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Abstract. Hyperspectral and multispectral image (HS-MSI) fusion aims to 

generate a high spatial resolution hyperspectral image (HR-HSI), using the 

complementarity and redundancy of the low spatial resolution hyperspectral 

image (LR-HSI) and the high spatial resolution multispectral image (HS-

MSI). Previous works usually assume that the spatial down-sampling 

operator between HR-HSI and LR-HSI, and the spectral response function 

between HR-HSI and HR-MSI are known, which is infeasible in many cases. 

In this paper, we propose a coarse-to-fine HS-MSI fusion network, which 

does not require the prior on the mapping relationship between HR HSI and 

LRI or MSI. Besides, the result is improved by iterating the proposed 

structure. Our model is composed of three blocks: degradation block, error 

map fusion block and reconstruction block. The degradation block is 

designed to simulate the spatial and spectral down-sampling process of 

hyperspectral images. Then, error maps in space and spectral domain are 

acquired by subtracting the degradation results from the inputs. The error map 

fusion block fuses those errors to obtain specific error maps corresponding to 

initialize HSI. In the case that the learned degradation process could represent 

the real mapping function, this block ensures to generate accurate errors 

between degraded images and the ground truth. The reconstruction block uses 

the fused maps to correct HSI, and finally produce high-precision 

hyperspectral images. Experiment results on CAVE and Harvard dataset 

indicate that the proposed method achieves good performance both visually 

and quantitatively compared with some SOTA methods. 

Keywords: Hyperspectral Image, Image Fusion, Deep Learning, Degradation 

Model. 

1 Introduction 

With the steady development of sensor technology, the quantity and expression form 

of information are gradually enriched. Hyperspectral remote sensing image is mainly 

formed by acquiring electromagnetic waves of different wavelengths which are 

reflected from the ground objects after processing. Thus, the hyperspectral image 
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generally consists of tens to hundreds of wavelengths and contains rich spectral 

information. Using different feature signals in hyperspectral images, many computer 

vision tasks such as detection [16, 11] and segmentation [13] can be implemented. 

However, due to the limitation of existing optical remote sensing systems, it is difficult 

to guarantee both the spectral resolution and spatial resolution of HSI. High precision 

HR HSI can provide high-quality data for subsequent more complex hyperspectral 

image processing tasks, and it can be produced by making full use of the MSI or HSI 

which can be captured by existing imaging equipment. Therefore, researchers have 

proposed a variety of hyperspectral image fusion methods to generate accurate HR HSI.  

When composed of a single band, the multispectral image is reduced to a 

panchromatic image [10]. Consequently, the comprehensive evaluation of HS-MS 

fusion can be incorporated into the system of pan-sharpening, and the methods of HS-

MS fusion and pan-sharpening are convergent. Most recent HS-MS fusion methods are 

based on image prior models, which formulate the fusion problem as an optimization 

problem constrained by HRI priors. In addition, some methods exploit the low-rank and 

sparse properties of HSI. These methods use matrix factorization or tensor factorization 

to characterize HSI and address the corresponding image fusion problem. 

As recent years, deep learning (DL) in inverse problem reconstruction has 

gradually attracted wide attention from researchers with the continuous development 

of neural networks. Using back propagation of neural networks and optimization 

algorithms, the optimization problem can be solved effectively and achieve excellent 

reconstruction results. Compared with conventional fusion methods, DL-based ones 

need fewer assumptions on the prior knowledge from the to-be-recovered HR HSI and 

the network can be trained directly on a set of training data. Although the network 

architecture itself needs to be handcrafted, properly designed network architectures 

have been shown to solve many problems and achieve high performance because of the 

robust feature extraction capabilities of convolutional networks [6]. Hence, based on 

CNN and the generation mechanism, we propose a spatial-spectral joint correction HS-

MS fusion network (SSJCN). The implementation of the method revolves around the 

following points: 

(1) Improving the resolution accuracy of the fused images by concatenating the 

degradation models and the reconstruction models. 

(2) The error map between the degraded image and the input data maintains the 

high-frequency information of the input to ensure that the network does not lose detail 

information during forward propagation. 

