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Abstract. Complex sleep stage transition rules pose a challenge for the
learning of inter-epoch context with Deep Neural Networks (DNNs) in
ElectroEncephaloGraphy (EEG) based sleep scoring. While DNNs were
able to overcome the limits of expert systems, the dominant bidirectional
Long Short-Term Memory (LSTM) still has some limitations of Recurrent
Neural Networks. We propose a sleep Self-Attention Model (SAM) that
replaces LSTMs for inter-epoch context modelling in a sleep scoring DNN.
With the ability to access distant EEG as easily as adjacent EEG, we aim
to improve long-term dependency learning for critical sleep stages such
as Rapid Eye Movement (REM). Restricting attention to a local scope
reduces computational complexity to a linear one with respect to recording
duration. We evaluate SAM on two public sleep EEG datasets: MASS-SS3
and SEDF-78 and compare it to literature and an LSTM baseline model
via a paired t-test. On MASS-SS3 SAM achieves κ = 0.80, which is
equivalent to the best reported result, with no significant difference to
baseline. On SEDF-78 SAM achieves κ = 0.78, surpassing previous best
results, statistically significant, with +4% F1-score improvement in REM.
Strikingly, SAM achieves these results with a model size that is at least
50 times smaller than the baseline.

Keywords: attention · sleep scoring · inter-epoch context.

1 Introduction

The visual scoring of sleep stages based on polysomnography (PSG) is essential for
the diagnosis of many sleep disorders, but the instrumentation burden and time
effort limit it’s application. While expert systems could solve sleep scoring of PSG
already in 2005 [1] with human level agreement, limitations were in high develop-
ment effort and low flexibility for reuse. End-to-end learning via Convolutional
Neural Networks (CNNs) enabled sleep scoring based on electroencephalography
(EEG) only (the brain signal subset of PSG) and promises to reduce both burden
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and time effort [22]. Figure 1 shows an example of nightly EEG with a hypnogram
according to the rules of the American Association of Sleep Medicine (AASM).
It depicts a time series of sleep stages, i.e., brain-states, based on 30 s segments
termed epochs (not to be confused with training epochs). Soon after the first CNN
solutions it was realized that sleep scoring is not only a pattern recognition prob-
lem, but also a sequence transduction problem. Complex sleep stage transition
rules [4] pose a challenge for the learning of sleep EEG inter-epoch context with
DNNs. The inset in Fig. 1 shows an example of a prolonged Rapid Eye Movement
(REM) stage. Sequence transduction tasks are typically found in Natural Lan-
guage Processing (NLP) and can be solved with encoder-decoder architectures
based on Recurrent Neural Networks (RNNs). However, it was not until the
solution of the vanishing gradient problem with LSTM, that many sequence tasks
such as translation were improved dramatically [9]. Automatic sleep scoring was
no exception, and today the modeling of inter-epoch context is dominated by
bidirectional LSTMs [12, 20, 21]. However, their sequential nature makes them
harder to train than feed-forward networks and the fixed size state may still
limit representation of distant sequence elements. NLP research demonstrated
that direct access to encoded sequence elements via the attention mechanism
improves performance [3]. The Transformer model drops RNNs completely and
uses a pure feed-forward, self-attention based, encoder-decoder mechanism for
sequence transduction [23].

Fig. 1. Hypnogram sleep scoring from EEG with sleep stages W awake, R rapid eye
movement (REM) sleep (red), N1 transitional sleep, N2 normal sleep and N3 deep sleep.
The inset shows an inter-epoch context of 14 epochs (30 s long) for prolonged R scoring.
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2 Motivation

In this paper we seek to replace LSTMs with a self-attention-based sequence
encoder for epoch features in a sleep-scoring DNN, demonstrating an application
to time series classification. We argue that directly accessing epoch features
reduces the long-term dependency challenge, since no encoding into states is
necessary. This could aid especially stage R (REM sleep), which can depend on
distant epochs in the past and future. Since attention relates every output element
with every input element, the computational complexity is quadratic in sequence
length. This becomes an issue when scoring an entire night of EEG, opposed to
NLP with short sequences [23]. As solution we propose to restrict the attention
context L to a fixed size, moving scope. The inset in Fig. 1 shows an example
of a restricted context of L = 14 epochs, where the prediction of sleep stage yl
depends not only on Xl but also on X0. With this approach, the computational
complexity is reduced to linear, however at the price of a limited attention scope.
Due to the biological limitation of sleep cycle length we conjecture that a full
night scope is not required. Thus, it remains a tradeoff to choose a scope size L.
We hypothesize, that the direct access to distant epochs adds more representative
capacity, than what may be lost by limited scope.

