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Abstract—In this study, we consider the multiple traveling
salesmen problem (mTSP) with the min-max objective of mini-
mizing the longest tour length. We begin by reviewing an existing
integer programming (IP) formulation of this problem. Then, we
present several novel conjunctive normal form (CNF) encodings
and an approach based on modifying a maximum satisfiability
(MaxSAT) algorithm for the min-max mTSP. The correctness
and the space complexity of each encoding are analyzed. In our
experiments, we compare the performance of solving the TSP
benchmark instances using an existing encoding and our new
encodings comparing the results achieved using an implemented
group MaxSAT solver to those achieved using the IP method.
The results show that for the same problem, the new encodings
significantly reduce the number of generated clauses over the
existing CNF encoding. Although the proposals are still not
competitive compared to the IP method, one of them may be
more effective on relatively large-scale problems, and it has an
advantage over the IP method in solving an instance with a small
ratio of the number of cities to the number of salesmen.

Index Terms—Boolean satisfiability, min-max optimization,
multiple traveling salesmen problem

I. INTRODUCTION

As one of the classic problems in theoretical computer
science, the traveling salesman problem (TSP) has also received
much attention in operations research. Moreover, the TSP
has been reformulated to address various practical application
problems. The multiple TSP (mTSP) is a simple extension of
TSP in which more than one salesman is deployed concurrently
to visit a set of interconnected cities. All salesmen depart from
and return to the same depot. Except for the depot, each of the
cities can only be visited exactly once by a single salesman.
A broader range of real-life problems can be modeled as the
mTSP, including for example, mission planning [1], workload
balancing [2], vehicle routing [3], etc. Regarding the objective
to be optimized, there are two distinct directions, as follows: one
that minimizes the total distance traveled by all the salesmen
(min-sum), and another that minimizes the distance of the
longest tour (min-max). Generally speaking, if we consider all
tours as a vector, then the min-sum objective is to determine
the minimal Manhattan norm of the vector, while the min-
max objective is to determine its minimal Chebyshev norm.

This paper is based on results obtained from a project commissioned by the
New Energy and industrial technology Development Organization (NEDO).
This work was also partially supported by JSPS KAKENHI Grant Number
JP19H04175.

However, the min-sum objective conditionally results in highly
imbalanced solutions in which one salesman visits all or most
of the cities, if no restriction is imposed on the number of cities
to be visited by each salesman. Furthermore, as an emphasis
on practicality, multi agent cooperation does not aim to reduce
costs, but rather to reduce the makespan to serve all the clients.
For this reason, we focus in this paper on the min-max mTSP.

A. Related Work

From the standpoint of computational complexity theory,
the mTSP is strongly NP-hard as the TSP is a special
case. In addition, for the min-max optimization problem,
some theorems related to its computational complexity have
been proved in the following literature. Yu [4] discussed the
corresponding min-max version of several classical discrete
optimization problems including the minimum spanning tree
problem, the resource allocation problem, and the production
control problem. The strong NP-hardness of these problems is
shown for an unbounded number of scenarios. Ko and Lin [5]
presented a number of optimization problems, such as the min-
max clique problem, the min-max three-dimensional matching
problem, and the min-max circuit problem, and showed that
they are complete for the class ΠP2 , the second level of the
polynomial-time hierarchy. Aissi et al. [6] proved that the min-
max and min-max regret versions of the assignment problem
are strongly NP-hard when the number of scenarios is not
bounded by a constant.

Because the min-max mTSP is much more difficult to solve
than the min-sum version, only very small-scale instances
of the min-max mTSP can be solved optimally within an
appropriate time limit. One of the earliest exact algorithms
for the min-max mTSP, discussed by França et al. [7], was
based on the Tabu search heuristic with the dichotomous and
downward search schemes. Despite the important academic
and engineering value of the min-max mTSP, the research
on it is relatively limited and different heuristic approaches
have been developed in the literature. Frederickson et al. [8]
proposed some approximation algorithms, which included k-
near insert, k-near neighbor, and k-split tour for the min-max
mTSP. Somhom et al. [9] and Modares et al. [10] developed a
self-organizing neural network approach for the min-max mTSP,
which introduced a competition method to decide whether a city
should be included in a tour. Soylu [11] presented a general
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variable neighborhood search algorithm. Necula et al. [12]
and Venkatesh and Singh [13] respectively proposed various
swarm intelligence algorithms, such as the ant colony, the
artificial bee colony, and the invasive weed optimizations for
the min-max mTSP. More recently, Vandermeulen et al. [14]
formulated combined task assignment and routing problems
as the minimum Hamiltonian partition problem, which is
equivalent to the min-max mTSP, and developed a heuristic
algorithm for solving it.

