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Abstract—In this research paper, based on the concept of
spherical seperabilityy, novel associative memories are proposed.
The dynamics of the associative memories is shown to lead to a
stable state or a cycle of length atmost 2, starting in an initial
condition.
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I. INTRODUCTION

In an effort to understand the operation of biological neuron,
McCulloch-Pitts proposed a model of biological neuron. This
model of neuron was motivated by the concept of ”linear
separability” of patterns that need to be classified into two
or more classes. Since McCulloch-Pitts neuron doesn’t have
the ”training” ability, perceptron model was proposed. Using
Perceptron learning law it was established that single ”layer”
perceptron can classify linearly seperable patterns. In an effort
to classify non-linearly seperable patterns, Multi-Layer percep-
tron (MLP) was conceived and utilized successfully in many
applications. Using McCulloch-Pitts neuron model, Hopfield
proposed an Artificial Neural Network (ANN) which acts as
an associative memory. The author, in his research efforts
proposed the concept of ”spherical separability of patterns and
established that linear separability implies spherical separabil-
ity but not the other way [1], [2]. Thus, a natural question that
remained was whether it is possible to propose an ANN based
on spherical separability that acts as an associative memory?
This research paper is an effort to answer such a question.

In more clear terms, Artificial Neural Networks(ANNs),
such as Single Layer Perceptron(SLP) were proposed based on
the concept of linear seperability of patterns [3]. This model
of neuron based on McCulloch-Pitts neuron was successfully
utilized to arrive at Hopfield Associate Memory(HAM). The
authors proposed the concept of ”spherical seperabilityy” and
reasoned that linear seperability implies spherical spereability
(under mild conditions) but not the otherway. ANNs based
on spherical seperability were proposed successfully [1],[2].
A natural question that remained was whether an associative
memory can be arrived at using the concept of spherical
seperability.

Vapnick, in an effort to increase the noise immunity of
perceptron proposed the concept of Support Vector Machine

(SVM). SVM in a well defined sense (maximization of ”MAR-
GIN”) leads to the concept of ”optimal linear seperability”.
Various researchers investigated SVM design in higher di-
mensions by suitably projecting the patterns (that are not
linearly seperable) so that they become linearly seperable
(using suitable kernel functions) in higher dimensional space.
Various interesting theorems related to design of SVM’s (such
as Mercer’s theorem) were proved.

Also, Radial Basis Function Neural Networks(RBFNN’s)
are proposed in which the activation function at each neuron
computes the distance between an input vector and centering
vector at the neuron. The centering vectors correspond to
centers of clusters of patterns.

This paper is organized as follows. In section II, various
models of associative memory based on spherical separability
are proposed.In section III, simulation results are presented. In
section IV, recurrent laered neural networks are discussed. In
setion V, we briefly discuss synthesis of associative memories
based on spherical seperability. Conclusions are reported in
section VI.

II. SPHERICAL SEPERABILITY
...ASSOCIATIVE

MEMORY ARCHITECTURES
...

We first summarize relevant details related to the concept
of spherical seperability of patterns. It was first introduced in
[1].

Definition: Patterns belonging to two classes are(in Eu-
clidean space) said to be spherically seperable if and only
if there exists a ”hypersphere” which seperates the patterns
belonging to the two classes.

Note:Patterns belonging to M-classes are ”spherically seper-
able” if and only if any pair of classes are spherically seper-
able.

Note: The distance metric can be more general than a
Euclidean distance (e.g.Hamming distance).

Note: It can easily be proved/reasoned that patterns(which
are in a bounded region of Euclidean space) that are linearly
seperable are necessarily spherically seperable but not the
other way.

Note: In 2-Dimensions, Spherical seperability is easy to
visualize. The patterns are seperable by circles (surrounding
the patterns). The ANNs proposed in this research paper are
motivated by RBFNNs.



