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Abstract. The P300 based non-invasive brain-computer interfaces (BCIs) 

are the focus of several research communities in order to move a BCI from a la-

boratory demonstration to real-life applications. The development and imple-

mentation of a BCI system might be the only option left for severely disabled 

patients to be able to communicate with environment. Therefore, most of the 

BCI researches have been based on the visual stimulation using the electroen-

cephalogram (EEG) for measuring the brain waves such as event-related poten-

tial (ERP). However, recent studies revealed that the tactile modality offers a 

gaze-independent alternative to the user for reducing eye strain and fatigue. In 

this context, we investigated a tactile brain-computer interface (tBCI) based on 

ERP responses using vibro-tactile stimuli around the face and fingers. With re-

gard to novelty oddball paradigm and target-processing, the users have exhibit-

ed a different event-related potential in case of a target stimulus. The results of 

our experiments showed very clear shape of P300 component caused by tactile 

stimuli which is going to be used in real-time control applications. The efficien-

cy of our ERP-based BCI is strongly related to mean amplitude of the P300 

components which was used as a feature over 14 EEG channels in the phase of 

support vector machine (SVM) classification. 

Keywords: EEG, P300, Tactile brain-computer interface (tBCI), Oddball para-

digm, Somatosensory. 

Introduction 

Brain-computer interface (BCI) defines a communication protocol in which infor-

mation is transmitted directly from the user's brain to the external world via computer 

without utilizing muscles or peripheral nervous system [1]. Nowadays, BCI applica-

tions, especially P300-based BCIs, are consistent and do vary from the enhanced 

spellers such as “active” or “reactive” BCI spellers to the control of robots. Further-

more, this technology is willing to cross the line from the laboratory prototypes to 

final market products such as EEG-based BCI system with a Virtual Reality system in 

order to control a smart home. However, this field still holds several challenges, wait-
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ing to be unfolded by the research communities. One of the most challenging prob-

lems is the design and use of a tactile non-invasive BCI. In this paper, we propose a 

spatial four degree of freedom tBCI for severely disabled patients like people suffer-

ing from diseases such as locked-in syndrome, Lou Gehrig’s disease, and muscular 

dystrophy. A tBCI could be especially suitable not only for disabled patients but also 

for patients whose vision or eye movements are impaired. 

Following the above idea, we propose a real-time experimental paradigm with a 

preliminary analysis to get a real data instead of using a public EEG database. Figure 

1 displays the general flowchart of our proposed tBCI system that can operate on the 

following outline: Firstly, a random stimuli sequence is produced by the stimuli gen-

erator program with regards to the oddball paradigm; secondly, our homemade devel-

oped hardware converts the previous sequence to tactile stimuli and delivers it to the 

user. In the same time, the brainwave monitoring program will monitor the subject's 

EEG signals and extracts the event-related potential (ERP) responses to the attended 

and ignored spatial tactile stimuli. We developed this program within the 

OPENVIBE1 framework. Finally, the BCI classifies the brain responses to generate 

the command matching the user request. 

From now on the paper is organized as follows. The first section will describe the 

overall architecture of the proposed BCI system. Further, we discuss the favored 

methods, as well as our experimental protocol. In the third section, we show our re-

sults for three conducted experiments. Finally, we review the results obtained from an 

offline analysis of EEG data recorded during online BCI sessions. We will summarize 

this paper with the conclusions and the future research remarks. 

 

Fig. 1. Schematic diagram of the proposed tBCI application. EEG signals are processed and 

classified by OpenVibe [2] software processing stages in synchrony with presented tactile 

stimuli to generate interactive commands. 

                                                           
1  Open source Framework for brain-computer interfaces software development and real-time 

neurosciences. Link: http://openvibe.inria.fr. 

http://openvibe.inria.fr/


METHODS 

In the proposed BCI model in this study, we employ a tactile paradigm utilizing a 

fact that given a tactile stimulus, the subject's brain will produce the ERP pattern [3]. 

Additionally, depending on user’s intention the tactile evoked potential is modulated 

generating a P300 response. The user's brain evokes this specific response in an odd-

ball paradigm, where rare targets stimuli are presented together randomly with dis-

tractors (non-targets). 

The efficiency of a BCI can be measured using Wolpaw ITR [4]. This metric pro-

vide us with an easy way to benchmark our prototypes. Nevertheless, it is a given that 

the accuracy rate of the classifier and the speed of the classification are the main crite-

ria when talking about BCI efficiency. The primary accuracy rate is higher when a 

machine learning algorithm accurately classifies the P300 brain response. The classi-

fication accuracy can be proportional to the amplitude of the ERPs which is inversely 

proportional to the subject's confusion rate. In our study we propose a model using 

four tactile exciters that will deliver the stimuli to the user's face and fingers; these 

locations are one of the most sensitive parts of the human body. According to the 

Homunculus model, both the face and the fingers hold a big portion of brain-cells in 

the somatosensory cortex [5]. Utilizing this technical setup we do hope to get higher 

amplitude P300 responses to facilitate the ERPs features classification later. 