3 Method

Competitive sleep scoring models typically use, with only few exceptions [18], a
sequence to sequence approach [19–21] based on LSTMs. The proposed model
SAM also uses this approach, but replaces bidirectional LSTMs with a sequence
encoder stack, based on the encoder part of the Transformer. Figure 2 left shows
the main building blocks. The model estimates from a length L sequence of EEG
epochs X = [X(1),X(2), . . . ,X(L)] a sequence of sleep stages y ∈ V L with the set
of sleep stages V. While some other work uses transformed versions of the EEG
[6, 19], here we process raw EEG. The input X ∈ Rfs×T×C is a high-resolution
signal with sampling frequency fs, C channels and T seconds duration. Overall,
the output probability sequence P ∈ RL×K with K = |V | is estimated from the
input X via the non-linear, parameterized function g:

P = g(X; θ) = fs([fe(X0; θe), . . . , fe(XL; θe)] ; θs) (1)

with parameters θ = (θe, θs) for embedder fe and sequence encoder fs.

3.1 Embedder

The epoch embedder operates on each sequence element individually, and thus
treats the sequence like a batch, indicated by the dashed line in Fig. 2. It is a
CNN designed to reduce a raw EEG epoch Xl to a vector el ∈ RNF of high level,
representative features. Every CNN layer has the same kernel size and is followed
by batch normalization [10] and ReLU activation, with padding and stride set
for identical in- and output resolution. The actual reduction of resolution gets
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Fig. 2. Left: Model overview. The model predicts from the length-L EEG sequence
X the sleep probability sequence P (W white, R red, N1–3 grayscale). Right: Encoder.
Five layers of MHSA and feed-forward net model relational representations.

done via identical max pooling layers with kernel size two. We found identical
resolution reduction performing better than aggressive resolution reduction [18].
Final max pooling concludes the embedder and reduces the finally NF feature
maps to dimension 1×NF. Skip connections [8] after every second max pooling
layer facilitate deep training and diversify the receptive field [14].

3.2 Sequence encoder stack

The embeddings, stacked to the sequence E ∈ RL×NF , are the input for inter-
epoch context modelling in the sequence encoder stack. It uses, unlike most
state-of-the-art solutions based on RNNs, only self-attention to model the inter-
epoch dependencies in the encoded sequence Z ∈ RL×NF .

Attention. It solves the problem of access to past information without regard
of the distance and avoids the bottleneck of squeezing the past into a single
state vector. It computes relational representations of sequences via a form of
content-addressed retrieval. Attention is a function f (ql,k,v) that maps a query
vector ql via key-value pairs to a retrieved context vector cl. With a query of
dimension Q, L×Q key matrix K and L× V value matrix V the l-th context cl
of dimension V is:

cl = αlV (2)

with αl = softmax(fscore(ql,K) and the scoring function fscore. Among different
attention functions [16], we consider dot-product attention fscore(ql,K) = qT

l K
T

for its favorable grouping to matrix operations. With input scaling and application
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to a sequence of L queries at once:

fSDPA(Q,K,V) = softmax

(
QKT

√
dk

)
(3)

scaled dot-product attention forms the basic attention operation. Attention is,
due to its definition (3), agnostic to element permutation. To supply element
ordering information a solution is to add positional embeddings to the input E.
We use fixed sinusoids with position dependent frequency ulk = sin l according
to [23].

