computing resource among many users at the same time by
means of multiprogramming and multi-tasking [tim20].

4 3 PREVIOUS AND RELATED WORK

Virtual Memory is a memory management technique that provides an idealized abstraction
of the storage resources that are actually available on a given machine which creates the illusion
to users of a very large (main) memory [vir20].

3 Previous and Related Work

When talking about data transformation performance, a number of papers have compared the
different existing approaches, mostly focusing on the string-based and binary-based protocols like
XML, JSON, Apache Thrift and Protobuf. Newer approaches that support data transformation
on a hardware level like Optimus Prime are quickly gaining attraction, but not much related work
is available given that it is a relatively new plane of research and development. Nevertheless, some
upcoming projects for transformations accelerated by hardware will be discussed.

3.1 Popular Data Transformation Frameworks

The usual discussions on data transformation mention some of the technologies that have been
circulating for a considerable amount of time. The common factor among these methods is that
they all leverage the CPU and ISAs to perform the transformations. Let’s have a quick overview
of these protocols.

The first line of solutions that leverage the CPU for transformations are string-based serial-
ization protocols like XML and JSON . These two frameworks are the most common modern
data serialization formats. XML came prior to JSON but it is not the protocol of choice when it
comes to serialization. The reason for this being that XML is extremely verbose and heavyweight.
This makes JSON a more preferred approach to modern string-based serialization. With that
being said, these two formats still have several advantages, with ease of use on the developer’s
side and human-readability being the most attractive feature. One of the main disadvantages that
they possess are the fact that they are text-based, meaning they will always need to be parsed
character by character, thus imposing a limit on deserialization speed. For this reason, binary
serialization protocols were implemented.

The next solutions that make use of ISAs are the binary-based serialization frameworks
like Protobuf and Thrift . These binary formats are not subject to the disadvantage of parsing
as the JSON and XML formats. They make use of ‘positional binding’ and shared files that are
described as schemas between server/client that define the message format and greatly decrease
the size of data being transmitted. So in general, Protobuf is a simpler, faster and smaller protocol
for data transfer.

In a strict comparison between these formats, the binary serialization protocols have an ex-
pected lead in transmission time. In an experiment performed in [SM12], Protobuf and Thrift
scored almost 10x faster times for serialization than XML and 2x faster times than JSON. The
deserialization experiment led to even greater differences between the protocols, with Protobuf
and Thrift achieving 20x faster times than XML and x5 times faster than JSON.

What we can deduce from this is that binary protocols are clearly faster. But with that being
said, unfortunately, they still are the biggest overhead that block microservices from communicat-
ing with the potential speed that modern NICs offer. To tackle this issue, a new outlook currently
being explored is hardware-accelerated data transformation frameworks and protocols. In the next
section we will have a deeper look into this new paradigm shift.

3.2 New Paradigms on Data Transformation 5

3.2 New Paradigms on Data Transformation

Hardware-assisted Data Transformation is a new and innovative approach that is beginning to
emerge. As this remains a relatively new topic, not much related work is present, but let’s quickly
go over some promising solutions that already exist or are on the pipeline.

ISA Extensions for DT. The CPU vendors are the first ones that have realized the issues of
using current ISAs to express data transformations in an explicitly parallel form. For this reason,
Intel has already been granted a patent for ISA extensions to x86-64 which provide dedicated
support for specific DT operations [isa16].

Intel Integrated Data Streaming Accelerator (DSA) is a recently released specification
for an high-performance data copy and transformation accelerator that will be integrated in future
Intel® processors, targeted for optimizing streaming data movement and transformation oper-
ations common with applications for high-performance storage, networking, persistent memory,
and various data processing applications [Cor19]. The goal is to provide higher overall system per-
formance for data mover and transformation operations, while freeing up CPU cycles for higher
level functions.

UDP [FZEC17] applies the Finite-Automata - an emerging computational model that promises
orders of magnitude better performance than CPUs in executing Finite State Machines (FSMs)
model to a coarse-grained class of workloads such as data mining and CSV file parsing. Their
architecture is targeted towards bulk loading and cleaning of batches of data.

4 Optimus Prime’s Approach

4.1 Motivation

Going through the current state of data transformation frameworks, we reached to the conclusion
that because networks and protocols have already taken great strides forward and indeed approach-
ing electrical limitations of propagation and switching, Data Transformation is the logical next
step to optimize. As it currently stands, Data Transformations are performed exclusively by soft-
ware. That is, each transformation is expressed in long sequences of instructions in the CPU’s ISA.
Due to limitations of ISA’s to express transformations, this confirms that Data Transformations
are the bottleneck of inter-microservice RPC.