The rest of this article is organized as follows. In Section 2, we present some 

existing methods of hyperspectral fusion. In Section 3, we introduce the detailed 

implementation of the proposed model. Experimental results on two publicly available 

datasets and comparisons with other methods are reported in Section 4. Lastly, this 

paper ends with the summary of Section 5. 
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2 Related Work 

Traditional methods. Generally, the traditional approach is based on artificial priori 

assumptions. There are several pan-sharpening methods often assume that the spatial 

details of panchromatic and multispectral images are similar [9]. While some methods, 

such as [3, 7], use sparse matrix decomposition to learn the spectral dictionary of LR 

HSI, and then use the spectral dictionary and the coefficients learned from HR MSI to 

construct HR HSI. In [3], W. Dong et al. take the spatial structure into account to make 

full use of the priors. Also, tensor factorization-based methods have made great strides 

in hyperspectral image fusion problems, which treat HR HSI as a three-dimensional 

tensor [8]. Although these methods are constantly evolving and have yielded positive 

results, the methods based on handcrafted priors are not flexible enough to adapt to 

different hyperspectral image structures because HR HSI acquired from real scenes are 

highly diverse in both spatial and spectral terms. 

 

Deep learning methods. Unlike traditional methods, deep learning-based fusion 

methods do not require building a specific priori model. Chao Dong [2] et al. proposed 

a three-layer super resolution model of convolutional neural networks (SRCNN) to 

learn the inherently unique feature relationships between LRI and HRI. SRCNN first 

demonstrates that the traditional sparse coding-based approach can be reformulated as 

a deep convolutional neural network, but the method does not consider the self-

similarity of the data. Shuang Xu [15] et al. designed a multiscale fusion network 

(HAM-MFN), where the HSI was upscale 4 times and fused with MS images at each 

scale with the net going deeper. As existing imaging equipment cannot directly obtain 

HR HSI, some methods use up-sampled LR HSI or HR MSI to simulate the target 

image. Based on that, Han et al. proposed spatial and spectral fusion CNN [4]. Even 

though this algorithm achieved better performance than state-of-the-art methods, the 

up-sampled images not only increased the number of pixels but also the computational 

complexity. Then in [5], a multi-scale spatial and spectral fusion architecture (MS-

SSFNet) is proposed in order to reducing the computational complexity and alleviating 

the vanishing gradients problem. 

3 Proposed Method 

3.1 Problem Formulation 

Given two input images: HR MSI 𝑋 ∈  ℝ𝑐×𝑊×𝐻 , and LR HSI 𝑌 ∈  ℝ𝐶×𝑤×ℎ (𝑐 ≪
 𝐶, 𝑤 ≪  𝑊, ℎ ≪  𝐻)  where 𝐶, 𝑊  and 𝐻  represents the numbers of spectral 

bands, image width and image height respectively. The purpose of hyperspectral image 

fusion is to produce a potential HR HSI 𝑍 ∈  ℝ𝑊×𝐻×𝐶 from the observed images. The 

relationship between 𝑍 and 𝑋, 𝑌 is described in the following equation. 

       𝑋 = 𝑍 ×3  𝑃 (1) 

     𝑌 = 𝑍 ×1  𝑆1 ×2 𝑆2 (2) 



4 

Equation (1) indicates how to obtain HR MSI 𝑋  with the spectral transformation 

matrix 𝑃 ∈  ℝ𝐶×𝑐  of the MSI sensor. 𝑆1 ∈  ℝ𝑊×𝑤  and 𝑆2 ∈  ℝ𝐻×ℎ in equation (2) 

is for blurring HR HSI 𝑍 in spatial domain. That is, 𝑋 is a down-sampling of 𝑍 in 

the spectral dimension while the LR HSI 𝑌 is generated by down-sampling the HR 

HSI. The proposed model estimates 𝑍  using an end-to-end mapping function 𝑓(∙) 

with the network parameters as 

 �̂� = 𝑓𝜃(𝑋, 𝑌), 𝜃 = {𝑤1, … , 𝑤𝑙;  𝑏1, … , 𝑏𝑙} (3) 

where �̂� is the reconstructed HSI by the fusion network and 𝑤𝑙  and 𝑏𝑙 represent the 

weight and bias of the 𝑙th layer. 

 
Fig. 1. The structure of the degradation block, the error map fusion block and the 

reconstruction block. 