• Spherical Seperability based Associative Memories:
Consider an Artificial Neural Network (ANN) represented by
an un-directed graph G = (V, E). The vertices correspond to
neurons and the edge weights represent synaptic weights. Let
the synaptic weight matrix be labeled as W. The neurons are
in state {+1 or -1}, i.e. state Vi(n) of ith neuron at time ’n’
is {+1 or -1} i.e. Vi(n) ∈{+1 or -1}. Thus, the state vector
of such ANN at time ’n’, i.e. V̄ (n) lies on the symmetric
unit hypercube. Furthermore each neuron is associated with a
centering vector Ūi lying on the symmetric unit hypercube.
Unlike, Hopfield neural network, the state updation of the
ANN is based on the concept of spherical seperability. As in
the case of Hopfield Associative Memory, our novel ANN also
operates in the serial mode or fully parallel mode. Based on
the state updation (in serial and parallel modes of operation),
we propose five different ANN architectures. Let T̄ be the
threshold vector associated with the set of neurons(say ’M’
of them). i.e. T̄ = [t1, t2, t3....tM ]T . The architectures are
presented in the chronological order in which they were
discovered. Later we relate them.

Architecture 1: Serial Mode:

Vi(n + 1) = Sign{dH(V̄ (n), Ūi)− ti},

where dH(V̄ (n), Ūi) is the Hamming distance between
{+1 or -1} vectors V̄ (n), Ūi. Thus at any time ’n+1’, only
state of one neuron is updated.
Fully parallel mode

V̄ (n + 1) =


Sign{dH(V̄ (n), Ū1)− t1}
Sign{dH(V̄ (n), Ū2)− t2}

...
Sign{dH(V̄ (n), ŪM )− tM}


i.e. at any time ’n+1’, state of all the neuron is updated
parallelly in the fully parallel mode of operation.

Architecture 2: Serial Mode:

Vi(n + 1) = Sign{dE(V̄ (n), Ūi)− ti},

where dE(V̄ (n), Ūi)is the Euclidean distance between
{+1 , -1} vectors V̄ (n), Ūi i.e. at any time ’n+1’, only the sate
of one of the neurons is updated.
Fully Parallel Mode i.e. all the components of Mx1 state vector
are updated at the same time ’n+1’.

V̄ (n + 1) =


Sign{dE(V̄ (n), Ū1)− t1}
Sign{dE(V̄ (2), Ū2)− t2}

...
Sign{dE(V̄ (n), ŪM )− tM}


Note: In the above two architectures, the synaptic weight
matrix is not utilized in state updation.

Architecture 3: Serial Mode:

Vi(n + 1) = Sign{dH(W̄ V̄ (n), Ūi)− ti},

where W̄ is the synaptic weight matrix.

Note: Architecture 1 is a special case of this architecture
with W̄ = Ī .
Fully parallel mode:

V̄ (n + 1) =


Sign{dH(W̄ V̄ (n), Ū1)− t1}
Sign{dH(W̄ V̄ (n), Ū2)− t2}

...
Sign{dH(W̄ V̄ (n), ŪM )− tM}


Architecture 4: Serial Mode:

Vi(n + 1) = Sign{dE(W̄ V̄ (n), Ūi)− ti},

Fully parallel mode:

V̄ (n + 1) =


Sign{dE(W̄ V̄ (n), Ū1)− t1}
Sign{dE(W̄ V̄ (n), Ū2)− t2}

...
Sign{dE(W̄ V̄ (n), ŪM )− tM}


Note:In all the above architectures of associative memory

state updation can take place at some nodes but not all
nodes. This updation corresponds to other parallel modes of
operation.
We now propose another interesting architecture.

Architecture 5: Serial Mode:

Vi(n + 1) = Sign{dM (V̄ (n), Ūi)− ti},

Where dM ((̄V (n), Ūi) is the Mahalonibis distance between
{+1,−1} vectors V̄ (n), Ū i.e.

dM (V̄ (n), Ūi) = (V̄ (n)− Ūi)
TS(V̄ (n)− Ūi),

with S being any positive definite matrix. Thus, with such
updation in serial mode of operation, state of only one neuron
is updated. As in the case of above architectures, state updation
can be done in the fully parallel mode.

Note: Architecture 4 is a case related to architecture 5.
In all the above architectures, the initial condition i.e V̄ (0)
can be chosen in one of the following ways

i) V̄ (0) is same as one of the centering vectors i.e.Ūi
′
s.

ii)V̄ (0) is not equal to any of the centering vectors.
Also, unlike Hopfield neural network, since the distances are

non negative, in the spherical speperability based associative
memories, the components of threshold vector are chosen to
be positive real numbers. Specifically in architectures based
on Hamming distance, the thresholds are chosen to be positive
integers.
• In all the five architectures, one can choose the centering
vectors to be non-orthogonal corner’s of hypercube and inves-
tigate the dynamics of associated artificial neural networks.
•Also, by choosing the initial conditions i.e. V̄ (0)′s to be
orthogonal corners of hypercube, the dynamics of proposed
ANN’s can be investigated.

