
EasyChair Preprint
№ 4460

An Operational Strategy for District Heating
Networks: Application of Data-Driven Heat Load
Forecasts

Armin Golla, Julian Geis, Timon Loy, Philipp Staudt and
Christof Weinhardt

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 24, 2020



Armin Golla et al.

RESEARCH

An Operational Strategy for District Heating
Networks: Application of Data-Driven Heat Load
Forecasts
Armin Golla*, Julian Geis, Timon Loy, Philipp Staudt and Christof Weinhardt

*Correspondence:

armin.golla@kit.edu

Karlsruhe Institute of Technology,

Kaiserstraße 12, 76131 Karlsruhe,

Germany

Abstract

To face the challenges of climate change, the integration of renewable energy
sources in the energy-intensive heating sector is a crucial aspect of emission
reduction. For an efficient operation of coupling devices such as heat pumps with
intermittent sources of renewable energy, accurate heat load forecasts need to be
developed and embedded into an operation strategy to enable further
decarbonisation of heat generation. Data analysis driven forecasts based on
weather data hold the potential of identifying consumption patterns to forecast
day-ahead heat demand and have been studied extensively for electricity demand
forecasts. However, it remains to be shown how such forecasts can be applied in
district heating systems. In this study, we propose a control strategy that utilizes
hourly heat load forecasts with a 24-hours rolling horizon. First, we investigate
supervised forecasting techniques on three different heat load data sets. The
application of convolutional neural networks on data of the district heating
network in Flensburg, Germany delivers the most promising outcome. Elaborating
further on this example, we then develop a control strategy and demonstrate how
a heat load forecast can be used to improve the utilization of offshore wind
generation or reduce energy costs through a heat pump and a heat storage
system. Thus, we contribute to the electrification of the heat sector and thereby
enable a reduction of carbon emissions.
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Introduction
The reality of climate change creates new challenges for our society. To cope with

these challenges and to limit global warming to 1.5◦C, the European Union im-

plements policies to reduce greenhouse gas emission. While the worldwide share of

renewable electricity is constantly increasing and has reached 23.9% in 2018, elec-

tricity only accounts for one fifth of the worldwide energy consumption. With 10.3%

in 2018, the share of renewables in the heat sector continues to remain at a low level

[1]. To further decarbonize the energy system, an electrification of the heat sector

is required. District heating systems are a promising approach to replace individual

residential gas and oil heating systems. With accurate forecasts, the share of renew-

able energy within the heat sector can be increased, e.g. through the optimal use of

a heat pump or the use of excess energy generation from industrial plants. In this

paper, we show that accurate forecasts can improve the operation of a heat pump in

a district heating network (DHN). Such an operation strategy can be implemented
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with regards to various objective functions, e.g. with financial or environmental

objectives.

The operation of a DHN presents an energy-efficient way to provide heat for

residential and industrial buildings. The concept of a DHN is subject to ongoing

research in various aspects. Only recently, Buffa et al. [2] introduced the 5th gen-

eration of DHNs which incorporates low temperature heating and cooling systems.

The authors argue that such systems can utilize renewable energy by using excess

heat and enhance sector coupling through the use of hybrid substations. According

to Lund et al. [3], an increase in the share of renewable energy and in the overall

energy efficiency of DHNs can be achieved through the extension of an integrated

thermal network by inclusion of multiple thermal energy producers. To reach this

goal, DHNs have to be integrated in smart energy systems (i.e. electric, gas and

thermal grids). This can be enabled by the electrification of the heat supply with

electric boilers, heat pumps and heat storages. A crucial component to the efficient

operation of a DHN is the provision of the optimal heat generation quantity at any

time with a comprehensive heat control management. This includes the analysis and

forecast of heat consumption patterns. Such forecasts are important for the general

planning of DHNs [4]. Heat load forecasts enable the inclusion of volatile renewable

energy generation such as solar and wind [5]. By implementing demand-side balanc-

ing solutions based on heat forecasts, the share of renewable energy within a DHN

can be increased [6]. The thermal energy storage in the DHN is a key component to

enable a more efficient use of renewable energy in the system. In contrast to battery

technologies, heat storage does not typically experience cycle-induced degradation

[7]. For an overview on thermal energy storage systems, please refer to Zhang et al.

[8].

