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Abstract

We define the function υ(x) =
3×log x+5

8×π×
√

x+1.2×log x+2 +
log x

log(x+C×
√

x×log log log x) − 1 for some positive
constant C independent of x. We prove that the Riemann hypothesis is false when there exists
some number y ≥ 13.1 such that for all x ≥ y the inequality υ(x) ≤ 0 is always satisfied.
We know that the function υ(x) is monotonically decreasing for all sufficiently large numbers
x ≥ 13.1. Hence, it is enough to find a value of y ≥ 13.1 such that υ(y) ≤ 0 since for all x ≥ y we
would have that υ(x) ≤ υ(y) ≤ 0. Using the tool gp from the project PARI/GP, we found the first
zero y of the function υ(y) in y ≈ 8.2639316883312400623766461031726662911 E5565708 for
C ≥ 1. In this way, we claim that the Riemann hypothesis could be false.
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1. Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part 1

2 [1]. Let Nn =

2 × 3 × 5 × 7 × 11 × · · · × pn denotes a primorial number of order n such that pn is the nth prime
number. Say Nicolas(pn) holds provided∏

q|Nn

q
q − 1

> eγ × log log Nn.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, log is the natural logarithm, and
q | Nn means the prime number q divides to Nn. The importance of this property is:

Theorem 1.1. [2], [3]. Nicolas(pn) holds for all prime numbers pn > 2 if and only if the
Riemann hypothesis is true.

In mathematics, the Chebyshev function θ(x) is given by

θ(x) =
∑
p≤x

log p

where p ≤ x means all the prime numbers p that are less than or equal to x. We know this
property for this function:
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Theorem 1.2. [4]. There are infinitely many values of x such that

θ(x) > x + C ×
√

x × log log log x

for some positive constant C independent of x.

We also know that

Theorem 1.3. [5]. If the Riemann hypothesis holds, then e−γ

log x
×

∏
q≤x

q
q − 1

− 1

 < 3 × log x + 5
8 × π ×

√
x

for all numbers x ≥ 13.1.

Let’s define H = γ − B such that B ≈ 0.2614972128 is the Meissel-Mertens constant [6]. We
know from the constant H, the following formula:

Theorem 1.4. [7]. ∑
q

(
log(

q
q − 1

) −
1
q

)
= γ − B = H.

For x ≥ 2, the function u(x) is defined as follows

u(x) =
∑
q>x

(
log(

q
q − 1

) −
1
q

)
.

We use the following theorems:

Theorem 1.5. [8]. For x > −1:
x

x + 1
≤ log(1 + x).

Theorem 1.6. [9]. For x ≥ 1:

log(1 +
1
x

) <
1

x + 0.4
.

Let’s define:

δ(x) =

∑
q≤x

1
q
− log log x − B

 .
Definition 1.7. We define another function:

$(x) =

∑
q≤x

1
q
− log log θ(x) − B

 .
Putting all together yields the proof that the inequality $(x) > u(x) is satisfied for a number

x ≥ 3 if and only if Nicolas(p) holds, where p is the greatest prime number such that p ≤ x.
In this way, we introduce another criterion for the Riemann hypothesis based on the Nicolas
criterion. Using this new criterion, we claim that the Riemann hypothesis could be false.
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2. Results

Theorem 2.1. The inequality$(x) > u(x) is satisfied for a number x ≥ 3 if and only if Nicolas(p)
holds, where p is the greatest prime number such that p ≤ x.

Proof. We start from the inequality:
$(x) > u(x)

which is equivalent to ∑
q≤x

1
q
− log log θ(x) − B

 > ∑
q>x

(
log(

q
q − 1

) −
1
q

)
.

Let’s add the following formula to the both sides of the inequality,∑
q≤x

(
log(

q
q − 1

) −
1
q

)
and due to the theorem 1.4, we obtain that∑

q≤x

log(
q

q − 1
) − log log θ(x) − B > H

because of

H =
∑
q≤x

(
log(

q
q − 1

) −
1
q

)
+

∑
q>x

(
log(

q
q − 1

) −
1
q

)
and ∑

q≤x

log(
q

q − 1
) =

∑
q≤x

1
q

+
∑
q≤x

(
log(

q
q − 1

) −
1
q

)
.