B. Contributions

We propose three conjunctive normal form (CNF) encodings
for the min-max mTSP in reference to the characteristics of the
integer programming (IP) formulation. These three encodings
are all to prevent subtours occurring in the solution of the
problem; two are based on vertex potential constraints, and the
third is based on reachability constraints. For each proposed
encoding, we provide a complete proof of its correctness and
space complexity. In addition, we propose a group maximum
satisfiability (MaxSAT) algorithm to solve the encoded min-
max mTSP. We also provide a comparison between an existing
naive CNF encoding, our proposals and an IP approach on
the instances of the TSP benchmark. Source code for our
experiments is available at https://github.com/ReprodSuplem/
MTSP/.

II. PRELIMINARIES

The mTSP is defined on a directed graph G = (V,E),
where V is the set of vertices and E is the set of edges. The
graph is associated with a distance matrix D = (dij) for each
edge (i, j) ∈ E. The matrix D is said to be symmetric when
dij = dji, ∀(i, j) ∈ E and asymmetric otherwise.

A. IP Formulation for the Min-Max mTSP

Owing to the two-dimensional characteristics of edges, the
min-sum mTSP is typically formulated using an assignment-
based double-index IP formulation, while for the min-max
mTSP, a general scheme is to add a third dimension in order to
distinguish clearly among the edges assigned to each salesman.
Therefore, we let xijk be a binary variable that is equal to
1 if edge (i, j) is selected in the k-th salesman’s tour and 0
otherwise. We also define an integer variable ui (the potential
of vertex i) as the number of cities visited on a salesman’s
path from the depot to city i. Then, the min-max mTSP can
be described as follows [12]:

min θ (1)

s.t.
n∑
j=2

x1jk = 1, 1 ≤ k ≤ m (2)

n∑
i=2

xi1k = 1, 1 ≤ k ≤ m (3)

n∑
i=1
i6=j

m∑
k=1

xijk = 1, 2 ≤ j ≤ n (4)

n∑
j=1
j 6=i

m∑
k=1

xijk = 1, 2 ≤ i ≤ n (5)

n∑
i=1
i6=j

xijk =

n∑
i=1
i6=j

xjik, 2 ≤ j ≤ n, 1 ≤ k ≤ m (6)

ui − uj + (n−m) ·
m∑
k=1

xijk ≤ n−m− 1,

2 ≤ i 6= j ≤ n (7)∑
(i,j)∈E

dijxijk ≤ θ, 1 ≤ k ≤ m (8)

xijk ∈ {0, 1}, ∀(i, j) ∈ E, 1 ≤ k ≤ m

where the number of cities (including the depot) is n, the
number of salesmen is m with m ≤ n. Constraint (2) (resp.,
constraint (3)) guarantees that, for each salesman k, the depot
(i.e., vertex 1) is to be departed from (resp., returned to) exactly
once. Constraint (4) (resp., constraint (5)) ensures that each
non-depot city is to be visited (resp., departed from) exactly
once. Constraint (6) enforces that for each non-depot city, the
salesman who enters and exits the same city must be consistent.
Constraint (7) [15], [16] is based on the subtour elimination
constraint (SEC) proposed by Miller et al. [17], referred to
here as the MTZ-based SEC, where the generated formulae
and the required vertex potentials are O(n2). This constraint
is used to prevent subtours, which are degenerate tours that
are formed between non-depot cities and not connected to the
depot. In addition, this constraint ensures that each salesman is
to visit at least one non-depot city. Here n−m is the maximum
number of vertices that can be visited by any salesman. The
potential of each vertex indicates the order of the corresponding
vertex in the tour. The objective function (1) is to minimize
the auxiliary variable θ (θ ∈ R) indicating the upper bound of
each salesman’s tour length, as shown in inequality (8).

Definition 1. The min-max optimization problem (MMOP) is
defined generally as follows:

min
k,ε

θ s.t. C ∧
m∧
k=1

(
f(k, ε) ≤ θ

)
, (9)

where f(k, ε) is the individual cost function for k (1 ≤ k ≤ m),
ε is a set of other related variables and C is the set of
remaining constraints. Specially, for the min-max mTSP,
f(k, ε) =

∑
ε∈E dεxεk, and C consists of constraints (2)–(7).

