
EasyChair Preprint
№ 4211

Concurrency Control in Distributed Database

Fatima Bara, Chaimae Saadi and Habiba Chaoui

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 19, 2020

Concurrency Control in Distributed Database
Fatima BARA ¹, Chaimae SAADI ², Habiba CHAOUI ³

Laboratory for Systems Analysis, Information Processing and Industrial Management

Systems Engineering Laboratory

fatima.bara97@gmail.com ¹ , chaimaesaadi900@gmail.com ², habiba.chaoui@uit.ac.ma ³

ENSA Kenitra Ibn Tofail University ¹ – EST Salé Mohamed V University ² - ENSA Kenitra Ibn Tofail University ³

Abstract In a distributed database, uncontrolled concurrent execution of multiple transactions can lead to

inconsistencies and can affect data integrity. So, there is requirement of controlling the concurrent execution of the

transactions so that the consistency and integrity of the database systems can be ensured. The study presents the new

breed of mechanism known as the SC-2PL concurrency control mechanism, which is a mixture of Strict-2PL and

Conservative-2PL concurrency control mechanisms. Our proposal improves the performance of the distributed

database through the elimination of blockages, cascading aborts and dirty reads and write.

Keywords distributed database, concurrency control, Strict-2PL, Conservative-2PL, SC-2PL

I. INTRODUCTION

With the fast development of the Internet, the

traditional stand-alone database cannot satisfy the

needs of massive storage of logs and concurrent

access by a large number of users, which is why the

distributed database came into being. but no data

storage solution is without its drawbacks. there are

several problems in distributed databases and among

these problems there is uncontrolled concurrent that

affect data integrity.

In a distributed database system, A major problem in

these systems is concurrency control to general data

parallel executed transactions [1]. several

transactions access the same data element at the

same time. In addition, the simultaneous operation of

the database must be controlled to guarantee

consistency and integrity of database, and to avoid

faults such as data loss, data inconsistency, and dirty

reads or write.

Many methods of concurrency control have already

been developed, but they pose problems of delay,

performance, deadlock, rollback...

The algorithm we propose aims to increase

concurrency degree of concurrent transactions. and

to find a good scheduling strategy that can prevent

blocking and rollback.

The rest of this paper organized as follows: Sect. 2

describes the previous related work. Section 3

introduces the proposed algorithm. Finally, Sect. 4

concludes the paper.

II. RELATED WORK

1. Distributed Database

Distributed database is same like a regular

centralized database but it is physically spread across

multiple geographical sites and is connected through

wired or wireless network. It is done to boost up the

transactions for local users for that particular site[2].

These distributed databases can be stored either on a

network server, on corporate intranets and extranets,

or, more newly and more commonly, on

decentralized stand-alone computers located on the

Internet. There are two types of distributed database

management systems (DDBMS), homogeneous and

heterogeneous.

In a homogeneous DDBMS: all the computer sites

have the same database product installed and the

operating system is also the same[3].

In heterogeneous DDBMS: some sites have

different database products installed and the

underlying data model is also different[3].

2. Concurrency Control

There have been recent improvements in these

concurrency control algorithms in order to resolve

some of the concurrency issues and to achieve better

distributed database performance. This study can be

summarized in a few research studies such as:

In 2018, the researchers proposed an improvement

of 2PL to achieve deadlock free cell locking (DFCL).

In[4] this protocol provides less percentage of

conflict, this reduces the need to transaction abortion

mailto:fatima.bara97@gmail.com
mailto:chaimaesaadi900@gmail.com
mailto:habiba.chaoui@uit.ac.ma

in addition to reducing the average number of

rollbacks. DFCL is proposed to eliminate the

deadlock of the locking algorithms. Also, DFCL

improves database performance via increasing the

number of commits, and improves response time.

In 2019, they proposed the new breed of algorithm

known as JAG_TDB_CC concurrency control

algorithm in [5] which is a unique blend of a

timestamp and lock-based concurrency control

mechanisms. It reduces the risk of locks, frequent

blocks, and long waiting times between different

user sessions.

the proposed algorithm in[6]Petri net model of the

locking protocol 2PL for concurrent transaction

database, and on this basis, gives a deadlock-proof

scheduling method using this protocol. This method

is especially suitable for deadlock prevention of

distributed concurrent transaction databases.

3. Algorithms to Secure Concurrency Control

There are different methods to concurrency control.

