(1) EasyChair Preprint
 № 7124

On Congruent Numbers

Alex Nguhi

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

On Congruent Numbers

Alex Nguhi

Abstract

With respect to some classification of Pythagorean triples, if a number k is congruent then it can easily be proven. This expands the quest to resolve the congruent number problem. A proposition is put forward on rational sides forming a congruent number

Introduction

The congruent number problem is somehow a million-dollar question owing to the fact that Tunnel's Theorem leads to the BirchSwinnerton Conjecture which Clay Mathematics has a cash prize of 1 million dollars in the Millennium Questions [1,2]

An integer number is congruent if it's equal to the area in a rightangled triangle of rational sides,[3].

This paper builds on a previous classification of Pythagorean triples[4]. If we indeed use the Archetypal equations, we can easily deduce faster methods of defining Congruent Numbers obtained by integer sides.

2 Statement of Results

2.1 Integer Sides

2.1.1 Archetype 1 Congruents

A brief description of Pythagorean triples a, b, c of Archetype 1 is that a :
a is an odd number greater than or equal to 3
$b=\frac{a^{2}-1}{2}$
$c=\frac{a^{2}+1}{2}$
The congruent number can be described as :

$$
\begin{gathered}
k=\frac{1}{2}(a \times b) \\
k=\frac{1}{2}\left(a \times \frac{a^{2}-1}{2}\right) \\
k=\frac{a^{3}-a}{4}
\end{gathered}
$$

Hence k is always a congruent number if a is an odd number. $\mathrm{k}=6,30,85,180, \ldots$

2.1.2 Archetype 2 \& 3

A generalization of Archetype 2 and 3 for sides a, b, c is that :
$c=r^{2}+z$
$b=r^{2}-z$
$a=\sqrt{c^{2}-b^{2}}=\sqrt{4 z r^{2}}=2 r \hat{z}$
here $\hat{z}=\sqrt{z}$

Hence to solve for k :

$$
\begin{gathered}
k=\frac{1}{2}(a \times b \\
k=\frac{1}{2}\left(2 r \hat{z} \times\left(r^{2}-z\right)\right) \\
k=\hat{z}\left(r^{3}-r z\right)=\hat{z}\left(r^{3}-r \hat{z}^{2}\right) \\
k=r^{3} \hat{z}-r \widehat{z}^{3}
\end{gathered}
$$

As long as $r^{3} \hat{z}>r \hat{z}^{3}$ we get nice solutions that form Pythagorean triples.

2.2 Congruent Number from Non-Integer Sides(atleast 1 non-integer side)

Here the main barrier is that all sides need to be rational. Taking this into account then:
$a=\frac{p_{a}}{q_{a}}$
$b=\frac{p_{b}}{q_{b}}$
$c=\frac{p_{c}}{q_{c}}$
If k is a congruent number then all p 's and q 's are integers Using the integers p and q to represent fractions/rational numbers then we can conjecture several important statements from the behaviour.

Hypothesis 1

if $q_{c}=q_{a} q_{b}$ then $\left(p_{a}, p_{b}, p_{c}\right)$ can be generated from archetypal equations.

Hypothesis 2

We can make a generalized version of Hypothesis 1 by letting :
$q_{c}=f\left(q_{a}, q_{b}\right)$, the numerators remain archetypal triples One such function f could an LCM. In such a case Hypothesis 1 holds if either q_{a}, q_{b} is 1 or they are prime to each other (no common factors).

An Analysis of David Golbergs' solutions for rational Pythagorean Triples having the Congruent Property obey Hypothesis 1 [5]

The area that requires rigorous effort is the values of $q_{a} q_{b}$ that completely factorizes a Pythagorean triple in the fashion

$$
\frac{1}{q_{a} q_{b}}(A, B, C)
$$

for A, B, C triple integers corresponding to $\left(p_{a} q_{b}, p_{b} q_{a}, p_{c}\right)$
From this we can dedice that :
i. C is uniquely determined
ii. A,B can never be prime numbers unless in a case where the denominator is 1.
iii. if k is a congruent number then :

$$
k=\frac{1}{2 q_{a}^{2} q_{b}^{2}} A B
$$

One major consequence is the following theorem.
Theorem If (A, B, C) is an integer Pythagorean triple with A and B having at least one squared factor for each, then there must be a congruent number k with respect to the square factors.
This Theorem combined with known divisibility methods means we can churn out congruent numbers very fast from non integer sides.

For Archetype 1 as with integers previously, we can right away pick out the congruent number.

In the regions $9,25,49,81 \ldots$ we can calculate (A, B) sides $\left(9, \frac{9^{2}-1}{2}\right)=(9,8 \times 5)$
Here $k=5$
$\left(25, \frac{25^{2}-1}{2}\right)=(25,8 \times 39)$
Here $k=39$
$\left(49, \frac{49^{2}-1}{2}\right)=(49,16 \times 75)$
Here $k=150$
A generalization would be that the congruent number depends on the prime factorization of B on the condition none has the integer 1 as a denominator. Otherwise, both A and B determine the congruence.

Archetypes 2 \& 3

These ones require a combination of sides A and B and also usual square number distribution.

Some unique behavior

Consider the congruent number formed by the triple $(9,40,41)$ ie 180

After complete factorization $4 \times 5 \times 9$. From the rationals sides with at least 1 non-integer side we have 5,45 , as congruent numbers.

This behavior can also be extended to other triples.

Conclusion

Congruent numbers can described using archetypal equations

References

[1]. Koblitz N. Introduction to Elliptic Curves and Modular Forms- Graduate Texts in Mathematics. 97 (2nd ed.). SpringerVerlag. - 320 p.
[2]. Carlson, J. A., Jaffe, A., \& Wiles, A. (2006). The millennium prize problems. Cambridge, MA, American Mathematical Society, Providence, RI: Clay Mathematics Institute.
[3]. Top, J., \& Yui, N. (2008). Congruent number problems and their variants. Algorithmic Number Theory, 44, 613-639.
[4]. Nguhi, A., \& Kweyu, C. (2021). On the Pythagorean Triples' Equations and the Perfect Cuboid Problem. OSF Preprints. April, 4.
[5]. Goldberg, D. (2021). Triangle Sides for Congruent Numbers less than 10,000. arXiv preprint arXiv:2106.07373.