B. Maximum Satisfiability

A well-known Boolean satisfiability problem (SAT) was the
first problem shown to be NP-complete [18]; this problem
requires determining whether there exists a truth assignment
that satisfies a given Boolean formula.1 Typically, a Boolean
formula is expressed in CNF, consisting of a conjunction (using
the symbol ∧) of one or more clauses. A clause is a disjunction
(using the symbol ∨) of one or more literals, and a literal is

1A truth assignment is a function A : X → {0, 1}, where X is a set of
Boolean variables and A is regarded as a conjunction of all elements in X .
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an occurrence of a Boolean variable or its negation (using the
symbol ¬).

MaxSAT is an optimal version of SAT [19]. In the weighted
partial MaxSAT, the problem instance is typically expressed
as a set of hard and soft clauses, where each soft clause
has a bounded positive numerical weight that indicates the
cost of falsifying the soft clause. The problem is to find a
model that satisfies all the hard clauses and minimizes the
total cost (i.e., maximizing the sum of the weights of the
satisfied soft clauses). Formally, we denote a MaxSAT formula
as F = H∧ (Cn+1, w1) ∧ . . . ∧ (Cn+m, wm), where H is the
set of hard clauses consisting of

∧n
i=1 Ci and the remaining

clauses (i.e.,
∧m
i=1 Cn+i) are soft. Solving a MaxSAT instance

F amounts to finding an assignment that satisfies H and
minimizes

∑m
i=1(wi¬Cn+i). Technically, we introduce the

auxiliary Boolean variable bi for each soft clause Cn+i with
the implication of ¬bi → Cn+i where 1 ≤ i ≤ m, and such a
bi is called the blocking variable [20], to ensure that F can be
solved through the resolution of a sequence of SAT instances
associated with the pseudo-Boolean (PB) constraints encoding
[21] as follows:

Ft = H ∧
( m∧
i=1

(Cn+i ∨ bi)
)
∧ CNF

PB

( m∑
i=1

wibi < t
)
. (10)

In (10), Ft is a CNF that is satisfiable if and only if F has
an assignment A whose cost (i.e.,

∑m
i=1(wi¬Cn+i)) is less

than t. If the optimal assignment of F is A∗ and its minimal
cost is t∗, then the SAT problem Ft for t ≥ t∗ is satisfiable,
while the problem for t < t∗ is unsatisfiable. For SAT testing
a sequence of Ft, t is initialized to

∑m
i=1 wi+1, with the next

t depending on the current assignment A, obtained from the
previous testing. Whenever Ft is unsatisfiable, t∗ is the last
tested and satisfiable t. Therefore, to search for the minimal
cost for F is to find the precise location of this transition from
satisfiable to unsatisfiable CNF formulae. This approach is
typically called SAT-based MaxSAT algorithm [22].

C. Group MaxSAT

The MMOP shown in (9) can be transformed into general
MaxSAT. However, such a reduction method might suffer from
execution slow down or even memory-out caused by the huge
size of the encoded formula. Owing to that, for each k, the
constraint of f(k, ε) ≤ θ within the MMOP can be modeled
as a group of soft clauses, the resulting formalism is referred
to as group MaxSAT [23]. In group MaxSAT, each grouped
soft clause can be regarded as a triple (Cn+i, wi, k) indicating
that the soft clause Cn+i corresponds to the weight wi and is
labeled as the k-th group of soft clauses. This modification
allows us to distinguish between soft clauses in accordance
with their respective groups.

Definition 2. Let X = {x1, x2, . . . , xn} be a set of n Boolean
variables. The following naive CNF encodings correspond to
three special cases of cardinality constraints for X .
• At most one constraint: AMO(X) =

∧n
i=1

∧n
j=i+1(¬xi∨

¬xj).

• At least one constraint: ALO(X) =
∨n
i=1 xi.

• Exactly-one constraint: EO(X) = AMO(X)∧ALO(X).

III. CNF ENCODINGS FOR THE MTZ-BASED SEC
With the min-max mTSP in IP formulation, constraints

(2)–(5) can be encoded directly into CNF by using the
exactly-one constraint. In constraint (6), according to the
previous constraints, we know that both

∑n
i=1 xijk and∑n

i=1 xjik are less than or equal to one. Therefore, the equation∑n
i=1 xijk =

∑n
i=1 xjik is equivalent to its logical form∨n

i=1 xijk ↔
∨n
i=1 xjik, which can also be represented simply

as CNF. For encoding C in (9), the remaining work is to convert
the MTZ-based SEC, viz., constraint (7), into a CNF formula.