- Distributed Two-Phase Locking Protocol

- Timestamp-Based Protocols

- Validation-Based Protocols

but we have concentrated in this paper on one

mechanism which is 2PL.

3.1. Locking

There are many ways to lock data:

1. Shared lock: It is denoted by S, if transaction T has

obtained a shared lock on data item Q, then T can

read but can’t write Q. It is also called Read-lock[7].

2. Exclusive lock: It is denoted by X, if a transaction

T has mode lock on data item Q then T can both read

and write Q. It is also called Write–lock[7]

A. Two-phase Locking Protocol (2PL)

Two-phase locking protocol utilizes locks that block

other transactions from accessing the same data

during a transaction's life. Two phase locking

protocol ensures serializability this protocol required

that each transaction issue lock and unlock

requests[7].

Two phase locking protocol are as follows:

1. Growing phase: called as growing phase in which

the transactions can acquire or upgrade the locks[8]

 2. Shrinking phase: the transactions can release or

degrade the locks only[8], but may not obtain any

new locks. It is also called contracting phase.

B. Strict Two-phase Locking (S2PL)

Strict 2PL protocol is an important variation of 2PL

protocol. strict 2PL requires that in addition to

locking being two-phase, all exclusive-mode locks
taken by a transaction must be held until that

transaction commits[9].

C. Conservative Two-phase Locking (C2PL)

C2PL's transactions obtain all the locks they need

before the transactions begins. This is to ensure that

a transaction that already holds some locks will not

block waiting for other locks. Conservative 2PL

prevents deadlocks[7].

Figure 1: Comparison between the algorithms

Locking Protocol

Advantages

H
Disadvantages

Two-phase locking protocol

- guarantee transaction serializability.

- achieves a high degree of locking

 overall large area of the database.

- Occurs deadlocks among transactions.

- Provides many rollback transactions.

Strict Two-phase locking protocol

- Avoids cascading abort.

- transactions may end up in waiting

- Does not guarantee freedom from deadlocks.

Conservative Two-phase locking

protocol

 - Avoids deadlocks.

- doesn't prevent Cascading rollbacks.

- dirty reads

Figure 2 shows an 2PL is an algorithm that ensures

serializability but does not prevent blockages and

aborted transactions.

So, to fix these problems, there are two variants that

are invented of 2PL protocol. the first one is strict

2PL which prevents cascading aborts but does not

avoid blockages.

the second is Conservator 2PL which avoids

blockages but does not ensure a good level of

committed transactions and dirty reads.

III. PROPOSED WORK

1. Objectif of Our Proposed Mechanism

we propose a pessimistic concurrency control

mechanism to be applied on real-time distributed

database systems.

The CS-2PL algorithm combines the approach of

Conservative two-phase locking and Strict Two-

Phase Locking. The algorithm is applied by means

of a trigger that allows a user session of a distributed

transaction to perform its operations or make one

transaction wait until the other transaction has

released according to the rules and conditions

specified in the algorithm.

This protocol guarantees the serializability between

transactions performing read and writes operations,

protects other conflicting user sessions from entering

a standby state and permits them to stay inactive until

the lock is released and It ensures that the schedule

generated would be Cascade-les and prevents dirty

reads and write..

2. CS-2PL Mechanism

Figure 2: CS-2PL Mechanism

Figure 2 shows an architecture of SC-2PL which

deals with serialization i.e. a technique that allows a

transaction to be temporarily stopped while another

transaction accesses the data, and shows how the

mechanism works.

The Transaction Manager allows many user sessions

of a distributed transaction to run simultaneously.

And SC2PL is concurrency control mechanism

solves conflicts between transactions in the event

that multiple user transaction sessions attempt to

access the same database resource at the same time.

The lock manager is in charge of locking and

unlocking different user transactions. Data manager

takes care of the processing of the data in the

database.

3. Concept of CS-2PL Mechanism

To explain the mechanism, we have given this

example, which can be seen in figure 3 below.

the example like the following:

we consider as if we have a banking system and we

want to carry out 4 transactions simultaneously on

distributed databases and in the meantime, we want

to ensure data integrity

T1: transfer from account A to account C $300

T2: transfer from account B to account A $200

T3: add $400 to account D

T4: Remove $100 from account C

Figure 3: Concept of CS-2PL Mechanism

this mechanism consists of two phases:

PHASE 1:

This phase requires that the transaction locks all the

items it needs from the Lock Manager before it starts

executing the transaction by declaring it read and

write beforehand. If any of the pre-declared required

items cannot be locked, the transaction does not lock

any of the items, but waits until all items are

available to be locked. This is what make it

deadlock-free as shown in Figure 3 below.