The above associative memory architectures were naturally
motivated by the definition of spherical seperability. We now
prove that some of the architectures are equivalent to one



another, under some conditions.
• Lemma 1: Architecture 2 is related to Architecture 1 from
the point of view of dynamics:

Proof:By definition of Euclidean distance

dE(V̄ (n), Ūi) = (V̄ (n)− Ūi)
T (V̄ (n)− Ūi)

where V̄ (n), Ūi lie on the symmetric unit hypercube.

dE(V̄ (n), Ūi) = V̄ T (n)V (n)− 2V̄ T (n)Ūi + ŪT
i Ūi

= N − 2 < V̄ (n), Ūi > +ŪT
i Ūi

Now, since V̄ (n), Ūi lie on the unit hypercube, their inner
product i.e.
< V̄ (n), Ūi > = (Number of places where V̄ (n), Ūi agree) -
(Number of places V̄ (n), Ūi disagree).

Using the definition of Hamming distance

< V̄ (n), Ūi >= N − 2dH(V̄ (n), Ūi).

Hence

dE(V̄ (n), Ūi) = N − 2[N − 2dH(V̄ (n), Ūi)] + N

= 4dH(V̄ (n), Ūi)

Hence the dynamics of architecture 1, architecture 2 are
equivalent.

Note: If the threshold vector in architecture 2 is scaled by
4 of that in architecture 1, then their dynamics is equivalent .

Q.E.D.

• Lemma 2: Architecture 3, 4 are related from the point of
view of dynamics of nonlinear system:

Proof: Now, we relate architecture 3, 4.

dE(W̄ V̄ (n), Ūi) = (W̄ V̄ (n)− Ūi)
T (W̄ V̄ (n)− Ūi)

= V̄ T (n)W̄TWV̄ (n)− 2(V̄ T (n)WT Ūi) + ŪT
i Ūi.

It should be noted that for any non-singular symmetric matrix,
W, WTW is always positive definite. Suppose W̄TW = I (i.e.
W is an orthogonal matrix or more generally WTW = D a
diagonal matrix). Then, we have that

dE(W̄ V̄ (n), Ūi) = (V̄ T (n)V̄ (n)−2 < W̄ V̄ (n), Ūi > +ŪT
i Ūi

= N − 2 < W̄ V̄ (n), Ūi > +N

2N − 2[N − 2dH(W̄ V̄ (n), Ūi)]

= 4dH(W̄ V̄ (n), Ūi)

Thus, the dynamics of architectures 3, 4 are related when W is
an orthogonal symmetric matrix (or more generally WTW =
D, a diagonal matrix).

Q.E.D.

Note: If the threshold vector in architecture 4 is scaled by
4 of that in architecture 3 then their dynamics is same.

It readily follows that if W = I (an identity matrix), then
the dynamics of all 5 architectures are related.

III. SIMULATION RESULTS

Let the components of threshold vector always be positive
numbers. In the case of Hamming distance they must be
positive integers, but in the case of Euclidean distance, they
can be any positive real number. W is a symmetric matrix.

Example1:
Architecture 1(H2 Matrix):

H2 = i.e.Hadamard matrix

[
1 1
1 −1

]
(1)

and
V T
0 = [−1, 1] = V̄ (0)

UT
1 = [1, 1]

UT
2 = [1,−1]

[t1, t2]T = [1, 1]

V = [V (1), V (2), V (3), V (4)] =

[
1 −1 1 −1
1 1 1 1

]
(2)

Thus the dynamics leads to cycle of length 2.
Architecture 2(H2 Matrix):

H2 =

[
1 1
1 −1

]
(3)

and
V T
0 = [−1, 1] = V̄ (0)

UT
1 = [1, 1]

UT
2 = [1,−1]

[t1, t2]T = [1, 1]

V = [V (1), V (2), V (3), V (4)] =

[
1 −1 1 1
1 1 1 1

]
(4)

Thus, the dynamics leads to stable state (cycle of length 1).
Architecture 3(H2 Matrix):

H2 =

[
1 1
1 −1

]
(5)

and
V T
0 = [−1, 1] = V̄ (0)

UT
1 = [1, 1]

UT
2 = [1,−1]

[t1, t2]T = [1, 1]

W =

[
1 2
2 1

]
(6)

V = [V (1), V (2), V (3), V (4)] =

[
1 −1 1 −1
1 1 1 1

]
(7)

Thus dynamics leads to cycle of length 2.
Architecture 4(H2 Matrix):

H2 =

[
1 1
1 −1

]
(8)



and
V T
0 = [−1, 1] = V̄ (0)

UT
1 = [1, 1]

UT
2 = [1,−1]

[t1, t2]T = [1, 1]

W =

[
1 2
2 1

]
(9)

V = [V (1), V (2), V (3), V (4)] =

[
1 −1 1 1
1 1 1 1

]
(10)

Thus dynamics leads to stable state.