3.2 Degradation Block 

Our network includes two inputs: LR HSI 𝑌 and HR MSI 𝑋. Since the HR MSI is 

spectral down-sampled, it has more spatial information than LR HSI. Correspondingly, 

the LR HSI preserves more spectral information than the HR MSI. In order to simulate 

the degradation model using the convolutional network, we upscale LR HSI by bicubic 

interpolation to obtain input data of the same size as the HR HSI. The result of the up-

sampling is denoted by 𝑍0,  which can be considered as a rough estimate of HR HSI. 

At first, we feed 𝑍0 into the network and let it pass through the spectral and spatial 

degradation blocks respectively, which can be expressed as 

 �̂�1 = Dspe(𝑍0)     (4) 

 �̂�1 = D𝑠𝑝𝑎(𝑍0)   (5) 

Many algorithms consider the spectrum down-sampling operator 𝑃 in Eq. (1) as a 

matrix and then HR MSI can be calculated by simple matrix multiplication. We apply 

the  D𝑠𝑝𝑒(∙)  for modelling the HR HSI spectral degradation mechanism, which is 

composed of a convolutional layer and an activation function layer. While the operator 

𝐵 and 𝑆 in Eq. (2) have usually been implemented with convolution and pooling. The 

function D𝑠𝑝𝑎(⋅)  has the same structure as D𝑠𝑝𝑒(∙)  and represents the non-linear 

mapping between LR HSI and HR HSI. Secondly, the spatial and spectral residuals of 
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𝑍0 are obtained by differencing the degradation results obtained in the first step with 

the observed data, which can be written as 

 𝑋𝑟𝑒𝑠
1 = 𝑋 −   �̂�1  (6) 

  𝑌𝑟𝑒𝑠
1 = 𝑌 −  �̂�1  (7)  

Finally, 𝑋𝑟𝑒𝑠
1   and 𝑌𝑟𝑒𝑠

1   are used as the input of the error map feature extraction block 

to estimate residual map 𝐸1  between 𝑍0  and 𝑍 . The implementation detail is 

described in section 3.3.  

 
Fig. 2. The specific structure of the error map fusion block. 

3.3 Error Map Fusion Block 

In this section, we will specify the network structure of the error map fusion block 

like the Fig.2. The 𝑋𝑟𝑒𝑠
1   and 𝑌𝑟𝑒𝑠

1  outputted from the degradation block are used to 

produce the particular error map corresponding to 𝑍0. Degraded images �̂�1  and �̂�1 

retain the effective low-level semantic information of the 𝑍0  during the forward 

propagation of the network. Thus, residual data 𝑋𝑟𝑒𝑠
1   and 𝑌𝑟𝑒𝑠

1  are more accurate for 

the correction of 𝑍0. The error map fusion process can be expressed as 

𝑍0 = Φ(𝑋𝑟𝑒𝑠
1  , 𝑌𝑟𝑒𝑠

1  )                                                       (8) 

Feature map size alignment subnetwork. The size of LR HSI �̂�1 is smaller than the 

HR MSI �̂�1 as it is spatially down-sampled. To maintain the consistency of the feature 

size between the extracted features and the fusion results, we up-sample the 𝑌𝑟𝑒𝑠
1  using 

deconvolution while the learnable CNN can improve the up-sampling results for each 

channel. And then passed it through a down-sampling layer for initial feature extraction. 

Meanwhile, the 𝑋𝑟𝑒𝑠
1  is passed through a low-level feature extraction block consisting 

of one convolution layer and one PRelu layer. After that, it was also seed to a down-

sampling layer.  

 

Fusion subnetwork. The features extracted from 𝑋𝑟𝑒𝑠
1  and 𝑌𝑟𝑒𝑠

1  are concatenated 

along the spectral dimension. The fusion subnet consists of two convolution layers with 

separate activation functions. We incorporate a channel attention mechanism to the 

results of the first fusion layer to better preserve the spectral structure and reduce 
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redundant information. The feature map is down-sampled again after this subnetwork. 

At this time, we have obtained the feature maps containing the spatial and spectral 

information simultaneously, which will be used to reconstruct the residual map of 𝑍0 

by the subsequent up-sampling network.  