If a transaction asks Lock Manager to lock an entity,

and the lock has been given to another transaction,

the requesting transaction must wait.

PHASE 2:

All exclusive locks(X) or shared-locks held by the

transaction will be unlocked until the transaction is

committed.

once the transaction has been committed Lock

Manager automatically takes care of unlocking the

items that have been locked by this transaction.

afterwards, the transaction waiting for these

elements to be unlocked will automatically take over

the locking of the items that are already pre-declared.

3.1. Role of each phase

 PHASE 1: avoids deadlocks

A deadlock is a state where some processes request

for some resources but those resources are held by

some other processes[10], this situation occurs in

concurrent programming when a set of transactions

enter into infinite waiting situations.

but since the transaction has had all the locks when

it needs it before its execution, therefore it will not

have locks but it will have only a few waits of some

transactions.

 PHASE 2: avoids cascading abort and dirty

reading and writing

dirty reads are a problem that occurs when a

transaction reads data written by an uncommitted

concurrent transaction and the same thing for dirty

write.

Cascading aborts and dirty readings or writings are

problems that occur when executing transactions

simultaneously, but Phase 2 of our mechanism is

designed to solve these problems. In this phase CS-

2PL requires that each transaction must first be

committed before releasing their locks.

IV. CONCLUSION

An important objective of a distributed database

system is to ensure data consistency and integrity,

and Concurrency control is a very major problem in

the design of distributed database systems.

This paper presented an algorithm CS-2PL based on

C2PL and S2PL which applies in situations with a

high degree of simultaneity to attain non-blocking

locking, which improves the processing of

simultaneous transactions. It removes the blocking

problem of locking algorithms such as S2PL, and

prevents cascading rollbacks that are found in C2PL.

and it eliminates dirty reading and writing.

V. REFERENCES

[1] S. Vasileva and A. Milev, “Simulation

Studies of Distributed Two-phase Locking in

Distributed Database Management Systems,”

Information Technologies and Control, vol. 13, no.

1–2, pp. 46–55, Jun. 2015, doi: 10.1515/itc-2016-

0010.

[2] M. Haroon, “Challenges of Concurrency

Control in Object Oriented Distributed Database

Systems,” p. 6.

[3] Q. Abbas, H. Shafiq, I. Ahmad, and S.

Tharanidharan, “Concurrency control in distributed

database system,” in 2016 International Conference

on Computer Communication and Informatics

(ICCCI), Coimbatore, India, Jan. 2016, pp. 1–4,

doi: 10.1109/ICCCI.2016.7479987.

[4] M. Mohamed, M. Badawy, and A. EL-

Sayed, “An improved algorithm for database

concurrency control,” Int. j. inf. tecnol., vol. 11, no.

1, pp. 21–30, Mar. 2019, doi: 10.1007/s41870-018-

0240-y.

[5] J. A. Gohil, K. A. Popat, and P. M. Dolia,

“Comparative Study and Performance Evaluation

of JAG_TDB_CC Concurrency Control Algorithm

for Temporal Database,” p. 6.

[6] Y. XiaoLing, “A Deadlock Prevention

Algorithm for The Two-Phase Locking Protocol

Based on Petri Net,” in 2019 6th International

Conference on Systems and Informatics (ICSAI),

Shanghai, China, Nov. 2019, pp. 889–892, doi:

10.1109/ICSAI48974.2019.9010538.

[7] U.-M. A. K. Srivastava, B. Singh, A.

Singh, N. Singh, and P. Singh, “Concurrency

Control in Distributed database management

systems: Dealing Unfair Transactions at Higher

Access Classes,” vol. 07, no. 03, p. 8, 2019.

[8] . M. K. G., . R. K. A., and . B. S. B.,

“Study of Concurrency Control Techniques in

Distributed DBMS,” IJMLNCE, vol. 2, no. 4, Dec.

2018, doi: 10.30991/IJMLNCE.2018v02i04.005.

[9] V. Verma, G. Verma, D. Sisodia, and P.

Vashist, “Strict 2 Phase Locking in Organizational

Data Protection,” vol. 1, no. 2, p. 4.

[10] P. Tomar and M. Bhardwaj, “A Review on

Deadlock Detection in Distributed Database,”

Advances in Computer Science and Information

Technology, vol. 2, no. 8, p. 3, 2015.

