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Abstract. We propose a new framework to estimate the uncertainty of
deep generative models. In real-world applications, uncertainty allows us
to evaluate the reliability of the outcome of machine learning systems.
Gaussian processes are widely known as a method in machine learning
which provides estimates of uncertainty. Moreover, Gaussian processes
have been shown to be equivalent to deep neural networks with infinitely
wide layers. This equivalence suggests that Gaussian process regression
can be used to perform Bayesian prediction with deep neural networks.
However, existing Bayesian treatments of neural networks via Gaussian
processes have only been applied so far to supervised learning; we are
not aware of any work using neural networks and Gaussian processes for
unsupervised learning. We extend the Bayesian Gaussian process latent
variable model, an unsupervised learning method using Gaussian pro-
cesses, and propose a Bayesian deep generative model by approximating
the expectations of complex kernels. With a series of experiments, we
validate that our method provides estimates of uncertainty from the rel-
evance between variance and the output quality.

Keywords: Gaussian process · Neural network · Deep learning · Gaussian
process latent variable model · Bayesian learning

1 Introduction

In this paper, we propose a Bayesian deep generative model using Gaussian pro-
cess latent variable models (GPLVMs), which calculate predictive distributions
to treat the uncertainty. There has been great discussion about the reliability
of deep learning models. Especially, a lack of reliability is a big issue with deep
neural networks [12]. This weakness is due to the fact that fitting performance
is the primary focus of deep models, and reliability is often overlooked [22]. We
tackle the issue by using Gaussian processes, which offer reliable posterior pre-
dictive distributions from a Bayesian perspective [21]. Some studies [9, 23] claim
that many existing deep learning models that only predict the expected value
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of outputs sometimes provide unreliable outcomes. This behavior is hypothe-
sized to be caused by the use of a deterministic inference process and focusing
on model fitting [6]. Then, the current deep neural networks cannot be fully
trusted because they work well only in unrealistically idealized environments,
and provide unreliable outputs for unforeseen inputs in the real-world.

Lee et al. [16] approach the reliability issue of deep neural networks by con-
structing Bayesian neural networks from Gaussian processes in the context of
supervised learning. Gaussian processes that correspond to a deep neural net-
work achieve high performance and provide estimates of uncertainty. Bayesian
GPLVMs [24], which use Gaussian processes for unsupervised learning, can only
be used with a few kernels as the model requires analytic formulas involving the
kernel function for optimization.

In this paper, we combine Bayesian GPLVMs and deep kernels for reliable
deep generative models. We cannot straightforwardly combine these methods,
because a close form solution for the ψ statistics cannot be derived. Employ-
ing Monte-Carlo approximation allows us to combine Bayesian GPLVMs and
deep kernels because it provides differentiable methods for calculating the ψ
statistics. The model can exploit state-of-the-art DNN architectures using deep
kernels corresponding to these architectures and suit various datasets. Our work
differs from many existing deep generative models [9, 14] in that our method
can control the quality of output because it can treat the uncertainty. In the
experiments, we remove unconfident data points to reduce the gap between the
actual data distribution and the generated data distribution. Our contributions
are as follows:

– We propose a GPLVM based deep generative model by incorporating deep
kernels into Bayesian GPLVMs.

– We demonstrate that our method provides a useful estimate of uncertainty
through experiments that investigate the relevance between the variance and
the quality of the expectations in the vein of Lee et al. [16].

2 Related Work

The majority of the research into uncertainty of deep learning focuses on su-
pervised learning. Neal [18] has shown that infinitely wide neural networks are
equivalent to Gaussian processes. Moreover, Lee et al. [16] have constructed in-
finitely wide neural networks using Gaussian processes and have achieved higher
prediction accuracy than neural networks trained via gradient methods. Recent
work extends the framework introduced by Lee et al. [16] for fully-connected neu-
ral networks to other deep neural network architectures. Novak et al. [19] proved
the correspondence between deep convolutional neural networks and Gaussian
processes, and Garriga-Alonso et al. [7] have shown the correspondence between
deep convolutional neural networks with residual blocks and Gaussian processes.
Yang [25] unified these results by introducing a notation for expressing various
neural network layers and revealed relationships between Gaussian processes and
various architectures of neural networks.
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An area that is less related is that of Deep Gaussian Processes [5, 2]. They
are concerned with stacking Gaussian processes to construct rich models. Our
study differs from these in that our model corresponds to a deep neural network.
They also employ the reparametrization trick to propagate gradients between
Gaussian process components rather than for Monte-Carlo integration.