A. Arithmetic Encoding
The most explicit method is to encode the arithmetic formula

expressed as constraint (7) directly into CNF. For each vertex
potential ui, we have 0 ≤ ui ≤ n− 2, where 2 ≤ i ≤ n and
n is the number of cities. Therefore, according to the scheme
of the constraint satisfaction problem (CSP) based on direct
encoding [24], in total (n− 1)(n− 2) Boolean variables are
required corresponding to every possible value of all vertex
potentials. We denote these Boolean variables as µit, where
2 ≤ i ≤ n and 1 ≤ t ≤ n − 2. Then constraint (7) can be
rewritten in the following form:

∀i, j,
n−2∑
t=1

(
t(µit − µjt)

)
+

m∑
k=1

(
(n−m)xijk

)
≤ n−m− 1

⇔
n−2∑
t=1

(tµit) +

n−2∑
t=1

(t¬µjt) +

m∑
k=1

(
(n−m)xijk

)
≤ n2 − n

2
−m.

(11)

Equation (11) is a canonical PB constraint that can be encoded
into a CNF formula. The complexity of a state-of-the-art PB
constraint encoding is O(N3 logA), where N is the number of
terms and A is the maximum of coefficients [25]. In the mTSP,
we have

(
n−1
2

)
such PB constraints and ∀i, EO(

⋃n−2
t=0 µit),

where N = 2(n−2)+m, A = n−2 and 2 ≤ i ≤ n. Therefore,
the arithmetic encoding results in O(n5 + m3n2) generated
clauses.

B. Potential Encodings
In addition to encoding the arithmetic expression of con-

straint (7) directly, we can also achieve the logical conversion
according to the specific meaning of the MTZ-based SEC. For
any two distinct vertex potentials, the difference between their
values must be less than or equal to n −m − 1. Moreover,∑m

k=1 xijk = 1 if and only if vertex j is adjacent to vertex i in
the graph. Thus, in this case, we have a pair of vertex potentials
for which uj − ui ≥ 1, indicating that vertex j appears after
vertex i in the permutation. In brief, the MTZ-based SEC
acts to restrict the order of each pair of vertices in its tour if
one such pair is the successor of the other one. Obviously, a
solution will contradict the exhaustive MTZ-based SECs if it
includes any subtour.
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1) Guiding potential: We use the properties of vertex
potentials described above to introduce a new type of Boolean
variables νijt to avoid the occurrence of subtours, with
2 ≤ i 6= j ≤ n, (i, j) ∈ E, and t (1 ≤ t ≤ n − 2)
indicating the potential of the successor vertex j. For example,
νijt = 1 indicates that a salesman will go directly to city j
when departing from city i which is the salesman’s t-th arrival
non-depot city. Therefore, almost (n− 2)(n− 1)2 additional
Boolean variables are required for the following encoding.

m∧
k=1

(
xijk →

n−2∨
t=1

νijt

)
, 2 ≤ i 6= j ≤ n (12)

n−2∧
t=1

(
νijt →

m∨
k=1

xijk

)
, 2 ≤ i 6= j ≤ n (13)

n∧
j=2

(
x1jk → xj1k ∨

n∨
l=2
l 6=j

νjl1

)
, 1 ≤ k ≤ m (14)

n−2∧
t=1

(
νijt →

m∨
k=1

xj1k ∨

{∨n
l=2, l 6=j νjl(t+1), if t 6= n− 2,

0, otherwise.

)
,

2 ≤ i 6= j ≤ n (15)
n∧
j=2

AMO
( n−2⋃
t=1

n⋃
i=2

νijt

)
. (16)

Equation (12) (resp., (13)) represents the implication from xijk
to
∨n−2
t=1 νijt (resp., from νijt to

∨m
k=1 xijk). Equation (14) and

(15) both guide xj1k or νjlt in the forward direction of each tour
(i.e., the next vertex potential), with the former corresponding
to the potential value of 1 and the latter corresponding to the
remaining cases. Equation (16) imposes the restriction that
each successor vertex j can correspond only to at most one
specific potential.

Theorem 1. The simultaneous (12)–(16) ensure that there are
no subtours in the solution of the min-max mTSP.

Proof. Assume that an assignment A includes at least one
subtour and that the set of edge connections in such subtour
is {xabκ, . . . , xcaκ} (i.e., A(xabκ ∧ . . . ∧ xcaκ) = 1), where
2 ≤ a 6= b ≤ n and 2 ≤ c 6= a ≤ n. This subtour indicates that
the salesman κ travels from non-depot city a to b and finally
returns to a from c. In accordance with (12), the projection
relation from xijk to

∨n−2
t=1 νijt is constructed, to ensure that∨n−2

t=1 νijt can reflect the edge connections of xijk. Since each
route can be regarded as a series of head-to-tail edges with an
increasing potential to each tail vertex, we begin by constraining
the connection between the first arriving non-depot city and
successor city through (14). The subsequent edge connections
are guided according to (15). An inevitable contradiction will
occur on the constraint of the last edge of the subtour. We
have the following cases when A(νcat) = 1:
• If t 6= n− 2, then νcat →

∨m
k=1 xa1k

∨n
l=2 νal(t+1).