Related Literature

Accurate heat load forecasting has gained momentum within the scientific com-

munity over the past few years, with both statistical and machine learning driven

methods. Dahl et al. [9] use an autoregressive forecast model with predicted weather

features. The authors introduce ensemble weather forecasts in the operation of dis-

trict heating systems to create heat load forecasts with dynamic uncertainties. The

model is then used to implement an operational strategy for heat exchanger sta-

tions. For the applied case study of three area substations, their findings show that

systems with smaller capacities benefit most from the use of dynamic uncertainties.

In contrast to this paper, the authors do not consider a heat storage system in their

control strategy, which adds an important component for the integration of inter-

mittent renewable generation. Hietaharju et al. apply [10] a feed-forward artificial

neural network (ANN) based on the heat load in the previous period, the outdoor

temperature, the hour of the day and a weekend-dummy to produce a 48 hours

forecast. The model is tested on data of the DHN in Jyväskylä, Finland, during

the heating months of 2013. Both models achieve similar results on the forecast

of the overall heat load for 4061 buildings, with slightly better performance of the

dynamic implementation.

Johansson et al. [11] test a feed-forward ANN with one hidden layer against

a model with randomised decision trees. Both forecast models are trained with
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historical heat load data and weather forecasts. The models are implemented as

online, real-time predictors on the DHN in Rottne, Sweden. They are run once a

day at 2 p.m., using all real-time data that is available until then, to predict the

next 24 hours. The results on the evaluation from January to March 2016 indicate

that on average the decision tree model slightly outperforms the ANN model.

There are more studies on the use of ANNs in the area of short-term heat load

forecasting, which do not consider the city level but are rather developed for indi-

vidual consumption profiles. For example, see Ciulla et al. [12] for short term load

forecasting of non-residential buildings, Jovanović et al. [13] for the forecast of heat

load of a university campus, Saloux and Candanedo [14] for heat load forecast of

52 residential houses and Idowu et al. [4] for the analysis of ten residential and

commercial buildings. To the best of our knowledge, there is no research in the area

of heat load forecasting on city level that also integrates heat storage systems.

Contributions and Organization

As presented in Section , some research has already been conducted on the topic of

heat load forecasts. However, only few authors address the challenge of embedding

the heat load forecasts in an operational strategy. Aside from that, most papers ei-

ther consider only one forecast model or only test it on the dataset of one case study

application. Therefore, we propose an evaluation of multiple forecasting methods

and use the best suited method in our operation strategy. It is an important subject

of future work to develop and compare heat demand forecasting methods, which

are benchmarked and validated on a broad range of data sets to demonstrate the

potential generalizability of the approach and avoid overfitting [15]. This work thus

fills the following research gaps:

1. We apply, evaluate and compare supervised data analysis techniques to fore-

cast hourly heat demand with a 24-hours rolling horizon on three datasets.

2. We propose, implement and evaluate a control strategy for a DHN with a

heat pump and a heat storage system that utilizes the forecast results in an

online optimization and can be applied using varying objective functions. The

control strategy is evaluated with regards to grid integration and economic

benefits. It is benchmarked against a naive approach without storage and the

global optimum.

Forecasting Heat Load

To effectively evaluate the effects on the operation of a DHN, this work investigates

forecasts with different forms of artificial neural networks (ANN). The ANNs are

trained based on heat load and weather input data from three use cases. For the

weather data, outdoor temperature at hourly resolution is considered. The heat load

data follows certain patterns that allow for conclusions about consumer behavior.

For instance, there is a higher level of load on working days than there is on non-

working days and the daily load follows a characteristic pattern [16]. In a large

network with different types of customers, the daily pattern can be observed more

clearly due to balancing effects [17].
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Hyperparameter Tested values

Scaling { None, Z-Score, Min-Max Scaling }
Training algorithm { SGD, AdaGrad, RMSProp, Adam }
Activation function { Sigmoid, ReLU, tanh, linear (in the output layer) }
Hours of input data {24× 3, 24× 5, 24× 7, 24× 9}

Learning rate
{lrd × 10−1, lrd, lrd × 101, lrd × 102} with lrd = default learning rate of the

corresponding optimiser as implemented in the python keras api
Hidden layers {1, 2, 3, 4}
Decay {0, 0.0001, 0.001, 0.01}
Patience of early {10, 20, 30}
stopping
Test split {0.25, 0.3, 0.35}
L2 −Regularisation λ ∈ {0, 0.001, 0.01, 0.1}
Dropout {0.1, 0.2, 0.3}

Table 1 Hyperparameters and corresponding values that are tested during the random search.

