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Abstract. Computed tomography (CT) perfusion imaging is a routinely
used technique in the field of neurovascular imaging. The progression of
a bolus of contrast agent through the neurovasculature is imaged in a
series of CT scans. Relevant perfusion parameters, such as cerebral blood
volume (CBV), flow (CBF) and delay (Tmax), can be computed by de-
convolution of the contrast-time curves with the bolus shape measured
at one of the feeding arteries. These parameters are crucial in the medi-
cal management of acute stroke patients, where they are used to identify
the extent of likely salvageable tissue and irreversibly damaged infarct
core. Deconvolution is normally achieved using singular value decom-
position (SVD). However, studies have shown that such a technique is
noise sensitive and easily influenced by artifacts in the source image,
and may introduce further distortions in the output parameters. In this
study, we present a machine learning approach to the estimation of per-
fusion parameters from CT imaging. Standard types of regression-based
machine learning models were trained on the raw/native CT perfusion
imaging data to reproduce the output of an FDA-approved commercial
implementation of the SVD deconvolution algorithm. As part of our ex-
periments, Kernel ridge regression and random forest models performed
best (SSIM: 82%, 84%), trading off quick run time for better prediction
accuracy while requiring a relatively low number of training examples.

1 Introduction

Clinical management of neurovascular diseases, and acute stroke in particular,
requires perfusion imaging to quantify blood flow through the brain parenchyma.
In computed tomography (CT) perfusion imaging [1, 2], or CT perfusion, images
are obtained after a bolus of contrast agent, that attenuates the signal intensity
on the X-ray receptor, is injected to flow through vessels and tissue while a series
of consecutive scans is taken. The spatiotemporal signal attenuation resulting
from the contrast agent can be inferred across the brain over the duration of the
acquisition.

Due to the dimensionality of the resulting CT perfusion data (i.e. 4D), these
concentration-time curves are not directly interpreted by clinicians. Instead, fea-
tures are inferred from it and displayed as a set of 2D image slices. Such feature



maps include cerebral blood flow (CBF), cerebral blood volume (CBV), mean
transit time (MTT), time-to-peak (TTP), and time-to-maximum (Tmax). The
computation of these features typically amounts at deconvolving the data with
the arterial input function (AIF) to obtain the residue function: a curve charac-
terizing blood flow through a given volume element. These parametric estima-
tions are widely used in assessing neurovascular conditions [3]. In acute stroke,
treatment selection is performed by comparing the volume of the ischemic core
with that of the hypoperfused tissue which is at risk, but which may still be
salvaged. Parameters extracted from perfusion imaging are vital for identifying
the tissue at risk. Various studies have shown correlations between the perfusion
parameters and clinical outcome in terms of Rankin score and Barthel Index [4].

The problem of inferring the residue function, and thus the feature maps,
is ill-posed, and deconvolution techniques such as singular value decomposition
(SVD) are unstable in the presence of noise, causing biases [5] that could alter
clinical decisions. Certain techniques have been developed to reduce this prob-
lem. A smoother residue function can be achieved through a Gaussian process
for deconvolution (GPD) [6], Tikhonov Regularization [7], and a physiological
model of microvasculature [8]. Attempts to provide better estimates of perfusion
parameters have also used Expectation Maximization (EM) [9], and Bayesian es-
timation [10]. Other groups have focused on reducing the noise of CTP source im-
ages prior to the deconvolution using Deep Learning techniques [11] and restoring
higher temporal resolution [12]. These novel algorithms have provided encour-
aging results to mitigate the risk of bias introduced by the deconvolution.

As part of the clinical workflow in acute stroke, perfusion maps are reviewed
by visual inspection and by automated processing based on image segmentation.
While these interpretations are complementary, both are susceptible to noise and
bias in the reported maps. As an alternative to improving the quality of perfusion
maps by post-processing, attempts have been made to move beyond thresholds
and instead apply machine-learning to compute standard perfusion maps [13,
14]. Yu et al. presented a model predicting hemorrhagic transformation severity
directly from MRI source perfusion imaging [15]. Similarly, recent models have
used source MR [16] and angiographic [17] images to produce perfusion maps
and have demonstrated greater robustness when compared to deconvolution-
based approaches.