– If A(
∨m
k=1 xa1k) = 1, then the definition of subtour is

violated if A(xa1κ) = 1; inconsistencies with constraint
(6) arise otherwise.

– If A(
∨n
l=2 νal(t+1)) = 1, then a contradiction with (16)

arises if A(νab(t+1)) = 1; otherwise, according to (13),
this conflicts with A(

∨m
k=1 xalk) = 1 (l 6= b) for the

same reason as the previous subitem whether k = κ or
not.

• Otherwise, we have νca(n−2) →
∨m
k=1 xa1k. This might

contradict the definition of subtour or another constraint
for the same reason as that mentioned in the first subitem
of the previous item.

Consequently, solutions of min-max mTSP without any subtour
are guaranteed by simultaneous (12)–(16).

Theorem 2. Equations (12)–(16) always produce a polynomial-
sized CNF that includes the number of generated clauses of
complexity O(n5 +mn2), where m is the number of salesmen
and n is the number of cities.

Proof. The number of clauses involved in (12) is bounded
above by m(n− 1)2, while that involved in (13) is bounded
by (n− 2)(n− 1)2. In (14) and (15), the number of clauses is
bounded, respectively, by m(n− 1) and (n− 2)(n− 1)2. Last,
bounded by (n− 1)

(
(n−2)(n−1)

2

)
binary clauses are generated

in (16). Therefore, (12)–(16) always produce a polynomial-
sized CNF that includes the number of generated clauses of
complexity O(n5 + mn2), in which the number of binary
clauses is O(n5).

2) Blocking cycle: An alternative interpretation of MTZ-
based SEC is that constraints prevent cycles with respect to
the set of vertices {2, . . . , n}. We still use the aforementioned
new type of Boolean variables νijt, but we replace the vertex
potential guidance and some related constraints including (13)–
(16) with the following constraints to block cycles.

n∧
i=2

( n∨
j=2
j 6=i

νijt →
n−2∧
τ=t

n∧
l=2
l 6=i

¬νliτ
)
, 1 ≤ t ≤ n− 2 (17)

Equation (17) indicates that, for potentials τ greater than
or equal to the current potential t, the head of any edge
connection (i.e., departure vertex) i can not be the tail of
any edge connection (i.e., successor vertex).

Theorem 3. The simultaneous (12) and (17) guarantee that
there are no subtours in the solution of the min-max mTSP.

Proof. Assume that an assignment A includes at least one
subtour and consider that the set of edge connections in such a
subtour is S = {xabκ, . . . , xcaκ} (i.e., A(xabκ ∧ . . .∧xcaκ) =
1), where 2 ≤ a 6= b ≤ n and 2 ≤ c 6= a ≤ n. This
subtour indicates that the salesman κ starts from non-depot
city a to b and finally returns to a from c. According to
(12), A(

∨n−2
t=1 νabt ∧ . . . ∧

∨n−2
t=1 νcat) = 1. Now focus on

A(νabt1∧. . .∧νcat|S|) = 1, where t1 (resp., t|S|) is the minimal
t with respect to A(

∨n−2
t=1 νabt) = 1 (resp., A(

∨n−2
t=1 νcat) = 1)

and 1 ≤ t1 < . . . < t|S| ≤ n − 2 corresponding to the
order of the assumed subtour’s edge connections. Further
according to (17), A(

∧n−2
τ=t1

∧n
l=2 ¬νlaτ ) = 1. From νcat|S| ∈⋃n−2

τ=t1

⋃n
l=2 νlaτ , it follows that A(¬νcat|S|) = 1, which
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k = m:
· · ·
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+
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m
+
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m
+
n−

1

1
2...
m

m+1
m+2
·
·
·

m+n−1

#city = n; #salesman = m

(a) (b)

Fig. 1. Boolean variables of edge connections: (a) Each cell of a matrix
indicates the variable xijk with the specific i (index of rows), j (index of
columns), and k (index of salesmen), where for both rows and columns, index 1
corresponds to the depot city. (b) Each cell of the matrix indicates the variable
lij with the specific i (index of rows) and j (index of columns), where for
both rows and columns, indices from 1 to m, respectively, correspond to
the depot city for each salesman k. The cells marked by � indicate that the
corresponding variables can be omitted.

conflicts with the previous derivation. Therefore, solutions
of min-max mTSP without any subtour can be ensured by (12)
and (17).