Example2:
Architecture1(H4 Matrix):

V T
0 = [1;−1; 1;−1] = V̄ (0)

UT
1 = [1; 1; 1; 1]

UT
2 = [1;−1; 1;−1]

UT
3 = [1; 1;−1− 1]

UT
4 = [1;−1;−1; 1]

[t1, t2, t3, t4]T = [1, 1, 1, 1]

V = [V (1), V (2), V (3), V (4)] =


1 1 −1 1
−1 1 1 1
1 1 1 1
1 1 1 1

 (11)

Thus dynamics leads to cycle of length 2.
Architecture 2(H4 Matrix):

V T
0 = [1;−1; 1;−1] = V̄ (0)

UT
1 = [1; 1; 1; 1]

UT
2 = [1;−1; 1;−1]

UT
3 = [1; 1;−1− 1]

UT
4 = [1;−1;−1; 1]

[t1, t2, t3, t4]T = [1, 1, 1, 1]

V = [V (1), V (2), V (3), V (4)] =


1 −1 1 −1
1 1 1 1
1 1 1 1
1 1 1 1

 (12)

Thus dynamics leads to cycle of length 2.
Architecture3(H4 Matrix):

V T
0 = [1;−1; 1;−1] = V̄ (0)

UT
1 = [1; 1; 1; 1]

UT
2 = [1;−1; 1;−1]

UT
3 = [1; 1;−1− 1]

UT
4 = [1;−1;−1; 1]

[t1, t2, t3, t4]T = [1, 1, 1, 1]

W =


1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

 (13)

V = [V (1), V (2), V (3), V (4)] =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 (14)

Thus dynamics leads to stable state.
Architecture4(H4 Matrix):

V T
0 = [1;−1; 1;−1] = V̄ (0)

UT
1 = [1; 1; 1; 1]

UT
2 = [1;−1; 1;−1]

UT
3 = [1; 1;−1− 1]

UT
4 = [1;−1;−1; 1]

[t1, t2, t3, t4]T = [1, 1, 1, 1]

W =


1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

 (15)

V = [V (1), V (2), V (3), V (4)] =


1 −1 1 −1
1 1 1 1
1 1 1 1
1 1 1 1

 (16)

Thus dynamics leads to cycle of length 2.
Example3:

Architecture 1 (H8 Matrix):

V T
0 = [1;−1; 1;−1; 1;−1; 1;−1]; = V̄ (0)

UT
1 = [1; 1; 1; 1; 1; 1; 1; 1];

UT
2 = [1;−1; 1;−1; 1;−1; 1;−1];

UT
3 = [1; 1;−1;−1; 1; 1;−1;−1];

UT
4 = [1;−1;−1; 1; 1;−1;−1; 1];

UT
5 = [1; 1; 1; 1;−1;−1;−1;−1];

UT
6 = [1;−1; 1;−1; 1;−1; 1;−1];

UT
7 = [1; 1;−1;−1;−1;−1; 1; 1];

UT
8 = [1;−1;−1; 1;−1; 1; 1;−1];

[t1, t2, t3, t4, t5, t6, t8, t8]T = [1, 1, 1, 1, 1, 1, 1, 1];



V =



1 1 −1 1 −1 1 −1 1
−1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
−1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1


(17)

Thus, dynamics leads to cycle of length 2.
It is clear that all five architectures utilize some type of
distance measures. In view of the simulation results, we expect
the following observations to be true in the case of Hopfield
Associative Memory(HAM/HNN).
• In serial mode of operation of Hopfield Neural Network
(HNN/HAM), the Hamming distance between the successive
corners of hypercube reached (starting in an initial condition)
and the associated stable state is non-increasing or non-
decreasing.
• If the initial conditions are orthogonal, the domains of
attraction of associated stable states are mostly disjoint, if ’W’
is synthesized using orthogonal corners of hypercube (that are
eigenvaectors of ’W’).
In the above examples, it is empirically shown that in the
serial mode as well as fully parallel mode, starting with any
initial condition, the dynamical systems (corresponding to all
architectures of ANNs) converge to a stable state or a cycle of
length 2, when the centering vectors at all the nodes constitute
orthogonal corners of unit hypercube. Formally, we state the
following convergence theorem.

