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1 Introduction

The Quantified Reflection Calculus with one modality, denoted by QRC1 and introduced
in [1], is a strictly positive quantified modal logic inspired by the unimodal fragment of
the Reflection Calculus, RC1 [4, 3]. The quantified strictly positive language consists
of a verum constant and relation symbols as atomic formulas, with the only available
connectives being the conjunction, the diamond, and the universal quantifier. QRC1

statements are assertions of the form φ ⊢ ψ where φ and ψ are in this strictly positive
language.

QRC1 was born out of the wish for a nice quantified provability logic for theories of
arithmetic such as Peano Arithmetic, even though Vardanyan [6] showed that this is in
general impossible. In fact, the full quantified provability logic of PA is Π0

2-complete,
and thus not recursively axiomatizable, let alone decidable. However, restricting the
language to the strictly positive fragment is a viable solution, as shown by the authors
in [2].

The main results described here are the Kripke soundness and completeness for
QRC1, as well as a work-in-progress description of the polymodal extension QRCN . We
obtain constant domain completeness for QRC1 as well as the finite model property,
implying its decidability. Together with the arithmetical results described in [2], this
means that QRC1 is a very nice provability logic indeed.

There is an ongoing formalization1 of QRC1 in the Coq Proof Assistant [5].

2 QRC1

QRC1 talks about quantified strictly positive formulas as described above, where the
terms are either variables or constant symbols (no function symbols).

*ana.agvb@gmail.com
1https://gitlab.com/ana-borges/QRC1-Coq
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The free variables of a formula φ are defined as usual, and denoted by fv(φ). The
expression φ[x←t] denotes the formula φ with all free occurrences of the variable x
simultaneously replaced by the term t. We say that t is free for x in φ if no occurrence
of a free variable in t becomes bound in φ[x←t].

The axioms and rules of QRC1 are listed in the following definition from [2].

Definition 2.1 (QRC1, [2]). Let φ, ψ, and χ be any quantified strictly positive formulas.
The axioms and rules of QRC1 are the following:

(i) φ ⊢ ⊤ and φ ⊢ φ;

(ii) φ ∧ ψ ⊢ φ and φ ∧ ψ ⊢ ψ;

(iii) if φ ⊢ ψ and φ ⊢ χ, then
φ ⊢ ψ ∧ χ;

(iv) if φ ⊢ ψ and ψ ⊢ χ, then φ ⊢ χ;

(v) if φ ⊢ ψ, then ♢φ ⊢ ♢ψ;

(vi) ♢♢φ ⊢ ♢φ;

(vii) if φ ⊢ ψ, then φ ⊢ ∀xψ
(x /∈ fv(φ));

(viii) if φ[x←t] ⊢ ψ then ∀xφ ⊢ ψ
(t free for x in φ);

(ix) if φ ⊢ ψ, then φ[x←t] ⊢ ψ[x←t]
(t free for x in φ and ψ);

(x) if φ[x←c] ⊢ ψ[x←c], then φ ⊢ ψ
(c not in φ nor ψ).

If φ ⊢ ψ, we say that ψ follows from φ in QRC1.

We observe that our axioms do not include universal quantifier elimination. How-
ever, this and various other rules are readily available via the following easy lemma.

Lemma 2.2. The following are theorems (or derivable rules) of QRC1:

(i) ∀x ∀ y φ ⊢ ∀ y ∀xφ;

(ii) ∀xφ ⊢ φ[x←t] (t free for x in φ);

(iii) ♢∀xφ ⊢ ∀x♢φ;

(iv) ∀xφ ⊢ ∀ y φ[x←y] (y free for x in φ and y /∈ fv(φ));

(v) if φ ⊢ ψ, then φ ⊢ ψ[x←t] (x not free in φ and t free for x in ψ);

(vi) if φ ⊢ ψ[x←c], then φ ⊢ ∀xψ (x not free in φ and c not in φ nor ψ).

The Kripke semantics for QRC1 is a simple generalization of Kripke semantics for
propositional modal logics. For simplicity, we restrict ourselves to constant domain
models.

Definition 2.3. An adequate modelM in a signature Σ is a tuple ⟨W,R,M, I, {Jw}w∈W ⟩
where:

� W is a non-empty set (the set of worlds, where individual worlds are referred to
as w, u, v, etc);

2



� R is a transitive binary relation on W (the accessibility relation);

� M is a finite set (the domain of the model, whose elements are referred to as
d, d0, d1, etc);

� the interpretation I assigns an element of the domain M to each constant c in
the signature, written cI ; and

� for each w ∈ W , the interpretation Jw assigns a set of tuples SJw ⊆ ℘(Mn) to
each n-ary relation symbol S in the signature.

A model is said to be finite is the set of worlds W is finite.

We use assignments to define truth at a world in a first-order model. An assignment
g is a function assigning a member of the domain M to each variable in the language.