Theorem 4. Equations (12) and (17) always produce a
polynomial-sized CNF that includes the number of generated
clauses of complexity O(n5 +mn2), where m is the number
of salesmen and n is the number of cities.

Proof. The number of clauses required in (12) is bounded
above by m(n − 1)2. In (17), the number of clauses is
bounded by (n−2)(n−1)4

2 and all these clauses are binary clauses.
Therefore, (12) and (17) also produce a polynomial-sized CNF
that includes the number of generated clauses of complexity
O(n5 + mn2), in which the number of binary clauses is of
complexity O(n5).

C. Relative Encoding

To prevent cycles other than the main tour for each salesman,
we also propose an encoding method based on reachability
constraints. In this encoding, we can compact the variables of
edge connections further from triple-index to double-index. In
contrast to the previous xijk shown in Fig. 1 (a), we define a
new type of Boolean variables lij depicted in Fig. 1 (b). For
the axes of i and j, instead of using the first index (highlighted
red in Fig. 1 (a)) to represent the depot city in xijk, we use the
first m indices (highlighted red in Fig. 1 (b)) to represent m
duplications of the depot city sequentially for every salesmen
in lij .

In addition, we also introduce another new type of Boolean
variable rij which indicates whether vertex j can be reached
via vertex i, where 1 ≤ i ≤ n, m+ 1 ≤ j ≤ m+ n− 1, and
i 6= j. In other words, lij = 1 if and only if vertex j appears
immediately after vertex i in any salesman’s tour; while rij = 1
if and only if vertex i appears before vertex j in any salesman’s
tour. This idea, based on the relative positions of vertices in
the permutation, was first proposed in Prestwich [26] and was
devoted to a CNF encoding of the Hamiltonian path problem.

Therefore, O(m2 + n2 +mn) Boolean variables are required
for encoding C in (9), as follows.

m∧
i=1

EO
(m+n−1⋃
j=m+1

lij

)
, (18)

m∧
j=1

EO
(m+n−1⋃
i=m+1

lij

)
, (19)

m+n−1∧
i=m+1

EO
(m+n−1⋃

j=1
j 6=i

lij

)
, (20)

m+n−1∧
j=m+1

EO
(m+n−1⋃

i=1
i6=j

lij

)
, (21)

m+n−1∧
i=1

m+n−1∧
j=m+1

j 6=i

(lij → rij), (22)

m+n−1∧
i=m+1

m+n−1∧
j=i+1

(¬rij ∨ ¬rji), (23)

m+n−1∧
i=1

m+n−1∧
j=m+1

m+n−1∧
k=m+1

(rij ∧ rjk → rik), condition set (24)

Equation (18) (resp., (19)) indicates that for each salesman,
there exists exactly one departure from (resp., return to)
the depot city to (resp., from) another city. Equation (20)
(resp., (21)) specifies that each non-depot city can be departed
from (resp., visited) exactly once. Equation (22) shows the
implication from lij to rij . The acyclic constraints are given
by (23). Last but not least, (24) indicates the transitive law of
reachability variables, where the condition set includes that
k 6= j 6= i and among the three indices i, j, and k, at most one
of them is less than or equal to m (i.e., indicating the depot
city).

Because this encoding does not include an equation that
corresponds to constraint (6), the consistency of a salesman
who enters and exits the same city can be restricted only by
reachability constraints. However, the Boolean variables rij
range over m+1 ≤ j ≤ m+n−1. Consequently, the last edge
connection of each salesman’s tour that returns to the depot
might not be able to maintain this consistency. For example, we
might obtain a solution in which A(lκa ∧ lab ∧ . . .∧ lcκ′) = 1,
indicating that the tour originates from salesman κ’s depot
to city a, then goes to the next cities b, . . . , c, and finally
returns to the depot of salesman κ′. Here lcκ′ is the last edge
connection in this tour. Such inconsistency does not affect the
optimization results, since they have an identical distance cost
(i.e., dcκ = dcκ′ ).

Theorem 5. The simultaneous (18)–(24) guarantee that except
for the edge connection that returns the depot for each salesman,
the edge connections are a partial solution of the min-max
mTSP without any subtour.

Proof. Assume that an assignment A includes at least one sub-
tour, consider that the set of edge connections in such subtour is
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{lab, . . . , lca}, and suppose that they are both dominated by the
salesman κ (i.e., A(lab∧ . . .∧ lca∧rκa∧ . . .∧rκc) = 1), where
m+ 1 ≤ a 6= b ≤ m+n−1 and m+ 1 ≤ c 6= a ≤ m+n−1.
According to (22), we have A(rab ∧ · · · ∧ rca) = 1. Then
according to (24), we can obtain A(rac) = 1, and this
contradicts (23).