On the other hand, little attention has been given to the relationship be-
tween Gaussian processes and deep generative models for unsupervised learning.
We find clues in GPLVMs [15, 24] to answer this question. Lawrence [15] con-
verted Gaussian process regression to latent variable model called GPLVMs,
which models potentially nonlinear relationships between observed data and la-
tent variables using a Gaussian process. GPLVMs require complex computation
for optimization, unlike regular Gaussian process regression.

3 Bayesian GPLVM
In this section, we introduce Bayesian GPLVMs. Let Y ∈ RN×D be observed
data where N is the number of observations, and D is the dimension of a data
point. Latent variables X ∈ RN×Q are not observed where Q is the dimension
of a latent point. We can express the likelihood function for a data point under
a Gaussian process as

p(Y |X) =

D∏
d=1

N (yd|0N ,KXX + β−1IN ).

where yd is the d-th column of Y , the kernel matrix KXX is an N ×N covari-
ance matrix defined by a kernel function k(x,x′) such as linear kernels, and β is
a hyperparameter corresponding to the precision of the additive Gaussian noise.
The mapping from latent variable space to observed data space is performed
via Gaussian process regression. It is possible to interpret the generation pro-
cess of Bayesian GPLVMs as deep neural networks that map unobserved latent
variables to observed data. By using this variational distribution q with varia-
tional parameters {µn,σ

2
n}Nn=1, Jensen’s lower bound on log marginal likelihood

log p(Y ) can be expressed as:

F (q) =

∫
q(X) log p(Y |X)dX −

∫
q(X) log

q(X)

p(X)
dX

=

D∑
d=1

F̃d(q)−KL(q∥p).

Titsias and Lawrence [24] have given F̃d(q) for optimization of Bayesian
GPLVMs. Using the set of inducing points Z ∈ RM×Q and Ψ statistics: ψ0 =
tr
(
⟨KXX⟩q(X)

)
, Ψ1 = ⟨KXZ⟩q(X), and Ψ2 = ⟨KZXKXZ⟩q(X), the closed-form

evidence lower bound is

F̃d(q) ≥ log

[
β

N
2 |KZZ |

1
2

(2π)
N
2 |βΨ2 +KZZ |

1
2

exp(−1

2
yT
d Wyd)

]
− βψ0

2
+
β

2
tr(K−1

ZZΨ2),
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where W = βIN − β2Ψ1(βΨ2 +KZZ)
−1ΨT

1 and, we define expectations under
the distribution q(X) as ⟨·⟩q(X). The rest of F (q) consists of the Kullback Leibler
divergence between two Gaussian distributions and can be analytically derived.
As a result of this approximation, we can avoid calculating the N×N covariance
matrix in the optimization process. We optimize the variational parameters {µn,
σ2

n}Nn=1 and Z with gradient-based methods such as Adam [13]. Using integral
notation, ψ0 is written as

ψ0 =

N∑
n=1

∫
k(xn,xn)N (xn|µn,σ

2
n)dxn.

Ψ1 is the N ×M matrix such that

(Ψ1)nm =

∫
k(xn, zm)N (xn|µn,σ

2
n)dxn.

Here, zm is the m-th row of Z. Ψ2 is the M ×M matrix such that

(Ψ2)mm =

N∑
n=1

∫
k(xn, zm)k(z′

m,xn)N (xn|µn,σ
2
n)dxn.