 

Error map reconstruction subnetwork. The error map reconstruction subnetwork is 

composed of two sets of network structures, each comprising successive convolutional, 

deconvolution layers and activation functions. In an effort to take advantage of the 

complementary nature of the higher-level and lower-level features, jump connections 

are added to the features after each deconvolution. The last concatenated feature maps 

are then convolved in two layers to obtain the final result. In this way, the error feature 

map �̂�1 is acquired from this subnetwork. �̂�1 contains high frequency information 

proposed from 𝑋𝑟𝑒𝑠
1  and 𝑌𝑟𝑒𝑠

1 , and used to rebuild the final result. 

3.4 Reconstruction Block  

The reconstruction block refines the 𝑍0 with the error map �̂�1 outputted after the 

first two blocks. In order to make the error maps obtained in the previous part better 

modify the initial hyperspectral image, we apply spatial and spectral attention model to 

the maps. And then �̂�1 are added to the 𝑍0 as shown by the skip connection in Fig.1 

to produce the reconstructed hyperspectral image 𝑍1, which can be written as 

  𝑍1 = 𝑍0 + �̂�1    (9) 

To improve the accuracy of 𝑍1 , we refine it by one more degradation and 

reconstruction operation and the implementation process is the same as the three blocks 

above. The whole process is shown in the Fig.3, and the final output is expressed as  

 𝑍2   =  𝑍1 +  �̂�2 =  𝑍1 + Φ(𝑋𝑟𝑒𝑠
2 , 𝑌𝑟𝑒𝑠

2 ) =  𝑍1 +  Φ (𝐷𝑠𝑝𝑒(𝑍1), 𝐷𝑠𝑝𝑎(𝑍1))         (10) 

 

 

Fig. 3. The overall structure of the proposed spatial spectral joint correction network. 
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3.5 Loss Function 

In our model, we reconstruct the HR HSI by learning the mapping function 𝑓𝜃(𝑋, 𝑌). 

The parameters  𝜃 are optimized by minimizing the loss between the outputs and the 

observed images. We choose the L1 norm function as the loss function for it is simple 

to implement and achieves good results in image super-resolution [17]. Thus, the loss 

function defined as 

  𝑙(𝜃) =  ‖𝑍 − 𝑍2‖  =  ‖𝑓𝜃(𝑋, 𝑌) − 𝑍2‖    (11) 

X and Y represent known LR HSI and HR MSI, which are obtained from the spatial 

and spectral down-sampling of the true value Z respectively. 

4 Experiments and Analysis 

4.1 Data and Experimental Setup 

We conducted experiments on CAVE and Harvard dataset. The CAVE dataset 

consists of HR HSI captured under 32 indoor scenes with manipulated illumination. 

Each HR HSI is 512 × 512 × 31 in size, where 512 is the spatial size of the image and 

31 is the number of channels in the image, representing the reflectance of the material 

in the scene at different spectra. The Harvard database contains 50 images taken under 

daylight illumination, and 27 images under artificial or mixed lighting. In this 

experiment we use 50 images under daylight illumination. The first 20 of these HSIs 

are assigned as the training set, the middle 5 are used as the validation set, and the last 

25 HSIs are used for testing.  

We compare the proposed method with HySure [12], DHSIS [1] and DBIN [14]. 

HySure formulates the fusion problem as a convex optimization problem, which is 

solved by the split augmented Lagrange algorithm (SALSA). DHSIS optimizes the 

modeling results using the prior information extracted from the convolutional network, 

while DBIN is a network structure built entirely from convolutional layers. Fig.4 shows 

the output images obtained by the several methods and corresponding error maps. 
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Fig. 4. The results from stuffed toys at band 20 in the CAVE dataset. (a) the ground truth at 

band 20 and the HR MSI. (b-d) reconstructed images and the corresponding error maps after 

image enhancement while light color represents the error. 

4.2 Comparison with Other Methods on CAVE  

We take the HSIs from the database as the ground truths. We first blur the ground 

truths with a Gaussian filter and then down-sample the blurred image by a factor of 1/4. 

The result of the down-sampling is the simulated LR HSI. While HR MSI is generated 

by multiplying the HS HSI and the spectral response matrix, and the total number of 

channels for the HR MSI is 3. As an image of size 512*512 is a heavy burden for 

reading data with CPU and training with GPU, we take 8*8 blocks of images from the 

training set and use the extracted blocks for training.  