In this paper, we follow a similar strategy and propose to evaluate the use of
regression-based machine learning models to compute perfusion maps from CT
perfusion data without the use of deconvolution. The models are trained on a
large number of concentration-time curves extracted locally. We demonstrate in
our experiments the similarity of the maps obtained via machine learning to the
ones obtained via deconvolution.



2 Methods

2.1 Overview

The study is based on imaging data taken from patients treated for acute is-
chemic stroke at the UCLA Ronald Reagan Hospital in Los Angeles. The dei-
dentified medical imaging data composed the training set that was used to train
various types of machine learning models, including but not limited to kernel
ridge and random forest regression. The model utilizes regression analysis to
predict the perfusion parameter scans of a patient based on their time series CT
slices. This process was repeated for each patient and their 6 slice locations, out-
putting perfusion maps that were compared to the ground truth values. Model
accuracy and correction were evaluated by the structural similarity index metric
(SSIM) between the actual and predicted rCBV and rCBF perfusion maps.

Fig. 1: Machine learning model pipeline for perfusion parameter prediction.

2.2 Dataset

The dataset is a retrospective collection of patients’ CT scans gathered from
perfusion imaging of the neurovascular artery as part of treatment for acute
stroke. The usage of the data was approved by the internal review board (IRB)
of our institution. This study uses a total of 38 patients, with the training set
composed of 30 patients and the test set composed of 8 patients. Each patient
has a total of 360 time series CT scans, split between 6 slice locations for 60 time
points each. Additionally, each patient has a total of 24 perfusion maps, split
between 6 slice locations and 4 perfusion parameters. For this study, the focus is
on the results achieved by the models when predicting the perfusion parameters
rCBV and rCBF.



Fig. 2: Illustration of source CTP image (1st acquisition) with corresponding
computed perfusion maps, including rCBV, rCBF, MTT, and Tmax using de-
convolution.

2.3 Pre-processing

CT Processing All 360 time series CT scans for each patient are extracted as
2D floating point arrays from their DICOM files. The pixel intensity values are
subsequently transformed to Hounsfield Units (HU), using linear rescaling

v = mx+ b

where v is the resultant pixel intensity in HU, m is the rescale slope, x is the
original pixel intensity, and b is the rescale intercept.

The timeseries CT scans are then median filtered with a size 3 kernel to
reduce intracranial noise, and then windowed on an HU range from 0-600. This
range was chosen as it encompasses the information contained from the bolus
of a contrast agent. Each scan is normalized between 0-1 to remove variance
that exists between different slice locations and patients. To reduce uncertainty
generated via patient cranial movement, 3D volumetric rigid coregistration is
applied on each patient’s set of CT scans, where each volumetric slice is aligned,
using an affine transformation.

Grayscale Conversion All 24 perfusion maps for each patient are converted to
grayscale, as the time series CT scans are represented using grayscale intensities.
Due to the nature of the JET color map, a standardized conversion formula from
RGB to grayscale would fail to accurately retain the neurovascular information,
as the maximum and minimum intensities would converge to the same grayscale
intensity index. This problem is bypassed by implementing a manual lookup
table (LUT), where each RGB pixel value is measured against the LUT. A
grayscale index is selected from the LUT based off the entry with the minimum
L2 distance to the RGB pixel value.

Sampling Process The training set is constructed by randomly sampling
25,000 pixels from the timeseries CT scans, spread evenly across all 30 train-



ing patients. Each point is sampled randomly, and without replacement, from a
region in the scan containing only non-zero intensities, so as to limit the chance
of selecting immaterial pixels. The set of selected points is additionally filtered by
removing pixels that correspond to the background in the ground truth scan. For
a single patient’s slice location, the sampled pixel is not a single intensity value
but an array containing the spatial location’s intensity values for all time points.
The data set is adequately represented by a 2D array of dimensions 25,000 by
60, as each pixel is an array of 60 time-varying intensities. The indices of valid
points are saved, and then resampled from the perfusion maps to generate the
ground truth, represented by a 1D array of 25,000 intensities.