However, we only obtain analytic forms of the Ψ statistics for a few simple ker-
nels. We construct Bayesian deep generative models by applying deep kernels [4]
to Bayesian GPLVMs in the manner of Lee et al. [16]. In Bayesian GPLVMs,
the distribution of observed data follows Gaussian processes. Since this distribu-
tion corresponds to the distribution in a Gaussian process, the Gaussian process
followed by yd given the latent variable X in GPLVMs is equivalent to neural
networks. The decoder of Bayesian GPLVMs fixed latent variables is equivalent
to Gaussian process regression.

4 Approximate Ψ Statistics

In this section, we aim to integrate deep kernels into Bayesian GPLVMs. We in-
troduce an approximation of Ψ statistics by employing Monte-Carlo integration
to intractable deep kernels. Titsias and Lawrence [24] have only shown the ana-
lytic solution for simple kernel functions such as RBF kernels and linear kernels.
However, their analytical solution is not applicable to other types of kernels,
including deep kernels. Deep kernels have high capacity as these are recursive
and especially complex. In fact, previous studies achieve high performance on
image classification tasks by using Gaussian process regression involving these
kernels. As the integral is intractable, we perform a differentiable approximate
integration to derive the required Ψ statistics. The expected value of f(x) fol-
lowing a distribution p(x) can be approximated by f̂ = 1

τ

∑τ
i=1 f(xi) where

x1,x2, . . . ,xτ are i.i.d samples drawn from p(x), and τ is the total number of
samples. This is an unbiased estimator since E[f̂ ] = E[f ]. The approximation has
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the variance Var[f̂ ] =
1

τ
E
[
(f − E[f ])2

]
. The accuracy of the estimator depends

only on the number of sampling points and not on the dimensionality of x. We
can safely apply this to high dimensional latent variables.

Assume that x follows a Gaussian distribution with mean µ and variance σ2.
We want to sample data from the distribution p(x), but sampling is generally
non-differentiable. We use the reparameterization trick

ϵ ∼ N (0D, ID), µ+ σ · ϵ ∼ N (µ,σ2), (1)

as used in variational autoencders (VAEs) for differentiable sampling [14] from
Gaussian distributions. Using Monte-Carlo approximation and Eq. (1), we can
calculate the Ψ statistics as

ψ0 ≈ 1

τ

N∑
n=1

τ∑
i=1

k(xni,xni), (2)

(Ψ1)nm ≈ 1

τ

τ∑
i=1

k(xni, zm), (3)

(Ψ2)mm′ ≈ 1

τ

N∑
n=1

τ∑
i=1

k(xni, zm)k(z′
m,xni), (4)

respectively, where xni = µn + σn · ϵi. The inducing point zm is a variational
parameter but is treated as a constant in the calculations of expected values
due to the integration of xn. The lower bound can be jointly maximized over
the variational parameters {(µn,σ

2
n)}Nn=1 and Z given Eqs. (2) to (4) for deep

kernels using gradient methods.
Using optimized variational parameters consisting of µ, σ2, and Z, we can

obtain the mean and variance given new latent points, which based on the results
of Quiñonero-Candela et al. [20], take the form:

E [y∗|x∗,D] =BTΨ∗
1 , (5)

Var [y∗|x∗,D] =BT (Ψ∗
2 − Ψ∗

1 (Ψ
∗
1 )

T )B − tr
([

K−1
MM − (KMM + βΨ2)

−1
]
Ψ∗

2

)
ID

+ ψ∗
0ID + β−1ID. (6)

Here,B = β (KMM + βΨ2)
−1

ΨT
1 Y , ψ∗

0 = tr
(
⟨Kx∗x∗⟩q(x∗)

)
, Ψ∗

1 = ⟨KZx∗⟩q(x∗),
and Ψ∗

2 = ⟨KZx∗Kx∗Z⟩q(x∗). x∗ consists of {µ∗,σ2∗} , and D consists of train-
ing data Y and optimized variational parameters µ, σ2, and Z.