Artificial Neural Network Forecasts

This study employs different ANN structures. The selected models have recently

attracted attention in research on load forecasting as presented in Section . Convo-

lutional neural networks (CNNs) have the ability to process time series data and

achieve good performances in studies on pattern recognition and forecasting in the

context of electricity systems [15]. Above that we use an implementation of a feed-

forward neural network (FFN) for heat load forecast. We also compare our results

to recurrent neural network structures that are used to forecast heat load in other

studies, namely gated recurrent units (GRUs) and long-short-term neural networks

(LSTMs).

Network Structure

The size of the feature set determines the number of neurons in the input layer.

We use a multiple output strategy to predict the next 24 hours, thus there are 24

neurons in the output layer. The basic structures of the FFN, LSTM and GRU

are evaluated by testing all combinations of the number of hidden neurons and

hidden layers dispalyed in Table 1. The architecture of the CNN is evaluated by

testing the combinations of one to four convolutional layers and pooling layers,

with the convolutional layers containing 20, 40, 60 or 80 filters and four, eight and

twelve kernels. An overview of the tested hyperparameters is given in Table 1. For

the hyperparameter optimization, we use random search, which has shown to find

better models and to require less computational time than manual or grid search

[18, 19].

Forecast Comparison

To increase the validity of the study, the methods are applied to three different

datasets. All ANNs are tested on data of the Flensburg DHN. The two most pro-

mosing structures, CNN and FFN are then further evaluated on data U.S. National

Renewable Energy Laboratory (NREL) and the Sønderborg DHN.

Flensburg DHN Flensburg is a city in Northern Gemany. Its DHN supplies 98%

of the households with approximately 600 km of transport pipes. The obtained

consumption data is aggregated over all district heating consumers for the years

2014 to 2016 in hourly resolution [20]. The network consists of 20% industrial, 24%
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Forecast Method Naive Forecast ARIMAX FFN CNN LSTM GRU2

RMSE [MWh] 18.55 12.69 10.44 10.43 12.52 12.18
MAPE [%] 12.55 9.25 6.38 6.34 6.91 6.98

Table 2 24h forecast results for the Flensburg DHN.

Figure 1 ANN forecast in heating period for the Flensburg DHN.

trade, commerce and services and 56% household customers. Missing values are

filled with linear interpolation. Data from 2014 and 2015 are used as training set,

and 2016 as test set. Table 2 gives an overview of the results of the ANN forecasts.

To benchmark the results, a naive forecast that uses load data from the previous

day as forecast and an ARIMAX model are used. The lowest MAPE and RMSE

for the Flensburg DHN are achieved with the FFN and CNN. Exemplary weekly

performances of the ANN forecast algorithms are presented in Figure 1 for a week

in the heating period. CNN and FFN achieve the best results with one hidden

layer, whereas the LSTM and GRU network achieve the best results for network

structures with two and three hidden layers.

NREL and Sønderborg DHN The dataset of the NREL provides heat demand for

the research and support facility in Golden, Colorado for 2011 in hourly resolution

[21]. The facility is a large building complex with 21,000 square feet. The Sønderborg

dataset from Denmark contains data from 32 industrial and residential buildings.

Individual missing data points of the features or the heat demand are filled with

linear interpolation. Table 3 shows the 24 hours forecast performances. Again, CNN

Forecast Method NREL RMSE [MWh] Sønderborg RMSE [MWh]

FFN 0.079 0.051
CNN 0.095 0.051

Table 3 24h forecast results for the NREL in Golden, Colorado and the Sønderborg DHN.
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dht Heat demand lhg,max Maximum load of the heat generator
F Utility function pel Hourly electricity price
gel,w Amount of electricity t Current time step

generation from offshore wind T Time horizon
ls Heat storage load s Heat storage level
ls,max Maximum heat storage smax Maximum capacity of the heat storage

charging or discharging load Θ Share of offshore wind
lel Amount of electric load φ Hourly storage efficiency
lhg Heat generator load

Table 4 Nomenclature

and FFN produce nearly the same results, for the NREL, the FFN performs slightly

better. As both datasets contain periods with very small or zero heat demand, the

MAPE is not suited as a performance measure in this section.

A Control Strategy for District Heating Networks
As discussed in Section , the key for an increased share of renewable energy in the

heat sector lies in the utilization of renewable electricity generation through sector

coupling technologies. Integrating intermittent renewable electricity generation into

the heat sector requires accurate forecasts and an according heat system operation

strategy. This way, heat generated from electricity in times of low heat demand and

excess electricity supply can be stored and consumed when consumption of both

heat and electricity increase or the availability of renewable electricity generation

decreases. This requires us to develop operational strategies that exploit forecast-

ing ability and deal with the uncertainty of forecasting errors. In this section, we

propose a strategy for the operation of a heat pump and a connected heat storage

within a DHN. We use an online algorithm with a rolling horizon that is able to

forecast the next 24 hours with the presented algorithms. Subsequently, the optimal

operational decisions for these 24 hours are calculated based on the forecasted de-

mand. The decisions for the present hour t are executed and the process is started

again for t + 1 with an adjusted 24 hours forecast and a changed system state.