Multi-headed self-attention. The relational representation of different posi-
tions of a single sequence is obtained via Q = K = V = E and called self-attention
or intra-attention. It originates in NLP and has been successfully applied in
tasks such as reading comprehension [5]. Multi-headed self-attention splits the
attention operation along the model dimension into NH attention heads applied
in parallel to linear projections of the input E:

fMHSA(E;W) = [C1,C2, . . . ,CNH ]WO (4)

with head context Ci = fSDPA(EWQi,EWKi,EWVi), projection weights WQi,
WKi ∈ RM×Q,WVi ∈ RM×V and WO ∈ RNHV×M reshaping inputs from and
the output to the same model dimension M .

Architecture. According Fig. 2 right the sequence encoder stack is comprised
of Ns-layers (i.e., parameters are duplicated) of fMHSA followed by a 2-layer
fully connected feed-forward net. This net fEC(zl) = max(0, zW1 + b1)W2 + b1

performs expansion and compression for each encoded sequence element. After the
last encoder layer class probabilities are obtained with the same linear-softmax
projection for each sequence element. Residual connections [8] facilitate model
convergence during parameter optimization and layer normalization [2] avoids
overfitting.

4 Experiments

We conduct experiments with the public Sleep-EDF Database Expanded sleep
cassette study (SEDF-78) from Physionet [7] and the Montreal Archive of Sleep
Studies subset 3 (MASS-SS3). In the following, we compare SAM with existing
approaches on the single EEG sleep scoring task.

4.1 Datasets

Table 1 provides an overview of both datasets. Both cover healthy subjects and
span a total age range from 20 to 101 years. While MASS-SS3 [17] is scored
with the actual 5 class AASM standard, SEDF-78 [11] is scored with the older
Rechtschaffen and Kales (R&K) standard. R&K has 6 sleep stages, but it is
possible to merge the 2 stages S3 and S4 for close resemblance of N3. Thus, we
evaluated both datasets with V = {W,N1,N2,N3,R}.
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Table 1. Datasets.

Dataset SEDF-78 MASS-SS3

n 78 62
F:M 41:37 34:28
mean age (range) 59.0 yrs (25-101) 42.5 yrs (20-69)
sleep disorders none AHI < 10
scoring standard R&K AASM
epoch duration 30 s 30 s
records 153 62
derivation Fpz-Cz EOG-F4
sampling rate 100 Hz 256 Hz

4.2 Preparation

MASS signals were resampled from 256 Hz to the model sampling rate fS = 100
Hz with a polyphase filter with up conversion 25 and down conversion 64 was
used. The C = 1 input channels were bipolar derivations, with derivation Fpz-Cz
for SEDF-78 and EOG-F4 for MASS-SS3. Both datasets were scored with epoch
duration T= 30 s. To remove drifts and low frequency artifacts the data were
filtered with a forward-backward, i.e., zero phase, Butterworth high pass filter
of 5-th order with 0.1 Hz cutoff. According to this specification the l-th input
epoch is Xl ∈ R3000×1.

4.3 Model setup

According to the experimental EEG size of 3000 samples we chose 9 max pooling
layers followed by final max pooling in the embedder. The resulting 20 CNN layers
had kernel size 5. This contrasts other work, such as the successful DeepSleepNet
with kernels up to size 400 [21]. After the first convolution feature maps increased
super-linear from 8 to NF = 64. A complete specification is provided in the
appendix Table 3. The sequence encoder layer was specified with model dimension
M = 64, NH = 4 attention heads and feed forward expansion 200. We stacked
Ns = 5 identical layers (with different parameters) and chose an attention scope
L = 30. This resulted in a total number of 360 k parameters. For SEDF-78 we
reimplemented the DeepSleepNet [21] LSTM model as a baseline. Notably, this
model has 22 M parameters.

4.4 Training

While some work applies separated and subsequent training of embedder and
sequence encoder [21], we train SAM jointly, via cross-entropy loss:

L (θ;X,y) = − 1

L

L∑
l=1

K∑
k=1

δylk log g (X; θ)lk (5)
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with the label yl one hot coded and the model 3. Unlike many other solutions
we use uniform class weights. We optimize (3) with AdamW [15] with β1 = 0.9,
β2 = 0.999, ε = 10−8, a batch size of 32 and weight decay of 10−4. The learning
rate was set to 10−3 and followed a fixed schedule with 4 epochs ramp up, 4
epochs ramp down and a total duration of 20 epochs. Since no validation set
was used, we always used the final model for testing. During training we use
10% dropout probability after MHSA and expansion-compression. The model is
implemented in PyTorch with a proprietary data loader. Training and testing
were performed on a 64 GB workstation with an NVIDIA 3090 GPU with 24 GB
RAM. The complete CV protocol on SEDF-78 required 1.7 h for SAM, while the
reimplemented DeepSleepNet required 12.2 h.