We obtain the fixed latent variables after the optimization. We also earn the
expected value and variance for new latent space points employing Eq. (5) and
Eq. (6) on the optimized latent variables just like the Bayesian GPLVM. Those
results can be applied to reliable classification on the latent space and reliable
data generation.
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Table 1. The average of the classification accuracy of the nearest neighbor classification
in latent space constructed by each model. We report the averaged accuracy on the
test dataset over five trials. For each trial, we use 80% of the dataset as the training
set and the rest as the test set. Our method achieves superior performance over other
methods in the USPS dataset.

Oil Flow USPS

VAE [14] 89.0 87.1
Bayesian GPLVM (Linear) [24] 89.0 79.8
Bayesian GPLVM (RBF) [24] 96.0 90.4

Our method 95.0 93.9

5 Experiments

To evaluate the proposed method, we now conduct experiments with some stan-
dard machine learning datasets and image datasets. Some experiments report
the classification accuracy on learned latent representations and the quality of
reconstructed data. The last two experiments in Section 5.3 aim to validate
the usefulness of predicted uncertainty, the principal purpose of this study. In
Section 5.3, we verify the usefulness of the variance on the latent space and
demonstrate the usefulness of the variance of the generated data space.

Our models are composed of four layers for all experiments in this section.
The number of samples used to approximate Ψ statistics is set to 10. In our model
and the Bayesian GPLVM, the means in the variational distribution are initial-
ized based on PCA, the variances of the variational distribution are initialized
to 0.1, and 20 inducing points are used. We use Adam [13] as an optimization
method for all models used in our experiments.

5.1 Classification Experiments

We apply the method to multi-phase oil flow data [1] and compare classifica-
tion accuracy with related work, just like experiments in Titsias and Lawrence
[24]. The dataset consists of 1000 observations distributed equally among the
three classes. Each 12-dimensional data point belongs to one of three different
geometrical configurations. The first experiment aims to show that our model
learns better latent representations than existing methods. We take the latent
variables to be ten-dimensional. For comparison, Table 1 shows the average and
of the accuracy of k-nearest neighbor method (k=5) trained on the latent space
over five runs for our model, the Bayesian GPLVM, and the VAE. We apply a
linear kernel and an RBF kernel to the Bayesian GPLVM for the experiments.
First, we mapped all 1000 of the data points to latent space using each model.
Second, we considered the nearest neighbor classifier in the latent space to quan-
tify the quality of latent representations optimized by each model. The encoder
and decoder of VAE are composed of four layers for a fair comparison with our
model. The dimension of the hidden layer in the VAE is hand-tuned between
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Our model Bayesian GPLVM [24] GAN [9] Ground truth

LSGAN [17] VAE [14] IWAE [3]

Fig. 1. Generated data mapped from latent space sampled randomly. The first row
shows results from the proposed method, Bayesian GPLVM, GAN and the ground
truth data points. The second row shows results from the LSGAN, VAE, and IWAE.
Our method produces the closest distribution to the ground truth distribution.

32 and 512 to achieve the best accuracy. The accuracy of our model was five
points higher than the Bayesian GPLVM with linear kernels and the VAE and
was slightly worse than the Bayesian GPLVM with RBF kernels.

We also illustrate the method in handwritten digit recognition datasets as
with an above experiment. We conduct the nearest neighbor classification in the
latent space for the subset of 7291 of the digits 0-9 from the USPS dataset [10].
Each image of size 16× 16 pixels was transformed into the vector row of dimen-
sion 256, representing handwritten digits as inputs to a fully connected layer.
Table 1 shows results by our model, the Bayesian GPLVM with linear kernels,
the Bayesian GPLVM with RBF kernels, and the VAE. For all models, we use
ten latent dimensions. We use those models with the same setting as the experi-
ments for Oil Flow data. We report the averaged accuracy over five independent
runs for each model. Our model achieves the highest accuracy in the four models,
including deterministic deep generative models and classical generative models.