The first approach is, of course, to improve Data Transformation software, but this proves to
be difficult. The paper [PGK+20] mentions that even in optimal scenarios of 5 instructions/output
byte and perfect speculation control, it means transforming a 300B message will take 700 nanosec-
onds. Even if the fields of a message can be operated in parallel, synchronization costs limit any
benefits from parallelization using threads.

Claim: This paper alleviates the Data Transformation problem by introducing two main in-
novations, the first being an in-memory schema for explicitly representing parallel transformation
tasks, and the second one is architecting a dedicated hardware unit - a data transformation ac-
celerator to unpack the schema and perform the tasks. It is also proposed that this accelerator
can be used by any Data Transformation framework that generate that schema. So in a sense, it
is designed as a general purpose accelerator, making it an ideal candidate for inclusion in future
server chips.

4.2 The Current Bottleneck

The paper argues that performing Data Transformations on the CPU entails a high instruction
count per serialized field and relies on implicit instruction-level rather than explicit field-level

6 4 OPTIMUS PRIME’S APPROACH

parallelism. Additionally, the Data Transformation is so fine-grained that is unable to benefit
from parallelization with software threads due to synchronization costs. To take the example of
Protobuf, to serialize an object, each field is individually transformed based on the type. The
output of each field contains a key (tag) acting as identifier for the field and the serialized bytes,
ready for wire transfer. Unfortunately, neither software threads nor CPU ISAs are the right form
to represent the parallelism between fields. In principle, each field in the object to be transformed
could and should be independently transformed if the hardware is made aware of each field’s type
and location location. Designing an effective abstraction that explicitly represents this parallelism
is key to accelerating Data Transformation. Serial instructions are the wrong abstraction to expose
these types of independent operations, because the problem is inherently parallel.

Summary: Because CPU-centric Data Transformation continues to be bound by the limita-
tions imposed by the ISA, the paper argues that accelerating Data Transformations requires both
hardware and software to be co-designed around a new parallel abstraction that replaces the CPUs
ISA.

4.3 Software Component: Schema Abstraction

The schema introduced in the paper solves the bottlenecks of expressing transformations in tra-
ditional ISA. In order to create a meaningful schema that explicitly expresses field-parallelism,
the paper makes the following observation: The transformation on each field is completely
described by its type and the address of the input data. Therefore, a data structure
containing these two info for each field is the leanest abstraction required to express
all of a message’s transformations [PGK+20].

This abstraction is called schema (Figure 2) , and holds the type and memory address of
each field. This schema is generated by the app and passed to the accelerator to invoke a new
transformation. The paper also argues that any Data Transformation framework (i.e Protobuf)
can use the accelerator as long as their setter method is modified to create the schemata during
the process of creating the message.

Figure 2: Example Schema

4.4 DTA General Architecture

The next step that this paper proposes is the actual hardware implementation that will unpack the
abstraction schema and perform the transformation tasks in parallel. This hardware unit is called
Optimus Prime and it follows the building blocks of a traditional data transformation accelerator.
The main components of a data transformation accelerator (DTA) are:

1. Dispatcher - Responsible for interacting with the server’s cores. It contains the accelera-
tor’s internal registers which are read/written by the cores when invoking new transforma-
tions.

4.5 Optimus Prime Implementation 7

2. Converters - Specialized hardware converters that can perform data transformations in a
handful of cycles.

3. Reader and writer - Access data and stream it to and from the programmable converter.

These components are explained further on the next section, which describes the concrete
implementation by Optimus Prime.

Figure 3: Architectural Overview of a DTA

Another trade-off that needs to be made is related to the physical location of the hardware
unit. One option is to have a dedicated unit for each core, this would mean that it would share the
core’s L1 cache and TLB, eliminating the need for the Block Buffer. But the paper decides to go
with the other approach, which is a shared unit for all cores and located physically at the NoC’s
edge. The reason for this being that if many cores were present in the server, the silicon cost
would quickly add up and outweighing the benefits. The general architecture can be visualized on
Figure 3.

4.5 Optimus Prime Implementation

Optimus Prime is a concrete DTA implementation which comprises of 4 main components and a
buffer, as described below:

1. Dispatcher - The Dispatcher’s main responsibility is receiving transformation requests
from the cores and notifying the corresponding core upon completion. It contains a set of
dedicated control registers accessed by CPU cores to request new transformations. Each
request contains the following information: a pointer to the schema to be transformed, a
pointer to output buffer where result is to be written, a pointer to serialized buffer and a
valid bit. On new requests, the dispatcher controller passes the schema to the reader and the
output pointer to the writer. When the transformation is complete, the valid bit is cleared.
It is worth noting that transformations are synchnronous - that is, a core waits for a request
completion before issuing another.