The testing set is constructed by randomly sampling 10,000 pixels from the
time series CT scans, spread evenly across all 8 testing patients. Each point
is subject to the same requirements as to the training set, to maintain model
and result consistency. The indices of valid points are saved in this model, to
generate easy access when constructing the ground truth for the testing set. The
ground truths are represented by a 1D array of 10,000 intensities spread across
all 8 testing patients. For this study, the model used the training set to output
prediction scans of the perfusion parameters rCBV and rCBF.

2.4 Training and Deployment

Overview This study utilizes four different types of regression based machine
learning models to predict rCBV and rCBF, specifically kernel ridge regression,
random forest regression, regularized linear regression (ridge regression), and
linear regression. These models aim to identify general trends and varying ob-
servations from the training set in order to build an accurate prediction of the
perfusion parameters.

Kernel Ridge Regression Model The model uses classic kernel ridge regres-
sion to predict the perfusion parameter intensities based on their temporal array
values, using the equation below to determine the model parameters

θ = (XTX + λI)−1XT y (1)

where X is the input vector, y is the corresponding pixel output, and λ is the
regularization. Note that unlike linear regression, kernel ridge regression aims
to provide a more robust testing outlook by introducing both a regularization
parameter to combat overfitting and by implementing a kernel transformation
on the input, such that the model can predict nonlinear trends by transforming
the data into the kernel space. The regularization parameter and kernel standard
deviation used to train the model was 0.1 and 8.0, respectively.

Random Forest Regression Model The model uses an aggregation of sin-
gular decision trees, with each tree having its own weight on the influence of the
model prediction. For this study, the model utilized 90 decision trees, each with



a maximum tree depth of 55. By introducing more trees as opposed to its sin-
gular component, the decision tree regression model, the random forest is able
to combat severe overfitting on the training set and allows for weighted pixel
prediction for the output pixel.

Ridge Regression Model Linear ridge regression aims to improve upon the
basic linear regression model by introducing a regularization parameter, in an
effort to weight the model parameters in the cost function analysis. The model
cost function is determined by the equation below

J = ‖y(i) − f(x(i))‖22 + λ‖θ‖22

where J is the cost, y(i) is the ground truth value, f(x(i)) is the predicted value, λ
is the regularization parameter, and θ are the model weights. The regularization
parameter of 0.1 was used to train this model.

Linear Regression Model The baseline linear regression model aims to pre-
dict pixel intensity values from the input intensities based on the following equa-
tion

y(i) = θx(i) + b

where y(i) represents the predicted output pixel, θ the model parameters, x(i)

the input pixel intensity, and b the bias value.

3 Experiments

In order to assess the accuracy of the model, the predicted intensities for each
pixel was compared to its corresponding intensity in the ground truth perfusion
scan, using the SSIM as a measurement of each model’s accuracy. The SSIM is
typically used to determine the similarity in image structure and quality between
a reference and processed image. The metric considers image degradation as a
loss in visual information. We report the SSIM scores of various machine learning
models and visualize their predicted rCBV and rCBF perfusion parameter maps
compared to the ground truth maps.

Validity of Machine Learning Model Each machine learning model un-
derwent hyperparameter testing to optimize results. The regression model was
trained on a range of data points, from 5,000 to 25,000, with each point contain-
ing an array of 60 intensity values for each patient, and outputs the predicted
perfusion map. The accuracy of these predictions was compared by their SSIM
scores for the rCBV and rCBF perfusion parameters, which we display below.
The most accurate model used kernel ridge regression paired with a Gaussian
kernel. The kernel ridge regression model performs adequately in regards to both
the training and testing set, with a training SSIM of 82.71% and testing SSIM
of 82.53% at 25,000 training points.



