
EasyChair Preprint

№ 336

Human action recognition using fusion of

modern deep convolutional and recurrent neural

networks

Dmytro Tkachenko

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 10, 2018

Human action recognition using fusion of modern

deep convolutional and recurrent neural networks

Dmytro Tkachenko

Institute for Applied System Analysis

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Kyiv, Ukraine

me@dmitriytkachenko.com

Abstract—This paper studies the application of modern deep

convolutional and recurrent neural networks to video

classification, specifically human action recognition. Multi-

stream architecture, which uses the ideas of representation

learning to extract embeddings of multimodal features, is

proposed. It is based on 2D convolutional and recurrent neural

networks, and the fusion model receives a video embedding as

input. Thus, the classification is performed based on this

compact representation of spatial, temporal and audio

information. The proposed architecture achieves 93.1%

accuracy on UCF101, which is better than the results obtained

with the models that have a similar architecture, and also

produces representations which can be used by other models as

features; anomaly detection using autoencoders is proposed as

an example of this.

Keywords—convolutional neural networks, human action

recognition, recurrent neural networks, representation learning,

video classification.

I. INTRODUCTION

Video classification is an important problem which has
many applications in robotics, security, user-generated
content moderation, etc. In addition to the classification
having a value on its own, it is also a subproblem in more
complex models or control systems.

Videos are intrinsically multimodal so that one can use
motion and auditory clues in addition to a sequence of frames.
This gave rise to multi-stream architectures [1]-[2] which
model spatial (still video frames), temporal (motion), and
audio streams. The temporal stream is usually represented [1]
by the dense optical flows between frames, which serve as the
hand-crafted features for a model since they are computed by
a different model or algorithm. The audio stream can be
transformed into a spectrogram instead of using a raw
waveform, in line with established approaches to audio
classification [3].

More complex problems which include video
classification as a subproblem may also require modeling
other information such as text, and consequently, the complete
model output might need to be based on all of the data sources.
Such fusion model may receive feature representations as
input. Because of this, it is valuable to be able to learn
representations (embeddings) for videos. If a model can
extract a compact representation of a video, it can be fused
with, e.g., an embedding for the relevant text (obtained using
techniques similar to word2vec [4]).

Datasets, which contain clips that depict various human
actions (like sports, playing musical instruments, etc.), are
often used as a benchmark for video classification models.
Examples of the popular human action recognition datasets
are UCF101 [5] and Kinetics [6].

II. RELATED WORKS

One of the first multi-stream architectures described in [1]
is based on 2D convolutional neural networks (CNN). This
method takes motion into account by modeling a temporal
stream using a separate model, and the classification result is
computed by fusing class scores returned by the two CNNs.
The temporal stream CNN receives stacked optical flows,
estimated over a window of several frames, as input. Although
the motion is taken into account this way, this architecture
might not be able to model longer videos with more complex
actions. This is because the optical flow stacks are computed
over relatively short windows. Fusing the class scores which
are obtained by classifying short video segments represented
by optical flows (in a sliding window manner) thus cannot
model long sequences, because fusion model does not take the
ordering of segments into account.

The improved multi-stream model has been proposed in
[2]. This model uses recurrent neural networks (specifically,
LSTM [7]) which receive video segment embeddings as input:
for the spatial stream it is a sequence of frame embeddings;
the temporal stream is represented by a sequence of stacked
optical flow embeddings. The audio clues are also used: a
separate CNN classifies spectrograms. The final class scores
are computed by fusing the predictions of the individual
streams. Overall, the multi-stream framework proposed in [2]
uses all of the available information and can classify videos
which contain long and complex actions because of the use of
RNNs. However, one downside of this method is that every
stream is processed independently; as a result, the fusion
model only looks at the class probabilities and thus cannot
consider all of the information at the same time. video2vec [8]
explores using embedding vectors of spatial and temporal
streams for classification; however, the prediction accuracy on
UCF101 is lower compared to [2].