In every time step, the control strategy is used to satisfy the given heat demand.

The required heat is either supplied by a heat generator or from the heat storage

system. The heat generator can also be used to charge the heat storage. The objec-

tive of the control strategy can be adjusted according to individual preferences. We

demonstrate the maximization of the integration of renewable energy generation

and the minimization of generation costs as two possible objective functions in Sec-

tion . All variables of the control strategy are explained in Table 4. The objective

for the control strategy is to maximize (or minimize) the objective function F that

is subject to optimization. The demand within the DHN has to be satisfied in any

time step. The constraint for demand and supply balance is given by:

dhtt = lst + lhgt ∀ t ∈ T. (1)

The heat storage level in each time step is determined by:

st = st−1 · φ+ lst ∀ t ∈ T\{0}. (2)
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Further constraints are added regarding the maximum capacities and loads for the

heat generator and heat storage. Those capacity restrictions are given by:

0 ≤ lhgt ≤ lhg,max ∀ t ∈ T (3)

0 ≤ st ≤ smax ∀ t ∈ T (4)

−ls,max ≤ lst ≤ ls,max ∀ t ∈ T. (5)

The proposed control strategy can be applied on a DHN structure with a given

set of heat generators and operated with forecast heat demand values as derived in

Section .

Demonstration of the Control Strategy

To achieve our second research objective, the control strategy is evaluated on the

example of the Flensburg DHN for the year 2016 with regard to grid integration in

Section and economic benefits in Section .

In the given scenario, the entire heat demand of the Flensburg DHN is covered

by a heat pump and a heat storage system. The heat pump is able to cover the

entire heat demand, while the heat storage has restrictions with regard to size and

load capacity. The maximum storage capacity is 1000MWh, the maximum load

is 200MW and it is the same for charging and discharging. Thus, it is possible

to completely fill or empty the heat storage within 5 hours. Larger and smaller

ratios of energy to capacity are possible for the heat storage system. However, a

heat storage system that could store more heat than is required for 24 hours would

require larger forecast horizons. The hourly efficiency of the heat storage is given by

Θ = 0.996 resulting in a 24 hour storage efficiency of around 90%, which is in line

with efficiency values for daily heat storage [22]. To benchmark the online control

strategy, it is compared to a naive algorithm and a global optimization. The naive

algorithm does not use the heat storage system and instead generates the heat that

is required in every hour using the heat pump. The global optimization assumes

perfect foresight and optimizes the use of heat pump and heat storage for the entire

operation time horizon at once. For the online operation, we use the 24 hour rolling

horizon forecasts generated by the CNN as presented in Section .

Offshore Wind Generation

In the first demonstration, the control strategy is used to improve the grid integra-

tion of renewable energy. The objective is to maximize the share of offshore wind

energy that is used by the heat pump. In times of peak offshore generation in the

German North Sea, the German network is often not able to transmit all gener-

ated wind power to the South, where much of the industry is located [23]. Thus,

encouraging a use of the offshore wind close to its origin can contribute to both

an increased share of renewables in the heat system and grid integration of wind

power. The objective function is then given by:

F = max

[
T∑

t=1

(Θt)

]
. (6)
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Naive approach Forecast Global

Average offshore wind share Θt 9.05% 10.90% 10.93%
Performance w.r.t global optimum 82.76% 99.70% 100%

Table 5 Comparison of results for the operation strategy with regard to grid integration.

Figure 2 Heat pump operation, heat storage load and heat storage status for the online control
strategy.

A high Θt indicates that a larger portion of the electricity used by the heat pump

is consumed in times when the system is served by offshore wind generation. The

wind share is determined by the ratio of offshore wind generation and the electric

load of the respective transmission system:

Θt =
gel,wt

lelt
∀ t ∈ T. (7)

The data for offshore wind electricity generation gel,w and amount of electric load in

the system lel is acquired from the German network operator Tennet and represents

generation and load within the network area covered by Tennet [24]. The results

displayed in Table 5 show that the online control strategy is able to achieve a share of

offshore wind utilization in heat generation of 10.90%, which is nearly 20.5% higher

than with a naive approach and only 0.3% worse than the global optimization with

perfect foresight. An exemplary three-day operation period in January 2016 for

the control strategy is depicted in Figure 2. The heat storage system is used very

regularly to maximize the share of wind generation in the energy mix. A comparison

of the heat pump operation is shown in Figure 3 for the same time period. The

global optimization shows only slight deviations from the online operation using a

24-hour rolling forecast. It indicates that for such a system, a 24 hours forecast with

a reasonably good accuracy as presented in this paper can achieve nearly optimal

operation results.