Let’s distribute it and remove B from the both sides:∑
q≤x

log(
q

q − 1
) > γ + log log θ(x)

since H = γ − B. If we apply the exponentiation to the both sides of the inequality, then we have
that ∏

q≤x

q
q − 1

> eγ × log θ(x)

which means that Nicolas(p) holds, where p is the greatest prime number such that p ≤ x. The
same happens in the reverse implication.

Theorem 2.2. The Riemann hypothesis is true if and only if the inequality$(x) > u(x) is satisfied
for all numbers x ≥ 3.

Proof. This is a direct consequence of theorems 1.1 and 2.1.

Theorem 2.3. If the Riemann hypothesis holds, then

3 × log x + 5
8 × π ×

√
x + 1.2 × log x + 2

+
log x

log θ(x)
> 1

for all numbers x ≥ 13.1.
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Proof. Under the assumption that the Riemann hypothesis is true, then we would have∏
q≤x

q
q − 1

< eγ × log x ×
(
1 +

3 × log x + 5
8 × π ×

√
x

)
after of distributing the terms based on the theorem 1.3 for all numbers x ≥ 13.1. If we apply the
logarithm to the both sides of the previous inequality, then we obtain that∑

q≤x

log(
q

q − 1
) < γ + log log x + log

(
1 +

3 × log x + 5
8 × π ×

√
x

)
.

That would be equivalent to∑
q≤x

1
q

+
∑
q≤x

(
log(

q
q − 1

) −
1
q

)
< γ + log log x +

3 × log x + 5
8 × π ×

√
x + 1.2 × log x + 2

where we know that

log
(
1 +

3 × log x + 5
8 × π ×

√
x

)
<

1
8×π×

√
x

3×log x+5 + 0.4

=
3 × log x + 5

8 × π ×
√

x + 0.4 × (3 × log x + 5)

=
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2

according to theorem 1.6 since 8×π×
√

x
3×log x+5 ≥ 1 for all numbers x ≥ 13.1. We use the theorem 1.4 to

show that ∑
q≤x

(
log(

q
q − 1

) −
1
q

)
= H − u(x)

and γ = H + B. So,

H − u(x) < H + B + log log x −
∑
q≤x

1
q

+
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2

which is the same as

H − u(x) < H − δ(x) +
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2
.

We eliminate the value of H and thus,

−u(x) < −δ(x) +
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2

which is equal to

u(x) +
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2
> δ(x).
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We know from the theorem 2.1 that $(x) > u(x) for all numbers x ≥ 13.1 and therefore,

$(x) +
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2
> δ(x).

Hence,
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2
> log log θ(x) − log log x.

Suppose that θ(x) = ε × x for some constant ε > 1. Then,

log log θ(x) − log log x = log log(ε × x) − log log x

= log
(
log x + log ε

)
− log log x

= log
(
log x × (1 +

log ε
log x

)
)
− log log x

= log log x + log(1 +
log ε
log x

) − log log x

= log(1 +
log ε
log x

).

In addition, we know that

log(1 +
log ε
log x

) ≥
log ε

log θ(x)

using the theorem 1.5 since log ε
log x > −1 when ε > 1. Certainly, we will have that

log(1 +
log ε
log x

) ≥
log ε
log x

log ε
log x + 1

=
log ε

log ε + log x
=

log ε
log θ(x)

.

Thus,
3 × log x + 5

8 × π ×
√

x + 1.2 × log x + 2
>

log ε
log θ(x)

.

If we add the following value of log x
log θ(x) to the both sides of the inequality, then

3 × log x + 5
8 × π ×

√
x + 1.2 × log x + 2

+
log x

log θ(x)
>

log ε
log θ(x)

+
log x

log θ(x)
=

log ε + log x
log θ(x)

=
log θ(x)
log θ(x)

= 1.

We know this inequality is satisfied when 0 < ε ≤ 1 since we would obtain that log x
log θ(x) ≥ 1.