Recently, several architectures based on 3D convolutional
neural networks have been developed. 3D convolution and
pooling operations are performed spatio-temporally, meaning
that they model a volume of multiple 2D images with the third
dimension being time, and produce another 3D volume. C3D
[9] uses relatively shallow CNN architecture, trained from
scratch on large video datasets, that is applied to non-
overlapping frame clips with the classification result
computed by averaging the scores predicted for all clips. I3D
[10] proposes inflating 2D CNNs into 3D and bootstrapping
3D filters from 2D filters, which provides parameter
initialization from 2D models trained on ImageNet. [11]
explores even deeper ResNet-based architectures similar to
those that worked well for image recognition. These 3D CNNs
achieved very good results; however, it is worth noting that
they were trained on very large datasets like Kinetics [6] and
were only able to produce decent accuracy on smaller datasets

like UCF101 after pre-training on larger ones. Models based
on 3D convolutional networks have a bigger number of
parameters and thus require larger datasets to train on, and
more computational resources, compared to architectures
based on 2D CNNs and RNNs. As a result, it seems that the
architectures based on 3D CNNs are less sample-efficient
compared to 2D CNN + RNN solutions, meaning that they
require more data to achieve the same results.

Conceptually, it seems that using recurrent neural
networks for modeling sequences is better, because CNNs
suffer from fundamental limitations, i.e., not modeling the
relative positions or spatial hierarchies between objects – the
very same problem capsule networks [12] are trying to
address. Consequently, convolving the time dimension can
lead to losing important information. Another drawback of
using 3D CNNs stems from applying them to relatively short
clips and fusing (e.g., averaging) the predictions; it is
impractical for the input volume to span an entire video since
it would be too big to process; however, there are cases where
this approach would fail, for example, when a video contains
only a short segment which depicts an action of interest (for
classification); in this case averaging would most likely lose
the information about some action detected in only a small
number of segments, so the result would be incorrect. Given
these shortcomings, although 3D CNNs work well in practice
(on existing datasets), it is unclear whether they would
perform as well on more complex data (long and complex
videos, such as movies).

III. METHODOLOGY

The proposed architecture is based on 2D convolutional
neural networks and recurrent neural networks. It is illustrated

in the fig. 1. The submodels for all streams have the similar
architecture: segments of raw data → CNN → sequence of
segment embeddings → RNN → video-level embedding.

A. Spatial stream

The raw 2D images (RGB) are fed into the convolutional
neural network to extract embedding vector which is taken
from the last layer before the dense classification layer.

Then the sequence of frame embeddings (of size ExL,
where E is the length of the embedding vector, and L is the
sequence length) is processed by the recurrent neural network,
which returns the embedding vector with the length that
depends on the number of hidden units in the last RNN cell.
This embedding vector describes the entire video.

B. Temporal stream

The optical flows are computed between pairs of frames
(e.g., between the first and the second frame, then between
the second and the third frame). Then they are stacked in a
way described in [1]. This results in stacks of size WxHx2L,
where W is the width of a frame, H is its height, and L is the
size of the stack (multiplied by 2 since there are x and y
components of optical flow displacement vectors).

Another 2D CNN is then used to extract embeddings for
stacked optical flows. These embeddings are then processed
by RNN, which again returns the video embedding.

C. Audio stream

The audio track is split into the non-overlapping examples.
For each of them, the log-mel spectrogram is computed, which
is then fed into the convolutional neural network to extract an

Fig. 1. Architecture of the proposed model

embedding vector. This approach follows the one described in
[3]. Video-level embedding vector is then extracted by an
RNN.

D. Fusion model

Video-level embeddings for the three streams are then
concatenated, and the resulting vector completely describes
the features of a video. The fusion model then computes the
classification result (class scores).

E. Training

The models for every stream are trained separately. Joint
training of the entire model is very computationally
demanding, and [13] shows that it only yields a tiny
improvement in accuracy. The separate training of streams
makes the model more flexible, since replacing some
component of the model does not require the complete re-
training. So, the training process includes training (or fine-
tuning) the CNNs, then RNNs, and then the fusion model.

IV. IMPLEMENTATION DETAILS

A. Image feature extraction

As a CNN for extracting embedding vectors from the
images, InceptionResNetV2 [14] architecture is used. This
model achieves 80.4% accuracy on the test set of the
ImageNet classification (CLS) challenge and 95.3% top-5
accuracy, which makes it one of the best models as of now.
To retrieve frame embedding, the upper dense layer (used for
classification) is removed and the output of the top global
average pooling layer, which produces a 1536-dimensional
vector, is used.

B. Optical flow computation

Recently, it has been shown that the methods for
estimating optical flow between frames, which use
convolutional neural networks, outperform classical
computer vision methods. Particularly, FlowNet 2.0 [15]
currently has the best accuracy, so it is used in the proposed
method. FlowNet 2.0, despite being somewhat slow,
produces very accurate results with smooth flow fields and
crisp motion boundaries.