5.2 Gaussian Mixture Distribution Data

Fig. 1 shows the results of the data generation experiment on the toy dataset
consisting of samples from Gaussian mixture distribution. The distribution has
eight modes, which are arranged in a circle. The dataset consists of 100 data
points drawn with equal probability from the eight Gaussian distributions with
different means. This experiment aims to show whether the model can repro-
duce this distribution from the training data. We compare the proposed method
with the Bayesian GPLVM, Generative Adversarial Network (GAN) [8], LS-
GAN [17], VAE, and imporatance weighted autoencders (IWAE) [3]. The LS-
GAN and IWAE are improved models of the GAN and VAE, respectively. The
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Table 2. The negative log likelihood between the generated data and the ground truth
data for experiments on grayscale and RGB images datasets and the classification accu-
racy. Our method outperforms other methods on almost datasets in both classification
accuracy and negative log likelihood.

Method MNIST Fashion-MNIST CIFAR-10 CIFAR-100
NLL ↓ Acc ↑ NLL ↓ Acc ↑ NLL ↓ Acc ↑ NLL ↓ Acc ↑

VAE [14] 125.32 76.7 247.65 61.6 1941.77 24.4 1899.36 4.5
IWAE [3] 126.23 87.6 241.77 69.2 1927.23 21.6 1927.23 4.6
Bayesian GPLVM [24] 122.01 87.7 246.98 74.1 1887.05 25.7 1829.82 5.4
Our method 121.80 87.8 244.87 78.1 1860.27 27.4 1809.17 6.3

generated data is computed by E [y∗|x∗,D], where D is the training data fol-
lowing the two-dimensional Gaussian mixture distribution and the variational
parameters, and x∗ is the test data points sampled from a uniform distribution
in all models. All the models without Bayesian GPLVM are composed of four
layers. We take the latent variables for all models to be one-dimensional as the
dataset consists of two-dimensional data. Our model requires the latent dimen-
sion less than the data dimension, and we need the same condition for both
models.

Fig. 1 illustrates the results of this experiment. In Fig. 1, the rightmost panel
shows a scatter plot of the ground truth data, which is the mixture of eight
Gaussian distributions. The GAN only generates two out of the eight modes
of Gaussian mixture distribution. The phenomenon is referred to as the mode
collapse and lack of diversity these are some of the most common issues with
vanilla GANs [11]. In contrast, our model successfully generates all eight modes
of the Gaussian mixture distribution. We conduct a quantitative evaluation using
Maximum Mean Discrepancy (MMD). The MMD scores of our model, Bayesian
GPLVM, GAN, LSGAN, VAE, and IWAE are 0.0335, 0.1814, 1.0975, 0.0571,
0.3228, and 0.1644, respectively. The generated distribution by our model is
closest to the ground truth distribution in all models.

Furthermore, we conduct experiments for additional image datasets, MNIST,
Fashion-MNIST, CIFAR-10, and CIFAR-100. We pick 20 or 200 samples per class
for each dataset. MNIST and Fashion-MNIST contain 28× 28 grayscale images,
and CIFAR-10 and CIFAR-100 contain 32 × 32 RGB images. We compare the
proposed method with the VAE, IWAE, and Bayesian GPLVM. Table 2 shows
the classification accuracy in the manner described above and the negative log
likelihood of reconstructed data from latent points. The whole dataset size is 2000
for all datasets. The proposed method outperforms other methods, without the
negative log likelihood on Fashion-MNIST.

5.3 Variance Analysis

The remaining experiments demonstrate the usefulness of uncertainty of outputs
obtained by our model. First, we show that the model allocates low variance to
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Table 3. Comparative study of the averaged variance of correct and incorrect predic-
tions. The left column shows Eq. (7) and the right column shows Eq. (8). Our method
allocates the low variance to high confidence outputs and the high variance to low
confidence outputs, unlike the VAE.

correct incorrect

VAE 14.911 14.357
Our model 4.277 16.859

confident outputs and allocates high variance to unconfident outputs. Second,
we disregard generated samples with a large variance to reduce the gap between
the true data distribution and the generated data distribution by our models.