Two assignments g and h are x-alternative, written g ∼x h, if they coincide on all
variables other than x. An assignment g is extended to terms by defining g(c) := cI for
any constant c.

We now define satisfaction at a world.

Definition 2.4. LetM = ⟨W,R,M, I, {Jw}w∈W ⟩ be an adequate model, and let w ∈ W
be a world, g be an assignment, S be an n-ary relation symbol, and φ, ψ be QRC1

formulas.
We defineM, w ⊩g φ (φ is true at w under g) by induction on φ as follows.

� M, w ⊩g ⊤;

� M, w ⊩g S(t0, . . . , tn−1) iff ⟨g(t0), . . . , g(tn−1)⟩ ∈ SJw ;

� M, w ⊩g φ ∧ ψ iff bothM, w ⊩g φ andM, w ⊩g ψ;

� M, w ⊩g ♢φ iff there is a v ∈ W such that wRv andM, v ⊩g φ;

� M, w ⊩g ∀xφ iff for all assignments h such that h ∼x g, we haveM, w ⊩h φ.

The main results on QRC1 are as follows.

Theorem 2.5 (Soundness for QRC1, [1]). If φ ⊢ ψ, then for any adequate modelM,
for any world w ∈ W , and for any assignment g:

M, w ⊩g φ =⇒ M, w ⊩g ψ.

Theorem 2.6 (Completeness for QRC1, [2]). Let φ, ψ formulas in the language of
QRC1. If φ ̸⊢ ψ, then there is an adequate, finite, and irreflexive model M, a world
w ∈ W , and an assignment g such that:

M, w ⊩g φ and M, w ̸⊩g ψ.

Since we have the finite model property, this completeness result implies the decid-
ability of QRC1 by Post’s Theorem.

3



3 QRCN

QRC1 was inspired by the full Reflection Calculus, RC, and as such it is natural to
think of a polymodal version for QRC1, namely QRCN , with a fixed but arbitrary N .
The language is the same as the language of QRC1, except instead of one diamond, we
include N diamonds ⟨0⟩, ⟨1⟩, . . . , ⟨N − 1⟩.

Definition 3.1 (QRCN). Let φ, ψ, and χ be formulas in the quantified and polymodal
strictly positive language. Let n,m < N be natural numbers. The axioms and rules of
QRCN are the following:

(i) φ ⊢ ⊤ and φ ⊢ φ;

(ii) φ ∧ ψ ⊢ φ and φ ∧ ψ ⊢ ψ;

(iii) if φ ⊢ ψ and φ ⊢ χ, then
φ ⊢ ψ ∧ χ;

(iv) if φ ⊢ ψ and ψ ⊢ χ, then φ ⊢ χ;

(v) if φ ⊢ ψ, then ⟨n⟩φ ⊢ ⟨n⟩ψ;

(vi) ⟨n⟩⟨n⟩φ ⊢ ⟨n⟩φ;

(vii) ⟨n⟩φ ⊢ ⟨m⟩φ, with m < n;

(viii) ⟨n⟩φ∧∀x ⟨m⟩ψ ⊢ ⟨n⟩(φ∧∀x ⟨m⟩ψ),
with m < n;

(ix) if φ ⊢ ψ, then φ ⊢ ∀xψ
(x /∈ fv(φ));

(x) if φ[x←t] ⊢ ψ then ∀xφ ⊢ ψ
(t free for x in φ);

(xi) if φ ⊢ ψ, then φ[x←t] ⊢ ψ[x←t]
(t free for x in φ and ψ);

(xii) if φ[x←c] ⊢ ψ[x←c], then φ ⊢ ψ
(c not in φ nor ψ).

In Axiom 3.1.(viii), the notation ∀x is meant to describe a (possibly empty) fi-
nite string of quantification over different variables that could alternatively have been
written as ∀x0 · · · ∀xk−1.

Kripke models are defined similarly to the ones for QRC1, except with a relation Rn

for each n < N . These relations must have the following properties:

� poly-transitive: for each n,m < N , if wRnu and uRmv, then wRmin{n,m}v;

� monotone: for each m < n < N , if wRnu, then wRmu; and

� poly-Euclidean: for each m < n < N , if wRnu and wRmv, then uRmv.

QRCN is sound for such Kripke models, but the completeness is still work in progress.
The main difficulty is with Axiom 3.1.(viii), which requires the relations to be poly-
Euclidean. This requirement means that tree-like models are not enough, and the ideas
of the completeness proof for QRC1 can not be trivially reused. This axiom represents
an important arithmetical fact (observing that ⟨m⟩ψ represents a Π0

m sentence in the
arithmetical interpretation, and so ∀x ⟨m⟩ψ is still Π0

m), so it is expected that it will
be needed to prove the arithmetical completeness of QRCN , our ultimate goal.
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