2. Reader - The reader gets the schema pointer from the dispatcher and issues a memory
request for that address to the block buffer. The block buffer returns a cache line containing
schema fields, which the reader proceeds store in a dedicated field buffer. Then, the reader
fetches the fields one-by-one from the field buffer, extracts the data pointer and issues a
read request to the block buffer. The block buffer returns a cache line containing the field’s
raw data, which the reader stores in the Data Buffer. The reader then extracts required
data from the data buffer based on field’s type and forwards to the converter to carry the
transformation. It also calculates the offset where the Writer should place the transformed
data.

8 5 EVALUATION

3. Converter - The converter takes chunks from the reader and performs the actual data
transformation. The chunk contains information that identifies the field’s type and therefore
what operation to perform. After data is transformed, the converter passes the converted
bytes into the writer to be written in output buffer. The field type indicates the entry in the
instruction memory that the converter executes. For common data types, a single instruction
usually is enough to perform the conversion.

4. Writer - The writer receives transformed data from the converter and writes to the appro-
priate location in the output buffer, which is identified by a base-offset pair. Base is supplied
by the requested core and passed by the Dispatcher, while the offset is calculated by the
reader and passed to the writer. On write completed, it notifies the dispatcher.

The whole process described above can also be visualized in the microarchitecture Figure 4

Figure 4: Microarchitecture of Optimus Prime

4.6 Optimizations

Optimus Prime is architected as a decoupled access-execute pipeline and includes a single Reader,
Converter and Writer. When having the field buffer, the reader can do prefetching on the data
buffer with 100% accuracy. This is a very helpful optimization because before any converter can
begin transforming data, a reader must perform the memory accesses. But, even with prefetching,
the pipeline spends the majority of it’s cycles waiting for memory access. In order to increase
utilization, the pipeline can be time-shared among multiple requests. This requires keeping mul-
tiple request contexts per Reader which can be rotated in one cycle. So these two optimization
techniques can be used to hide memory latency.

5 Evaluation

The evaluation focuses on the ability of Optimus Prime’s to transform data at modern NICs
potential bandwidth level. The experiments that authors undertake include a single-pipeline,
multi-pipeline, time-sharing optimization scenario and also microservices scenario. Here, we take
a look at the first two experiments.

Note: All experiments and images discussed below are taken from [PGK+20].

5.1 Evaluation Basis

Three types of messages were used to test the transformation:

• Flat Message - Every field of the message is a primitive type (i.e string , integer)

5.2 Single Pipeline Results 9

• Mixed Message - Consists of some primitive types and some reference types (fields that
point to another object).

• Nested Message - Every field of the message a reference type.

OP(n, m): n denotes the number of parallel pipelines, and m denotes the time-sharing degree,
meaning how many pipelines are time-shared.

5.2 Single Pipeline Results

Figure 5: Results of OP(1,1)

As seen in Figure 5, a non-optimized single-pipeline OP(1,1) denoted as OP Base Ser is 5x faster
than baseline CPU without prefetching and time-sharing, and has another 2-4x improvement with
prefetching and time-sharing (denoted as OP 1,1 Ser/Deser). The bottleneck in OP(1,1) is
the serial processing of messages by a single transformation pipeline. Given that messages are
naturally independent of each other, next configurations with multiple pipelines are evaluated.
Also worth noting that flat messages perform much better than nested ones, as expected.

5.3 Multi Pipeline Results

Even though OP(1,1) reaches an almost 20x better throughput than a single core, there is still
some room left to attain the 40Gbps sustainable by modern NICs. The next step is to test
transformation pipelines which operate in parallel.

Figure 6: Results of OP(n,1)

10 7 CONCLUSION

As seen on FIgure 6, the 40Gbps can be easily achieved by using 2 parallel pipelines in flat
messages, 3 in mixed messages and 4 in nested. The throughput plateaus beyond a certain pipeline
number because they exhaust the available NoC bandwidth in aggregate.

In a microservices scenario, these improvements lead to a reduced Data Transformation latency
by up to 10× and service latency by up to 30% compared to the CPU baseline.

6 Discussion

This paper discusses the topic of data transformation for cross-microservice communication. We
started by exploring popular choices for data transformation like REST with JSON-string based
serialization and gRPC with Protobuf-binary based serialization.

After taking a closer look at these approaches, it was understood that even though good
progress has been made in the data transformation realm, with the advances of networking proto-
cols, the speed of inter-service communication is still nowhere near the potential of 40Gbps that
NICs offer.

The next step was to explore a new and innovative approach to Data Transformation, namely
Optimus Prime. This paper argued that the current bottleneck with Data Transformation comes
from the current implementations of transforming the data in the CPU, where both instruction-
level parallelism and thread-level parallelism are not of much help. Optimus Prime ”re-invented”
the transformation process by expressing the parallelism explicitly via an in-memory schema and
a hardware unit to unpack and perform transformations.