Lemma 1. Equations (22)–(24) ensure that all reachability
variables rij can be excluded from decision variables in the
entire inference process of solving the min-max mTSP.

Proof. In Theorem 5, every reachability literal rij or ¬rij
involved in its proof are evaluated to 1 by unit propagations
according to (22)–(24). Therefore, we can consider all rij as
the support variables used to restrict the solution without any
subtour and declare them to be non-decision variables.

Theorem 6. Equations (18)–(24) always produce a polynomial-
sized CNF that includes a number of generated clauses of
complexity O(n3 +mn2), where m is the number of salesmen
and n is the number of cities.

Proof. The number of clauses involved in (18) and (19) is
bounded above by 2m

((
n−1
2

)
+ 1
)
, while that involved in (20)

and (21) is bounded by 2(n− 1)
((
m+n−1

2

)
+ 1
)
. In both (22)

and (23) the number of clauses is bounded by (n−1)(m+n−1),
and in (24), it is bounded by (n− 1)2(m+ n− 1). Therefore,
(18)–(24) always produce a polynomial-sized CNF that includes
a number of generated clauses of complexity O(n3+mn2).

IV. GROUP MAXSAT SOLVING FOR THE MIN-MAX MTSP

This section proposes an approach based on group MaxSAT
for solving the min-max mTSP. We analyze the grouped soft
clauses corresponding to our proposed encodings, and extend
the weighted partial MaxSAT algorithm to handle such the
group MaxSAT problems.

A. Grouped Soft Clauses

In the min-max mTSP, for the potential encodings,
f(k, ε) (1 ≤ k ≤ m) can be expressed as a linear adder,
where f(k, ε) =

∑n
i=1

∑n
j=1(dij ·xijk). While for the relative

encoding, we must discuss the following two situations: (1) for
the last edge connection (i.e., return to depot), the linear adder
counts dij if rki ∧ lij = 1. Here, k is the index corresponding
to the departure depot and j is the index corresponding to the
back depot, where 1 ≤ i ≤ m + n − 1 and 1 ≤ j, k ≤ m;
(2) for the other edge connections, the linear adder counts dij
if rkj ∧ lij = 1, where 1 ≤ i ≤ m + n − 1, m + 1 ≤ j ≤
m + n − 1 and 1 ≤ k ≤ m. Therefore, we have f(k, ε) =∑m+n−1
i=1

∑m
j=1(dij ·rki·lij)+

∑m+n−1
i=1

∑m+n−1
j=m+1 (dij ·rkj ·lij)

for the relative encoding. Note that, due to the difference
between the directed graphs corresponding to the potential
encodings and the relative encoding (see Fig. 1), the distance
matrix D = (dij) for the relative encoding is an extension
of that for the potential encodings. We translate the min-max

mTSP into the group MaxSAT formulae respectively for the
potential encodings and for the relative encoding as follows:

F ′
(potential)

=H ∧
m∧
k=1

n∧
i=1

n∧
j=1

(¬xijk, dij , k),

F ′
(relative)

=H ∧
m∧
k=1

m+n−1∧
i=1

( m∧
j=1

(¬rki ∨ ¬lij , dij , k)

m+n−1∧
j=m+1

(¬rkj ∨ ¬lij , dij , k)
)
.

(25)

B. Multiple PB Constraints

To solve the group MaxSAT formulae F ′ in (25), we
encode it into a series of SAT instances referring to (10)
by simultaneously using multiple PB constraints encoding as
follows:

F ′t
(potential)

=H ∧
m∧
k=1

n∧
i=1

n∧
j=1

(¬xijk ∨ bijk)

∧
m∧
k=1

CNF
PB

( n∑
i=1

n∑
j=1

(dij · bijk) < t
)

=H ∧
m∧
k=1

CNF
PB

( n∑
i=1

n∑
j=1

(dij · xijk) < t
)
,

F ′t
(relative)

=H ∧
m∧
k=1

m+n−1∧
i=1

( m∧
j=1

(¬rki ∨ ¬lij ∨ bijk)

m+n−1∧
j=m+1

(¬rkj ∨ ¬lij ∨ bijk)
)

∧
m∧
k=1

CNF
PB

(m+n−1∑
i=1

m+n−1∑
j=1

(dij · bijk) < t
)

=H ∧
m∧
k=1

CNF
PB

(
m+n−1∑
i=1

( m∑
j=1

(dij · rki · lij)

+

m+n−1∑
j=m+1

(dij · rkj · lij)
)
< t

)
.