Cost Minimization

In a second evaluation of the control strategy, we examine the online operation of a

DHN with regard to hourly day-ahead prices of the German electricity market [25].
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Figure 3 Comparison of heat pump operation for naive approach, 24 hours forecast and global
optimization.

Naive approach Forecast Global

Average price (EUR/MWh) 240.08 209.33 209.07
Performance w.r.t optimum 114.8% 100.01% 100%

Table 6 Comparison of results for the operation strategy with regard to cost minimization.

The objective function is then given by:

Ft = min

[
T∑

t=1

(
pelt l

hg
t

)]
. (8)

The results show that the proposed online control strategy achieves results simi-

lar to the global optimization. An overview is given in Table 6. With a 24 hours

rolling horizon forecast, our model is able to achieve results that are within 0.1% of

the global optimum with perfect foresight and outperforms the naive approach by

around 15%.

Discussion
To evaluate the methodology and discuss the results we first review the presented

heat load forecasts and then discuss the proposed control strategy. Among the

ANNs, the FFN and CNN networks achieve considerably better results within the

test set. Compared to the benchmarks, all ANNs achieve good results on the test

data with a MAPE in the range of 6.34%to 6.98% for the Flensburg DHN. With

an RMSE of 10.43 MW and 10.44 MW, the CNN and FFN outperform the GRU

and LSTM models, which show RMSEs of 12.18 MW and 12.52 MW. The similar

results between FFN and CNN also carry over to forecasting results for the NREL

and the Sønderborg DHN. The slightly worse result of the recurrent neural networks

compared to FFN and CNN might originate from several reasons. As the recurrent

neural networks obtain a deep structure due to the unfolding in time, overfitting

becomes a more problematic issue in general. Especially for the LSTM network, this

is also indicated by larger differences between testing and training errors. Gers et

al. [26] investigate the usage of LSTM networks in time series forecast tasks. They
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conclude that the superiority of LSTMs against FFNs does not carry over to certain

simpler time series forecasts. The results are within the range of similar studies

[27, 28, 9], even though the quality and form of the dataset plays an important

role for such comparisons. The control strategy can be performed implementing

different objectives of which we focus on costs and renewable integration in this

study. In the use cases, the objective is set to maximize the use of electricity when

the share of offshore wind in the system is high to utilize renewable generation

in close proximity to the Flensburg DHN in order to reduce grid congestion and

to minimize the price for the electricity used by the heat pump. A combination

of heat pump and heat storage is used to satisfy the entire heat demand of the

DHN. We do not consider investment and maintenance costs for the DHN, which

are subject to further analysis in the course of implementing the proposed system,

for example as part of a local energy network [29]. For the given objectives and

dataset, the proposed control strategy clearly outperforms the naive strategy and

is only slightly inferior to a global optimization with perfect foresight. The offshore

wind generation is based on given data to isolate effects of the heat load forecast. For

a real-world application, the model would need to be provided with wind forecasts

instead of actual generation. However, this is only an issue of setting the right

objectives. Beyond the scope of this study, the proposed control strategy offers

potential for further connection of energy sectors. For example, the model could be

used to develop a supply strategy for cooling load as presented in [30].

Conclusion
This paper introduces an online operation strategy for district heating networks

(DHN) that utilizes hourly heat forecasts with a 24 hours rolling horizon, achieving

two research objectives: (1) The heat load is forecasted with supervised machine

learning algorithms. In a comparison of the results on three different datasets that

include one large facility, a community of buildings and one large DHN, convolu-

tional neural networks and feed forward networks return the overall best results.

(2) The proposed control strategy for the DHN utilizes heat forecasts for the oper-

ation of electric heat coupling devices, i.e. a heat pump and a heat storage system.

Thereby, we offer a methodology to include forecasts for the operation of a DHN

with a focus on the integration of renewable generation or cost minimization. The

application of such strategies can lead to a smart electrification and thereby decar-

bonisation of a DHN. Thus, with our work, we contribute to a sustainable energy

system and a successful energy transition.
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