C. Optical flow feature extraction

For extracting embeddings from optical flow stacks, the
convolutional neural network similar to the one described in
[1], is used. This motion CNN looks as follows:

conv1 (7x7x96; stride 2; pooling 3x3; norm) → conv2

(5x5x256; stride 2; pooling 3x3) → conv3 (3x3x512; stride

1) → conv4 (3x3x512; stride 1) → conv5 (3x3x512; stride 1;

pooling 3x3) → full6 (4096; dropout) → full7 (2048;

dropout) → softmax

Here FxFxN for convolutional layers denotes N filters of
size FxF. Max pooling is done over 3x3 spatial windows with
stride 2. Local response normalization used in [1] is replaced
by batch normalization [16]. The number of neurons is
specified in brackets for fully-connected (full) layers.

With this architecture, extracting embedding from the last
fully-connected layer results in a 2048-dimensional vector.

D. Audio feature extraction

VGGish [3] model is used for extracting a 128-D
embedding for every audio segment.

E. Recurrent neural network architecture

It has been found experimentally (see “Experiments”
section) that stacked (two layers) bidirectional GRU with 512
hidden units performs best. This model produces 1024-
dimensional (outputs from the forward and backward RNNs
are concatenated) video-level embedding vectors.

F. Adaptive sampling

It is often not practical to use all frames as input to RNN
since it is harder to train them with long sequences. As a
result, videos are usually subsampled to reduce
dimensionality. This is done by selecting frames with a
constant step, for example, taking every 5th frame.

This paper proposes the adaptive sampling method which
uses variable step depending on the amount of information a
specific video segment contains.

Specifically, computing optical flow between two frames
produces displacement vectors for every pixel. The speed of
a movement can be estimated by looking at the lengths of
these vectors. It might be advantageous to select more frames
from the video segments which contain faster movement. As
a result, the number of samples selected from a segment is
suggested to be made proportionate to average displacement
vectors lengths between frames in this segment.

G. Fusion model

Linear support vector machine (SVM; i.e., hinge loss and
L2 regularization) is used as a fusion model.

V. EXPERIMENTS

A. Dataset

Experiments were performed on UCF101 [5], which is a
widely used human action recognition dataset that contains
13320 video clips annotated into 101 classes. The video clips
have a resolution of 320x240 and a fixed frame rate of 25
frames per second. UCF101 provides three train/test splits;
this paper reports the results on the first split.

B. Training

Fine-tuning upper layers (3 Inception blocks) of spatial
CNN (InceptionResNetV2) on UCF101 didn’t yield any
improvement, so pre-trained (on ImageNet) weights are used.

 UCF101 doesn’t have enough audio data for training or
fine-tuning a sufficiently deep convolutional neural network.
Thus, VGGish [3] model is used with the weights pre-trained
on AudioSet [17].

Motion CNN is trained from scratch, as well as RNNs for
all streams.

C. Preprocessing

Before feeding frames to CNN, they are resized to
299x299x3 which is the default input size for
InceptionResNetV2.

Videos are limited to the first 36 seconds (only one clip in
UCF101 is longer). Sequence length is limited to 180, and

frames are sampled using the adaptive sampling method
described above.

For motion CNN, the native video resolution of 320x240
is used.

D. Training setup and parameters

RNN models were trained using stochastic gradient
descent (SGD) with Nesterov momentum (also known as
Nesterov Accelerated Gradient or NAG). Learning rate has
been reduced by a factor of 10 if validation loss hadn’t
decreased for 5 epochs. Initial learning rate for SGD was 10–

2, and the lowest possible value (after reductions) was 10–6.

Adaptive gradient methods (like Adam, RMSProp, or
Adadelta) didn’t yield significantly faster convergence when
training RNNs, and NAG usually produced better results,
which is consistent with published observations [18]. Adam
was only used for motion CNN which benefits from faster
convergence since it was trained from scratch. Default
parameters provided in the original paper [19] were used.

Batch size was 32. Training has been run for some number
of epochs until validation loss had stopped improving: if it
hadn’t decreased for 10 epochs, the training had been ceased.

In RNN models, dropout (with the rate of 0.5) was applied
to the input layer, between RNN model and top dense layer,
and between LSTM/GRU layers.

L2 regularization parameter for linear SVM (fusion
model) was set to 10–2.

