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Abstract. In the context of the simulations carried out 
using a simplified multifractal model that is proposed to 
give an explanation to the locality phenomenon that 
appears in the estimation of the Hurst exponent in the 
second-order stationary series that represent the self-
similar traffic flows in high-speed computer networks, its 
formulation is perfected to reduce the variability in the 
singularity limits and it is demonstrated through by its 
wavelet variant that this modification leads to a higher 
resolution in the interval of interest under study. 
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Revisión de un Modelo Multifractal 
Simplificado para Flujos de Tráfico 

Autosimilares en Redes de 
Computadoras de Alta Velocidad 

Resumen. En el contexto de las simulaciones llevadas 
a cabo usando un modelo multifractal simplificado que 
se plantea para dar una explicación al fenómeno de 
localidad que aparece en la estimación del exponente 
de Hurst en series estacionarias de segundo orden que 
representan los flujos de tráfico autosimilares en redes 
de computadoras de alta velocidad, se perfecciona su 
formulación para reducir la variabilidad en los entornos 
de la singularidad y se muestra a través de su variante 
wavelet que dicha modificación implica una resolución 
mayor en el intervalo de interés bajo estudio. 

Palabras clave. Redes de computadoras, exponente 
de Hurst (H), fenómeno de localidad, multifractales, 
modelos de tráfico. 

 
1 Introduction 

The properties that evidence the fractal nature of 
traffic flows in high-speed computer networks have 

been widely studied and reported in the literature 
during the last twenty years, and it is generally 
accepted that their rescaled dynamic behavior must 
be carefully considered in performance analyses 
[1]. 

Thus, there are numerous models that attempt 
to give an answer to this origin, e.g. [1-4]. 

On the other hand, admitting that the localities 
of a fractal process can only be analyzed from the 
standpoint of multifractal analysis, in view of their 
construction from the multiplicative cascades that 
ensure an exact characterization as a result of the 
high frequency analysis [5, 6], it is accepted that 
the traffic flows present in high-speed computer 
networks are of a multifractal behavior, and this 
gives rise to a new simplified multifractal model for 
traffic flows originally reported in [1], which gives 
an explanation for the locality phenomenon in the 
estimation of the Hurst exponent (H) [7, 8]. 

From the results obtained in [1] through the use 
of computational simulations, it is inferred that the 
model contributes to knowledge of traffic dynamics 
in current high-speed computer networks and can 
be used to simulate the approximate behavior of 
the real traffic flows. However its application deals 
with the totality of the curve of variations of Hurst 
exponent, which, although it reflects the locality 
phenomenon, widens the interest interval, which 
should be restricted to the neighborhood of the 
point where the curves shown in Figure 1 change 
their slopes and therefore the singularity occurs. 

Furthermore, in [1] using representative fGn 
series, it is proves, as shown in Figures 2 and 3, 
that the model can capture the main trends of flows 
in the estimation of H. 

However, the fact remains that the range of 
interest is too wide to capture the singularity and 
its neighborhood. 
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