We compare the variance of outputs between our method and VAE following
the variance analysis in Lee et al. [16]. The purpose of this experiment is to show
whether the variance of the latent variables obtained through the optimization
of the model is useful for solving classification problems in the latent variable
space. We compare the variance of correct and incorrect classification results
for test data by performing nearest neighbors over expectations µ in the latent
space constructed by each model. We agree that µ∗ and µ′ denote a set of size N
of latent variables randomly sampled from µ and its complement set µ\µ∗. The
predicted label corresponding to µn with nearest neighbors with µ′ is defined
by knnµ′(µn). Let the average variance of correct data be defined as∑N

n=1

∑Q
i=1 σ

2
n,i1 (knnµ′(µ∗

n) = yn)∑N
n=1 1 (knnµ′(µ∗

n) = yn})
, (7)

and let the average variance of incorrect data be defined as∑N
n=1

∑Q
i=1 σ

2
n,i1 (knnµ′(µ∗

n) ̸= yn)∑N
n=1 1 (knnµ′(µ∗

n) ̸= yn})
, (8)

where µ∗
n is a test point in µ∗, σ2

n is the variance of latent variables and corre-
sponds to µ∗

n, and yn is a given label corresponding to µn.
Table 3 shows the averaged variance on correct and incorrect predictions

for the VAE and our model. For the VAE, the averaged variance on incorrect
predictions is approximately equal to that on correct predictions. However, the
averaged variance on incorrect predictions in our model is four times larger than
that on correct predictions. In other words, our model allocates large variance
for untrust outputs corresponding to unpredictable inputs. In our model, a large
variance implies a high uncertainty of prediction and a small variance implies a
low degree of uncertainty.

Figs. 2 and 3 illustrate the relationship between the variance of outputs and
the quality of the generated data. Fig. 2 shows the generated data reconstructed
from the latent variables independently sampled from a uniform distribution
over [-3, 3] with our model, and Fig. 3 also shows the generated data with the
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Fig. 2. Comparative study of distributions generated for each threshold by our model.
Each column shows a scatter plot of generated samples with the variance less than the
threshold. The rightmost column shows a scatter plot of the training data. Our method
controls the quality of generated samples using the variance of predictions.

Fig. 3. Comparative study of distributions generated for each threshold of the Bayesian
GPLVM with an RBF kernel.

Bayesian GPLVM model. The purpose of this experiment is to show the relevance
between the variance and quality of the generated data by the optimized model.
We exclude data points with variance greater than or equal to the threshold in
each panel. We plot the set of points:

{
mn|max(s2n) < t

}
, n = 1, 2, . . . , N,

where mn is E [y∗
n|x∗

n,D], s2n is Var [y∗
n|x∗

n,D], N is the size of test points, and t
is a threshold. The variational parameters µ, σ2, and Z of D are learned latent
variables from the training dataset by each model. We note that these thresholds
depend on the dataset and network architecture.

In Figs. 2 and 3, we show five plots with different thresholds and the ground
truth plot. In Fig. 2, the plot most similar to the ground truth plot is the
leftmost plot with the smallest threshold. Conversely, when we assign a large
threshold, the model generates a different distribution from the ground truth
data distribution. Our model produces a closer distribution to the ground truth
distribution with smaller thresholds, unlike Bayesian GPLVM. From the above
results, our model control the quality of generated data using the confidence of
predictions.
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6 Conclusion

In this paper, we develop a Bayesian deep generative model that produces an
estimate of uncertainty for generated data by applying deep kernels to Bayesian
GPLVMs. For this purpose, we employ an approximate intractable integration to
evaluate expectations of deep kernel functions. We present a series of experiments
showing that the proposed method offers uncertainty of model outputs, which
can then be used for decision-making at higher levels and post-processes. Our
model has an advantage compared to the deep generative model and the classical
Bayesian generative model. Moreover, we show that our models can provide a
useful estimate of uncertainty based on the comparison of the variance of credible
predictions and incredible predictions.
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English editing from Mayayuki Takeda and Ryo Kamoi.
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