Theorem: With orthogonal corners of hypercube as center-
ing vectors at all neurons, the associative memories in all the
above architectures converge to a stable state in serial mode. In
the fully parallel mode atmost a cycle of length 2, is reached.

Proof: The dynamical systems in above ANN architectures
converge to a fixed point starting with an initial condition by
the Brauer’s fixed pint in serial mode theorem. A direct proof
follows from theorem 6 in [6].

IV. RECURRENT LAYERED NEURAL NETWORKS

Traditionally, in Artificial Neural Networks (ANN) litera-
ture, feedforward neural networks received lot of attention (due
to many applications as in the case of Multi-Layer Perception).
Also, researchers(Like Jordan, Elman) have proposed recur-
rent ANNs(like finite impulse, infinite impulse networks) and
applied them to the inputs with temporal dependence. Also,
recurrent networks such as Long Short Term Memory (LSTM)
found many applications.

Hopfield proposed an associative memory where the asso-
ciated graph architecture (capturing the connectivity structure)
is fully connected(clique). The authors conceived the idea of
placing the artificial neurons in multiple layers and impose
constrains based on the interconnections between neurons
placed in multiple layers (i.e. the synaptic weight matrix is
highly structured). Some interesting recurrent layered neural
networks are explicitly identified below.

I. Tail Biting Recurrent Layered Network: In this ANN
architecture, the neurons are placed in layers and the network
contains feedforward connections from input layer to the
output layer. But the outputs of neurons in the output layer
are fedback to the neurons in the input layer. Thus, the
connectivity graph constitutes a tail biting trellis. With 2
neurons in each layer and 3 layers, the architecture of such
ANN is illustrated in the following figure 1.

Fig. 1. Tail Biting Recurrent Layered Network

II. Nearest Neighbor Recurrent Layered Network: In this
architecture, the neurons in a layer are connected to the
neurons in immediate/nearest neighbor layers (i.e. connections
are symmetric). As in architecture (I), the neurons outputs in
the output layer are fedback to the inputs of neurons in the
input layer. Effectively there are feedback connections from
next layer to the neurons in current layer.

III. The architecture of recurrent layered neural network
can be based on an architecture that corresponds to one of
the many possible Structured Directed Graphs. Such recurrent
ANNs proposed in this section potentially lead to interesting
associative memories with good properties.

V. SYNTHESIS OF SPHERICAL SEPERABILITY BASED
ASSOCIATIVE MEMORIES

We now formulate an interesting problem that deals with
synthesizing an associative memory (based on spherical seper-
ability) with desired stable states as in the case of Hopfield As-
sociative memory. In [4],[5] the authors provided a satisfactory
solution to the problem, in the case of Hopfield Associative
memory.

Synthesis Problem: Given a set of desired corners of unit
hypercube as memories, synthesize the matrix, W such that
those memories are the fixed points/stable states. More gen-
erally, synthesize a dynamical system whose fixed points are
desired stable states.

Unlike Hopfield Associative Memory(HAM), the corners of
hypercube that are eigenvectors of W donot necessarily lead
to fixed points in general. In that sense programming problem
seems to be difficult for synthesis of associative memory based
on spherical seperability. Apparently we expect the following
observation to be true in the case of spherical seperability
based associative memories.
• The number of spurious states is small.



• The time to converge to a fixed point starting in an initial
condition is very small.

In the spirit of HAM, complex valued Hopfield Associative
Memories (HAMs) are proposed by the authors [6], [7].
Such Complex Valued Neural Networks [CVNNs] based
on spherical seperability are natural generalizations of
architectures proposed in this research paper.

VI. CONCLUSION

In this research paper, 5 novel architectures for associative
memories based on spherical seperability are discussed. The
relationship between them is proved. It is reasoned that starting
in an initial condition, the nonlinear dynamical systems con-
verge to a stable state or a cycle of length atmost 2, starting
in an intial condition. We expect the proposed associative
memories to have better performance than those studied earlier
by researchers.
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