4.5 Protocol

Both datasets were evaluated with k-fold cross-validation (CV) with randomly
split subjects. In accordance with literature we chose k = 10 for SEDF-78 and
k = 31 for MASS-SS3. In all training and test runs, a single subject was treated
atomic, i.e., a single subject’s data, on record or epoch level, was never split over
test and training. This avoided over-fitting due to correlated test- and training
data. We randomly chose 4 folds (2 per dataset) to find optimal hyperparameters
from a set of combinations.

We report Cohen’s κ, specific F1-scores and the macro F1-score (MF1) from
pooled subjects. Thus, every result is from a single confusion matrix. In compari-
son with our baseline LSTM, we can compare results at the subject level. We
use a paired-sample t-test to show statistical significance at the α = 0.05 level.
Note that we do not compare to work that does not treat subjects atomic, uses a
different k in CV, does not report comparable metrics or uses different electrode
derivations.

Table 2. Results for the proposed SAM and the LSTM baseline DeepSleepNet compared
to literature. Our work is indicated by *. The best results are boldfaced.

Overall scores Sleep stage F1-scores
Dataset Model κ MF1 W N1 N2 N3 R

MASS-SS3 SAM* (0.36 M) 0.80 82% 87% 56% 91% 85% 88%
EOGL-F4 DeepSleepNet* 0.80 82% 88% 58% 91% 84% 88%

DeepSleepNet [21] (22 M) 0.80 82% 87% 60% 90% 82% 89%
IIT [20] 0.79 81% 85% 54% 91% 87% 85%

SEDF-78 SAM* 0.78 79% 93% 49% 86% 82% 84%
Fpz-Cz DeepSleepNet* 0.76 77% 92% 48% 84% 80% 79%

CNN-LSTM [12] 0.77 - - - - - -
U-Time [18] 0.75 76% 92% 51% 83% 75% 80%
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5 Results and discussion

Table 2 shows overall agreement scores and sleep stage specific agreement for all
datasets. On MASS-SS3 SAM achieves κ = 0.80 and MF1 = 82%, which is on
par with the best reported result. While our model is less accurate in N1 it is
more accurate in the clinically important N3 stage. The reimplemented LSTM
baseline DeepSleep-Net achieves comparable results to the published version. On
SEDF-78 our results surpass the DeepSleepNet and the literature with κ = 0.78
and MF1 = 79%. While all sleep stages except N1 improve between 1% and 2%,
the largest improvement occurs in R with 4%.

Fig. 3. Paired samples plot of binned subject-wise Cohen’s κ for the proposed model
SAM and the baseline LSTM DeepSleepNet for datasets MASS-SS3 and SEDF-78, with
binned average in red.

Figure 3 shows paired samples plots of binned subject level κ. For MASS-SS3
there is no difference on average (horizontal red line), analogous to the pooled
result (cf. Table 2). The paired-sample t-test confirms this expectation statistically
with p = 0.7 > α. For SEDF-78 most subjects show an increase by at least one
bin. Also, on average, there is an increase of 1 bin, which has a size of 0.025. The
t-test confirms a statistically significant difference with p = 4× 10−5 < α.

Our reimplemented DeepSleepNet* achieves higher agreement on SEDF-78
(MF1 = 0.77) than U-Time, although their DeepSleepNet reimplementation
(MF1 = 0.73) was inferior to U-Time. We carefully reimplemented the original
layer details (e.g., CNN padding) and adapted learning rates for the single, joint
training session. In accordance with comparable published and reimplemented
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results on MASS-SS3 we assume that our higher baseline result on SEDF-78 is
representative. Results show twice as large database-differences for DeepSleepNet
(∆κ = 0.04) than for SAM (∆κ = 0.02), caused by two different reasons. First,
we consider MASS-SS3 a simpler problem than SEDF-78 (EEG only), since
the former provides the network with EEG and EOG—the most important
information human experts use to score sleep—reflected by higher scores on
MASS-SS3. Second, DeepSleepNet results are particularly high on MASS-SS3
compared to SEDF (both to SEDF-78 here and SEDF-20 in [21]). According
the authors the DeepSleepNet architecture was optimized only on a MASS-SS3
subset, which may cause an architectural bias towards MASS-SS3.