Tables 1 and 2 illustrate the overall performance of the regression-based
machine learning models for predicting rCBV and rCBF, respectively, both in
the training set and the testing set. Tables 3 and 4 illustrate the results for
the prediction of rCBV and rCBF for 8 representative patients. The effect of
smoothing on the overall accuracy can be visualized from column 3 to 5 where
an increasingly large Gaussian filter was applied.

Figures 3 and 4 provide a visualization of the accuracy (in terms of SSIM)
with respect to the number of training data points. Figure 4 shows that while
Kernel ridge and random forest regression can take advantage of a large number
of training samples (best results are obtained with 22,500 samples), regularized
and standard linear regression reach their best accuracy around 15,000 samples.

Fig. 3: Effect of training set size on kernel ridge SSIM scores, for regularization
parameter 0.1 and gamma value 8.0.

Model Type rCBV Training SSIM rCBV Testing SSIM

Linear Regression 74.64% 77.01%

Ridge Regression 74.34% 76.89%

Kernel Ridge Regression 82.71% 82.53%

Random Forests Regression 81.14% 82.59%

Table 1: Average rCBV SSIM scores from batch model testing for all slice loca-
tions on the 8 testing patients.



Fig. 4: Effect of training set size on all model testing SSIM scores.

Model Type rCBF Training SSIM rCBF Testing SSIM

Linear Regression 74.55% 77.46%

Ridge Regression 74.51% 77.67%

Kernel Ridge Regression 82.83% 83.25%

Random Forests Regression 82.12% 84.19%

Table 2: Average rCBF SSIM scores from batch model testing for all slice loca-
tions on the 8 testing patients.
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Table 3: Visualization of Gaussian filtering on kernel ridge regression rCBV
perfusion predictions on slice location 3 for the 8 testing patients, trained on
25000 data points.
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Table 4: Visualization of Gaussian filtering on kernel ridge regression rCBF per-
fusion predictions on slice location 3 for the 8 testing patients, trained on 25000
data points.



4 Discussion

There are numerous advantages to applying machine learning to CT imaging
techniques. Machine learning models create consistent and reproducible results
for analysis, far superior to conventional methods. Proper supervision of the
training process entails successful treatment and diagnosis methods, which can
become more widespread and reliable for medical use. Specifically, the prediction
of perfusion parameters by machine learning models allows near instantaneous
and convenient treatment solutions, without relying on expensive or inconvenient
industry programs.

To accurately supervise the training process, the size and quality of the data
set is the chief concern. CT image data was pruned to remove faulty and un-
reliable patients, such as those with excessive cranial movement or containing
mismatched CT slice locations. This removal allowed the training process to
occur only on patients with consistent scans and minimize variance between pa-
tients. The process to create the model was not trivial, and for 38 patients took
less than 20 minutes. However, since the model only needs to be generated once,
the time for construction can be disregarded. Processing of the model scales
linearly with more training data, although this represents a trade-off between
fitting the data and model runtime. Additionally, excessive data can give rise to
the machine learning problem of overfitting, which occurs if the model fits the
training data too well, at the cost of failing to capture and generalize trends.

For this study, the model is able to predict the spatio-temporal intensities
of perfusion parameters associated with the intracranial artery. The framework
of this study demonstrates that our model can learn these trends automatically,
and predict the results with reasonable accuracy. The combination of this model
with automatic imaging and training techniques allows for the possibility of a
pipeline to process and predict perfusion parameters for any single patient.

Finally, deep learning methods such as neural networks and long short-term
memory models could be considered to improve the results of the study. These
models will, however, require a much larger data set and significantly more run-
time to process.

5 Conclusion

We introduced a framework to utilize machine learning-based models for the
computation of neurovascular perfusion parameters from patient CT scans. Over-
all, the use of machine learning models in automating the processing of patient
data has been proven to be a viable alternative to current commercial methods
based on deconvolution. This study concluded that machine learning models
might improve accuracy in prediction and represent the potential for hospital
cost cutting, which can significantly aid neurologists and neurosurgeons on a
variety of neurological conditions, including acute stroke. Such results could
monumentally facilitate the prediction of outcome based on raw CT perfusion.
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