Therefore, the proof is done.

Theorem 2.4. If there exists some number y ≥ 13.1 such that for all x ≥ y the inequality
3×log x+5

8×π×
√

x+1.2×log x+2 +
log x

log(x+C×
√

x×log log log x) ≤ 1 is satisfied for some positive constant C independent
of x, then the Riemann hypothesis should be false.

Proof. From the theorem 1.2, we know that there are infinitely many values of x such that

θ(x) > x + C ×
√

x × log log log x
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for some positive constant C independent of x. That would be equivalent to

log θ(x) > log(x + C ×
√

x × log log log x)

and so,
1

log θ(x)
<

1
log(x + C ×

√
x × log log log x)

for all numbers x ≥ 13.1. Hence,

log x
log θ(x)

<
log x

log(x + C ×
√

x × log log log x)
.

If the Riemann hypothesis holds, then

3 × log x + 5
8 × π ×

√
x + 1.2 × log x + 2

+
log x

log(x + C ×
√

x × log log log x)
> 1

for those values of x that complies with

θ(x) > x + C ×
√

x × log log log x

due to the theorem 2.3. By contraposition, if there exists some number y ≥ 13.1 such that for all
x ≥ y the inequality

3 × log x + 5
8 × π ×

√
x + 1.2 × log x + 2

+
log x

log(x + C ×
√

x × log log log x)
≤ 1

is satisfied for some positive constant C independent of x, then the Riemann hypothesis should be
false, because of there are infinitely many values of x which satisfy the inequality in the theorem
1.2 and comply with x ≥ y no matter how big could be y.

Definition 2.5. Let’s define the function υ(x) =
3×log x+5

8×π×
√

x+1.2×log x+2 +
log x

log(x+C×
√

x×log log log x) − 1 for
some positive constant C independent of x.

Theorem 2.6. The Riemann hypothesis could be false.

Proof. From the theorem 2.4, we know that the Riemann hypothesis is false when there exists
some number y ≥ 13.1 such that for all x ≥ y the inequality υ(x) ≤ 0 is always satisfied.
We know that the function υ(x) is monotonically decreasing for all sufficiently large numbers
x ≥ 13.1. Let υ′(x) be the derivative of υ(x). We can check the value of υ′(x) from this web
site https://www.wolframalpha.com/input and see that υ′(x) is lesser than zero for all sufficiently
large numbers x ≥ 13.1. Indeed, a function υ(x) of a real variable x is monotonically decreasing
in some interval if the derivative of υ(x) is lesser than zero and the function υ(x) is continuous
over that interval [10]. In this way, it is enough to find a value of y ≥ 13.1 such that υ(y) ≤ 0
since for all x ≥ y we would have that υ(x) ≤ υ(y) ≤ 0. We found the first zero y of the function
υ(y) in y ≈ 8.2639316883312400623766461031726662911 E5565708 for C ≥ 1 using the tool
gp from the web site https://pari.math.u-bordeaux.fr. Consequently, we claim that the Riemann
hypothesis could be false.
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Appendix

We use the following input:

(3*log(x)+5)/(8*pi*sqrt(x)+1.2*log(x)+2)+log(x)/log(x+C*sqrt(x)*log(log(log(x))))-1

from the web site https://www.wolframalpha.com/input. Besides, we use the following input into
a single command line:

solvestep(X = 1000000!, 5000000!, 1

, (3∗log(X)+5)/(8∗3.14∗sqrt(X)+1.2∗log(X)+2)+log(X)/log(X+sqrt(X)∗log(log(log(X))))−1, 1)

using the tool gp from the web site https://pari.math.u-bordeaux.fr. In the project PARI/GP, the
method solvestep(X = a, b, 1, F(X), 1) finds the first zero of the function F(X) in the interval
[a, b]. We found the first zero X ≈ 8.2639316883312400623766461031726662911 E5565708
of our F(X) in the interval [1000000!, 5000000!] where (. . .)! means the factorial function. We
use π as 3.14 and C = 1 in F(X), but we know there must exist a zero of the function F(X) also
for C > 1 and a more accurate value of π.
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