While these are promising results, we acknowledge that they should be
solidified with more subjects from an independent dataset. A question out
of this work’s scope are clinical benefits of the proposed method. Since raw
agreement has no direct clinical relevance, improvements must be interpreted
cautiously. However, since stage R is clinically important (e.g., for time-to-REM)
our improvements could be relevant. Considered that SAM is more than 50
times smaller than DeepSleepNet it’s parity on MASS-SS3 is remarkable. On
the harder EEG only SEDF-78 experiment SAM could achieve a considerable
REM improvement (+4% F1-R), albeit the small size. The results support the
introductory hypothesis that REM accuracy benefits most from attention. We
attribute this to the direct (i.e., not state encoded) access to distant embeddings
and the distant-indifferent (i.e., constant) maximum path length of attention.
Although we conceived SAM for sleep scoring, other tasks such as abnormality
detection or movement intention detection as well may fit as well.

6 Conclusion

This contribution introduced SAM, a simple, and lightweight EEG local attention
model. We showed that SAM with 360 k parameters is on par with the 22 M
parameter state-of-the-art on the MASS-SS3 PSG sleep scoring task. On the
harder SEDF-78 EEG sleep scoring task SAM achieves the new state-of- the-
art performance and proves long-term dependency modelling benefits with a
considerable improvement in the practically important REM sleep stage. On
top of its effectiveness SAM is also efficient on EEG of arbitrary length since
computational complexity scales linear with EEG length. SAM may be an
important step towards reduced-instrumentation, but PSG-quality sleep scoring
and we look forward to investigations in clinical use.

Appendix

Table 3 shows the embedder layer specification.
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Table 3. Embedder layer specification based on CNN blocks (FCi) and residual blocks
(FRi). Conv BN layers comprise CNN, batch norm and ReLU activation and are
specified by kernel size, feature maps Co, stride and padding.

Layer Conv./Pooling
ID Group Type Out dim Size CO Stride Padd.

1 FC1 Input 3000 x 1
2 Conv BN 3000 x 8 5 8 1 2

3 FR2 Conv BN 3000 x 18 5 18 1 2
4 Max Pool 1500 x 18 2 2 0
5 Conv BN 1500 x 18 5 18 1 2
6 Conv BN 1500 x 18 5 18 1 2

7 FC3 Conv BN 1500 x 21 5 21 1 2
8 Max Pool 750 x 21 2 2 0

9 FR4 Conv BN 750 x 25 5 25 1 2
10 Max Pool 375 x 25 2 2 0
11 Conv BN 375 x 25 5 25 1 2
12 Conv BN 375 x 25 5 25 1 2

13 FC5 Conv BN 375 x 29 5 29 1 2
14 Max Pool 187 x 29 2 2 0

15 FR6 Conv BN 187 x 34 5 34 1 2
16 Max Pool 93 x 34 2 2 0
17 Conv BN 93 x 34 5 34 1 2
18 Conv BN 93 x 34 5 34 1 2

19 FC7 Conv BN 93 x 40 5 40 1 2
20 Max Pool 46 x 40 2 2 0

21 FR8 Conv BN 46 x 47 5 47 1 2
22 Max Pool 23 x 47 2 2 0
23 Conv BN 23 x 47 5 47 1 2
24 Conv BN 23 x 47 5 47 1 2

25 FC9 Conv BN 23 x 54 5 54 1 2
26 Max Pool 11 x 54 2 2 0

27 FR10 Conv BN 11 x 64 5 64 1 2
28 Max Pool 5 x 64 2 2 0
29 Conv BN 5 x 64 5 64 1 2
30 Conv BN 5 x 64 5 64 1 2

31 F11 Max Pool 1 x 64 5 5 0
32 Flatten 64

33 C Linear 5
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