E. Selecting RNN architecture

Different RNN model architectures (based on LSTM and
GRU) with a varying number of hidden units were trained on
the spatial stream data. Results are shown in the Table I. Loss
function used was the cross-entropy loss (top dense layer used
softmax activation function). The best model (marked with
(*)) was also evaluated with linear SVM, and with attention
layer [20] applied after the input layer.

“S.” denotes two stacked layers, and “Bi” prefix means
bidirectional layer was used; the specified number of units is
per single LSTM/GRU cell in a model.

TABLE I. SPATIAL STREAM CLASSIFICATION RESULTS WITH

DIFFERENT RNN ARCHITECTURES

Model Hidden units Top-1, % Top-5, %

LSTM 256 76.24 93.49

LSTM 512 77.09 93.09

LSTM 1024 77.07 93.62

LSTM 2048 76.22 93.62

GRU 512 77.83 93.88

GRU 1024 77.81 93.17

BiLSTM 512 77.36 93.41

BiLSTM 1024 75.93 93.49

BiGRU 512 77.33 93.46

BiGRU 1024 77.52 93.41

S. LSTM 512 74.71 92.80

S. LSTM 1024 76.80 94.09

S. GRU 512 77.09 93.03

S. GRU 1024 77.22 93.25

S. BiGRU (*) 512 78.34 93.51

S. BiGRU 1024 77.15 93.17

S. BiLSTM 512 74.50 92.77

S. BiGRU + attention 512 75.03 92.89

S. BiGRU + SVM 512 79.40 90.84

Results show that the models with RNN cells that contain
512 or 1024 units generally perform best on this task. Stacked
GRU layers provide better accuracy than stacked LSTM
layers, likely because they are less prone to overfitting since
they have fewer parameters. Using attention layer
significantly decreased the accuracy. The best top-1
classification accuracy (78.34%) has been obtained with two
stacked bidirectional GRU layers with 512 hidden units in
every cell. This was further improved by using SVM instead
of softmax, which increased the accuracy to 79.40%.

F. Model evaluation

Finally, the complete model was evaluated after training
motion CNN and RNNs for all streams. Table II shows the
results and the comparison with other models.

VI. DISCUSSION

The proposed model achieved better accuracy than the
models which have the similar architecture [1]-[2] (2D CNN
+ RNN), and the result is significantly better compared to [8]
which also used embeddings for classification. It also
outperforms early 3D CNN architecture [9]. [10] and [11]
obtain better results, however, these are much more
complicated models which were pre-trained on much bigger
dataset (Kinetics); consequently, their results are not directly
comparable. The proposed model achieves good results
without pre-training on bigger datasets, and thus it is better
suited for use cases where the limited amount of training data
is available.

VII. ANOMALY DETECTION

It has been stated that the video embeddings extracted by
the proposed model can be used as features input to another
model. Anomaly detection using autoencoders can be an
example of this. Detecting anomalies in a video stream is
useful for a variety of applications; for example, traffic
camera feed can be analyzed to detect accidents.

TABLE II. MODEL EVALUATION RESULTS AND COMPARISON

 UCF101

top-1, %

Type Streams Pre-training

Proposed
model

93.1 2D CNN +
RNN

(GRU)

Spatial,
temporal,

audio

Spatial 2D CNN
on ImageNet

Two-stream
fusion [1]

88.0 2D CNN Spatial,
temporal

Spatial 2D CNN
on ImageNet

Multi-

stream [2]

92.6 2D CNN +

RNN

(LSTM)

Spatial,

temporal,

audio

Spatial 2D CNN

on ImageNet

video2vec

[8]

87.5 2D CNN +

RNN

(GRU)

Spatial,

temporal

Spatial 2D CNN

on ImageNet

C3D [9] 90.4 3D CNN Spatial,

temporal

I380K (private)

+ Sports-1M

(public)

I3D [10] 98.0 3D CNN Spatial,
temporal

ImageNet +
Kinetics

ResNeXt-

101 (64f)
[11]

94.5 3D CNN Spatial Kinetics

Autoencoder model consists of an encoder, a bottleneck,
and a decoder. The idea of anomaly detection using
autoencoders is that because the hidden layer (bottleneck) has
much lower dimensionality than the input, it only learns the
most important features; putting it another way, it learns the
most frequent features; so, in the context of anomaly
detection problem, it would learn the features of normal
examples because there is a majority of them. The
autoencoder loss function measures the difference between
the input and the reconstructed output and can be, for
example, a mean squared error. So, after training an
autoencoder, anomalous examples would have a higher
reconstruction error than the normal ones.