(26)

Theorem 7. Whether for the potential encodings or the relative
encoding, in (26), F ′t is a CNF that is satisfiable if and only
if F ′ (in (25)) has a valid assignment whose costs for every
group (i.e., ∀k, f(k, ε)) are less than t at the same time.

Proof. Let’s consider that for the potential encodings, the
auxiliary variables Γ→ xijk; while for the relative encoding,
Γ→ (rki ∧ lij) if 1 ≤ j ≤ m and Γ→ (rkj ∧ lij) otherwise.

Assume that there exists an assignment A satisfying F ′t . For
any variable bijk included in soft clauses, if A(bijk) = 1, then
for F ′, there exists an assignment A′ consistent with A such
that A′(Γ) ∈ {0, 1}. In this case, whether A′(Γ) is 0 or 1,∑
i

∑
j(dij · Γ) < t. If A(bijk) = 0, then for F ′, there exists

an assignment A′ consistent with A such that A′(Γ) = 0.
Assume that there exists an assignment A satisfying F ′. For

any variable Γ included in soft clauses, if A(Γ) = 1, then
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for F ′t , there exists an assignment A′ consistent with A such
that A′(Γ) = 1, implying A′(bijk) = 1. If A(Γ) = 0, then for
F ′t , there exists an assignment A′ consistent with A such that
A′(bijk) ∈ {0, 1}, subsuming A′(bijk) = 0, with the result
that

∑
i

∑
j(dij · bijk) < t.

Therefore, according to Theorem 7 we can know definitively
that the solution of the group MaxSAT formula F ′ is equivalent
to the solution of the original MMOP in (9).

V. IMPLEMENTATION AND EVALUATION

We evaluated the existing arithmetic encoding, the proposed
encodings, and the IP method experimentally on an Intel
Core i7-6850K, 3.6 GHz processor with 32 GB RAM running
Ubuntu 18.04. The arithmetic encoding is implemented by
using the totalizer encoding of PB constraints [27], [28]. The
proposed encodings are two potential encodings based on
guiding potential and blocking cycle, respectively, and a relative
encoding. In the experiments, we called these comparison
methods arithmetic, guide, acyclic, and relative, respectively,
for short.

Since there is no open benchmark for the min-max mTSP,
we selected several benchmark instances of different sizes
from TSPLIB.2 For each selected instance, we specified dif-
ferent numbers of salesmen and generated their corresponding
problem instances through implemented encodings and IP
formulations. We used an IP optimizer–CPLEX, version 12.7.1
[29], and a group MaxSAT solver by modifying QMAXSAT
[30] to solve all generated problem instances. Each generated
problem instance will be solved by the corresponding solver
within 3,600 CPU seconds time limit.

In Table I, the notation “insn m” in the first column
indicates that the number of cites is n and the number of
salesmen is m, where “insn” corresponds to the name of the
original benchmark instance. The cell marked by - indicates
that the size of its instance is too large, resulting in a file
generated by its encoding being much larger than 10 GB. Thus,
it was excluded from our experiment. All methods failed to
find the optimal solutions of these instances within the limited
time. As the result, for each instance, the number of clauses
generated by arithmetic is much larger than that of guide or
acyclic, while those of guide and acyclic are approximately
the same but also much larger than those of relative. For
relatively small-scale instances, in optimized value comparison,
acyclic is better than the other encodings, but it is still inferior
to ip. However, we found that as the scale of the problem
became larger, the performance of relative gradually became
better, even the obtained initial solution is not updated until
the end, while ip has no initial solution.

In addition, we noticed that for the same original benchmark
instance, the smaller ratio of the number of cities to the number
of salesmen, the smaller the gap between the group MaxSAT
methods and ip. Consequently, we conducted an expanded
experiment to increase the number of salesmen of benchmark
instance eil76, shown in Table II. We can see that, for the

2http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/

instances with a small ratio of the number of cities to the
number of salesmen, relative outperformed ip in the overall
comparison of optimized values.

VI. CONCLUSION

In this paper, we proposed three CNF encodings for the
min-max mTSP. These three encodings are all intended to
prevent subtours occurring in the solution of the problem; two
of them are based on the vertex potentials, and the third is
based on the reachabilities. The correctness of the encodings is
rigorously proved as well as the number of generated clauses.
We also implemented a group MaxSAT algorithm to solve the
encoded min-max mTSP. In terms of the space complexity of
the generated problem, our new encodings are significantly
improved over the existing encoding. Furthermore, although the
proposed approaches are not as effective as the IP method in the
performance of small-scale problems, one of them outperforms
the IP method for an instance for which the ratio of the number
of cities to the number of salesmen is small.
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