This paper does a good job at covering at a high level the need for data transformation, the
status quo of popular Data Transformation frameworks and how a new perspective like Optimus
Prime breaks the barriers of Data Transformation and leads to arriving at the physical barriers of
modern NICs.

On the other hand, this paper does not go into much low-level details on how exactly Protobuf
serializes the message fields based on type or how Optimus Prime implements the Conversion step
of the pipeline to achieve single-instruction data transformations for most types. The reason for
this is twofold. Firstly, this would lead us to a very low-level description of the process, mostly
dealing with bit manipulation operators and hardware knowledge. Going into that much detail,
would require a much deeper knowledge of computer architecture and OS, something that is out
of scope for this paper. The second reason is that even the original Optimus Prime paper tends
to jump past the Converter steps quickly and not get into much detail.

While the original paper did a wonderful job at painting the full picture of the Data Trans-
formation issue, one potential point for improvement is not skipping ahead in a few sections i.e:
The Converter component. If explained in more detail, it would provide the reader a much more
enriching experience overall.

7 Conclusion

Data transformation is the process of converting messages to the appropriate format in inter-
microservice communication. Several types of data transformation frameworks exist, from string-
based serialization like JSON/XML to binary-based serialization protocols like Protobuf which
offer a better performance overall. But with improvements in network technology and protocol
processing, data transformation still causes a significant portion of end-to-end communication la-
tency. This paper looks into an innovative approach, namely Optimus Prime, that introduces a
new abstraction schema and the accompanying hardware accelerator to transform data at net-
work line-rate. Optimus Prime achieves 60× higher throughput than traditional CPU cores and
shortens the service latency of evaluated microservices by up to 30%.

REFERENCES 11

References

[AGM+10] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center tcp
(dctcp). In Proceedings of the ACM SIGCOMM 2010 Conference. 63–74., 2010. 1

[Cor19] Intel Corp. Intel data streaming accelerator preliminary architec-
ture specification. https://software.intel.com/en-us/download/

intel-data-streaming-accelerator-preliminary-architecture-specification/,
2019. 1, 3.2

[dat20a] Data center network architectures. https://en.wikipedia.org/wiki/Data_center_
network_architectures/, 2020. 2.1

[dat20b] What is data transformation: definition, benefits, and uses. https://www.

stitchdata.com/resources/data-transformation/, 2020. 2.1

[eth18] The ethernet alliance. https://www.infinibandta.org/infiniband-roadmap/,
2018. 1

[FZEC17] Yuanwei Fang, Chen Zou, Aaron J. Elmore, and Andrew A. Chien. Udp: a pro-
grammable accelerator for extract-transform-load workloads and more. In Proceedings
of the 50th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). 55–68., 2017. 3.2

[inf18] Infiniband trade association. https://www.infinibandta.org/

infiniband-roadmap/, 2018. 1

[isa16] Instruction set for variable length integer coding. https://patents.google.com/

patent/US20180095760A1/en, 2016. 1, 3.2

[PGK+20] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. Optimus prime - acceler-
ating data transformation in servers. ASPLOS, 2020. 1, 4.1, 4.3, 5

[SM12] Audie Sumaray and Shamila Kami Makki. A comparison of data serialization formats
for optimal efficiency on a mobile platform. ICUIMC ’12: Proceedings of the 6th In-
ternational Conference on Ubiquitous Information Management and Communication,
2012. 3.1

[spe20] Speculative execution. https://en.wikipedia.org/wiki/Speculative_

execution/, 2020. 2.2

[tim20] Time sharing. https://en.wikipedia.org/wiki/Time-sharing/, 2020. 2.2

[vir20] Virtual memory. https://en.wikipedia.org/wiki/Virtual_memory, 2020. 2.2

https://software.intel.com/en- us/download/intel-data-streaming-accelerator-preliminary-architecture-specification/
https://software.intel.com/en- us/download/intel-data-streaming-accelerator-preliminary-architecture-specification/
https://en.wikipedia.org/wiki/Data_center_network_architectures/
https://en.wikipedia.org/wiki/Data_center_network_architectures/
https://www.stitchdata.com/resources/data-transformation/
https://www.stitchdata.com/resources/data-transformation/
https://www.infinibandta.org/infiniband- roadmap/
https://www.infinibandta.org/infiniband-roadmap/
https://www.infinibandta.org/infiniband-roadmap/
https://patents.google.com/patent/ US20180095760A1/en
https://patents.google.com/patent/ US20180095760A1/en
https://en.wikipedia.org/wiki/Speculative_execution/
https://en.wikipedia.org/wiki/Speculative_execution/
https://en.wikipedia.org/wiki/Time-sharing/
https://en.wikipedia.org/wiki/Virtual_memory