The video embedding vectors can be used as an input to
autoencoder. The bottleneck layer would need to have lower
dimensionality (than embeddings), and autoencoder would
learn to reconstruct the input embeddings. This would have
an effect of losing information related to anomalous examples
so they would have a higher reconstruction error.
Theoretically, the proposed model can be used as an encoder
part of an autoencoder. However, such autoencoder would be
extremely hard to train before of a large number of
parameters; using embeddings serves as an easy way to
perform anomaly detection with autoencoder that can have a
simple architecture.

VIII. CONCLUSIONS

This paper presented a multi-stream model for learning
video representations, which takes spatial, temporal and
audio streams into account. It is based on two-dimensional
convolutional and recurrent neural networks.

It has been shown that the individual components of this
model can be trained separately. The resulting embeddings
can be fused to perform classification, which has been shown
to outperform the similar architectures, achieving 93.1%
accuracy on UCF101.

Compared to the previous works, the proposed model
uses more modern architectures and techniques, e.g., the
optical flow estimation method based on convolutional neural
networks. The adaptive sampling method has also been
proposed; it allows to sample frames from a video at a
variable rate depending on the amount of information in a
video segment so that the segments with faster movement are
represented by a higher number of training examples.

The video representations, extracted by this model, can be
used as features input to another model; using them in
anomaly detection with autoencoders has been described as
an example.

It is argued that having the proposed model use recurrent
neural networks is beneficial because such architectures tend
to be more sample-efficient, i.e., can be trained with fewer
data. It also avoids the pitfalls of applying convolutional
neural networks to the time dimension, which results in the
loss of long-term context and order. Consequently, this model

can also be more successful in modeling longer videos with
more complex actions.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” Advances in Neural Information
Processing Systems (NIPS), vol. 27, pp. 568-576, 2014.

[2] Z. Wu, Y.-G. Jiang, H. Ye, X. Wang, and X. Xue, “Multi-stream multi-
class fusion of deep networks for video classification,” Proceedings of
the 2016 ACM on Multimedia Conference, pp. 791-800, 2016.

[3] S. Hershey et al., “CNN architectures for large-scale audio
classification,” IEEE Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 131-135.

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” CoRR, abs/1301.3781, 2013.

[5] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101
human actions classes from videos in the wild,” CoRR, abs/1212.0402,
2012.

[6] W. Kay et al., “The kinetics human action video dataset,” CoRR,
abs/1705.06950, 2017.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9 (8), pp. 1735-1780, 1997.

[8] S. Hu, Y. Li, and B. Li, “Learning semantic spatio-temporal
embeddings for video representation,” International Conference on
Pattern Recognition (ICPR), vol. 23, pp. 811-816, 2016.

[9] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” Proceedings
of the 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 4489–4497, 2015.

[10] J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new
model and the kinetics dataset,” IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4724–4733, 2017.

[11] K. Hara, H. Kataoka, and Y. Satoh, “Can spatiotemporal 3D CNNs
retrace the history of 2D CNNs and ImageNet?”, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[12] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” Advances in Neural Information Processing Systems
(NIPS), pp. 3859–3869, 2017.

[13] J. Donahue et al., “Long-term recurrent convolutional networks for
visual recognition and description,” IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2625–2634, 2015.

[14] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
Inception-ResNet and the impact of residual connections on learning,”
AAAI, vol. 4, 2017.

[15] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“FlowNet 2.0: Evolution of optical flow estimation with deep
networks,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 2, 2017.

[16] C. Szegedy and S. Ioffe, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” ICML'15
Proceedings of the 32nd International Conference on International
Conference on Machine Learning, vol. 37, pp. 448–456, 2015.

[17] J. F. Gemmeke et al., “Audio Set: An ontology and human-labeled
dataset for audio events,” IEEE Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 776-780, 2017.

[18] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The
marginal value of adaptive gradient methods in machine learning,”
Advances in Neural Information Processing Systems (NIPS), pp. 4151-
4161, 2017.

[19] D. P. Kingma, “Adam: A method for stochastic optimization,” CoRR,
abs/1412.6980, 2014.

[20] A. Vaswani et al., “Attention is all you need,” Advances in Neural
Information Processing Systems (NIPS), pp. 6000-6010, 2017.