The test set is being processed in the same way as the training set and the final 

restored images are obtained by patching the resulting images together in sequence. To 

better discern the difference, the image enhancement process was implemented on the 

error maps. The second row in Fig.4 is a local enlargement of the results obtained by 

the different methods in the first row, where the results obtained by DHSIS have a clear 

rectangular block distortion. Although HySure and DBIN maintain the overall structure 

of the image, obviously results obtained by our proposed method have the least error 

with the original image. And also, according to the results shown in Table 1, the 

performance of the proposed method on CAVE dataset was best than those of other 

methods. 

 

 

     

     

     
(a) (b)HySure (c)DHSIS (d) DBIN (e)SSJCN 
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Table 1. Average performance of the compared methods of CAVE dataset 

 PSNR SSIM SAM EGRAS 

 +∞ 1 0 0 

HySure 40.5841 0.9779 6.2523 2.5095 

DHSIS 45.1842 0.9903 3.3527 1.3427 

DBIN 47.2403 0.9933 3.2230 1.1669 

SSJCN 48.5434 0.9937 3.0916 1.0165 

4.3 Comparison with Other Methods on Harvard  

The images in the Harvard data are processed in the same way as the CAVE data. Fig.5 

shows the reconstructed results and the corresponding error maps, again with image 

enhancement for ease of observation. Combining Fig.5 and Table 2 we can clearly see 

that our proposed method yields the lowest error results. 

 

     

     

(a) (b)HySure (c)DHSIS (d) DBIN (e) SSJCN 

Fig. 5. The results at band 20 of the selected part in the Harvard dataset. (a) the ground truth at 

band 20 and the HR MSI. (b-d) reconstructed images and the corresponding error maps after 

image enhancement while light color represents the error. 

 

Table 2. Average performance of the compared methods of Harvard dataset 

 PSNR SSIM SAM EGRAS 

 +∞ 1 0 0 

HySure 44.5991 0.9788 3.9709 2.8675 

DHSIS 45.7591 0.9812 3.7445 3.1335 

DBIN 46.1493 0.9839 3.6503 2.9645 

SSJCN 47.1581 0.9847 3.3153 2.1151 
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4.4 Effectiveness of Degradation Block  

As mentioned in the previous section, we hold the opinion that learning the degradation 

model and error maps to improve the accuracy of the fusion results. Therefore, in this 

section we demonstrate the effectiveness of the degradation model of the proposed end-

to-end model. Take CAVE dataset as an illustration, the results are shown in Fig.6. 

Although the output image after RB (1) of Fig.3 is visually close to the original image, 

we can see a considerable amount of rectangular deformation in the error image in the 

Fig 6, which is reflected in the LR HSI acquired from the degradation of DB (2). It can 

be inferred that the degradation model in this experiment effectively preserves the 

details and structural information of the degraded images, which helps to improve the 

network results. Moreover, we can also observe that the estimation error map outputted 

from DB (2) is very close to the error between the results reconstructed after RB (1) 

and the true value, which indicates that the correction map is effective. Besides, 

performing two iterations on the input data further improves quality assessment values, 

and the comparison results showed on Table 3. 

 

Fig. 6. The results from stuffed toys and real and fake apples at band 30. (a, d) first row: 

original RGB image, second row: the HR MSI obtained after DB (2). (b, e) original LR HSI 

and the LR HSI obtained after DB (2). (c, f) first row: the error map between the reconstructed 

result after RB (1) and the true value, second row: the estimated error map in DB2. 

 

Table 3. The proposed methods with different iteration numbers of CAVE dataset 

 PSNR SSIM SAM EGRAS 

 +∞ 1 0 0 

SSJCN(1) 47.1570 0.9928 3.2652 1.1584 

SSJCN(2) 48.5434 0.9937 3.0916 1.0165 

      

      
(a)           (b)             (c)             (d)             (e)            (f) 
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5 Conclusion 

In this article, a spatial-spectral joint correction network is proposed for HS-MS 

fusion. SSJCN consists of degradation blocks, error map fusion blocks and the 

reconstruction blocks, which are used to simulate the degradation mechanism and make 

corrections to the initialized data respectively. The parameters of network are optimized 

by minimizing the loss between the outputs and the ground truth. The comparison 

results between the proposed method and other SOTA methods demonstrate the 

effectiveness of the proposed method.  
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