In this study, we focus on using the ERPs metric to investigate the EEG signals and 

determine the appearance of a P300 brain response. We explain our proposed system 

architecture, experimental settings, and the chosen electroencephalography (EEG) 

data processing methods. After that, we show the resulting ERPs measurements.  

1.1 Proposed tactile BCI Architecture 

We realized an experimental environment formed of two modules: 

 The front module handles the tactile stimulus generation and 

communication with the user. This part contains a software program 

component that manages the stimulus delivery to the user and a hardware 

component that uses ARDUINO-UNO to modulate the tactile stimulus. 

 The second module runs in the background and carries out EEG signals’ 

acquisition and processing; P300 features extraction; classification and 

controls generation. We used an open-source development environment 

(OpenVibe) to implement this module.  

The two experimental modules interact together, the tactile stimuli platform (TSP) 

sends time triggers to the OpenVibe acquisition server to indicate the type of the 

stimulus using the TCP/IP communication protocol. Then, the server encodes the 

stimulus tag with the EEG signals on a separate channel. The second module operates 

the EEG signal classification and sends results to the user using a Python script and 

UDP sockets.  



 

Fig. 2. The P300-based tactile brain computer interface experimental setup.  

The figure 2 shows the actual system where the EEG signal is captured in real-time 

(figure 2.A). The subject was setting on a comfortable position during the time of the 

experiment. The tactile exciters were added to drive the user's brain to generate tactile 

event-related potentials responses (figure 2.B-C). Then, we recorded brain activity 

using g.tec gusbAmp with dry electrodes [6] to ensure a correct EEG signals quality 

(figure 2.D).  

 

Fig. 3. The EEG electrodes placement. The EEG g.tec Sahara electrodes were placed mostly on 

the scalp area above the sematosensory cortex (in red). The ground electrode was attached to 

FPz (in yellow) and the reference to the left-earlobe (in blue). 



1.2 EEG recording and experimental paradigm  

We used the g.USBamp EEG amplifier system (g.tec medical engineering, Austria) 

with fourteen active g.Sahara electrodes. The electrodes were attached to the 

following head locations C5, C3, Cz, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, 

P3 and P4 according to the 10/10 extended international system [7] as shown in 

Figure 3. Ground and reference electrodes were attached at FCz position and a left 

earlobe, respectively. A sampling frequency was set at 256 Hz and then to 512Hz.  

For generating the tactile stimuli, the four vibro-tactile sensors were placed on the 

face (right and left cheeks) and on two fingers (right and left middle fingers).  

A healthy tBCI novice subject took part in the experiments. During the trials, the 

subject was instructed to concentrate and count the particular target stimulus 

appearances. We conducted all the trials using an laboratory-based EEG apparatus at 

University of Sciences and Technology of Oran, Algeria.  

1.3 Offline ERPs Analysis 

We employed a bandpass filter in a range of [0.01 ∼ 30.00] Hz to isolate the strong 

electromyographic (EMG) interferences and the amplifier drift from the useful EEG 

data carrying the tactile events related potentials. We also applied a notch filter to 

discard the power line interference in a rejection band of [48 ∼ 52] Hz. Moreover, we 

utilized amplitude-based thresholding identification and rejection technique with an 

absolute value set to 80 µV to suppress eye-blink related muscular interferences. 

Taking advantage of the time triggers marking the tactile stimuli onsets we seg-

mented the EEG signals to 1000 ms long “epochs.” Then, 10-fold cross-validated 

(partitioned) support vector machine (SVM) classifier was used to distinguish be-

tween two classes (P300 Vs. Non-P300) using a mean ERPs amplitude between 200 

ms and 600 ms. In the end, we compared the results of SVM classifier with a linear 

discriminant analysis (LDA) classifier. 

The following flowchart shows all steps of ERPs analysis using 14 EEG channels 

for decoding brain activity using machine learning. 

 

Fig. 4. Flowchart of the offline ERPs Analysis. 

The following figures 5 and 6 show the wave shapes of ERP for all the channels in 

two situations (the presence or absence of P300 component). 
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Fig. 5. The grand mean average tactile ERP brain responses per channel for three different 

trials with a total of 1032 distractors and 340 targets stimuli. 

 

Fig. 6. The grand mean average tactile ERP brain responses per trial. For trial 1, we used 256 

Hz. The trial 2 and 3 were executed with a sampling frequency of 512 Hz. 



Results and discussion 

In the above figures of EEG data, the positive deflections (the so-called P300 or 

“aha-responses”) within latencies of 200 ∼ 600 ms could be found. We obsereved that 

the positioned electrodes in the scalp region of the motor cortex area display a clear 

P300 component due to the brain’s incredible conductivity. All the electrodes 

channels have the same behavior and the number of electrodes required in the system 

can be reduced. As a result, our system exhibits a correct P300 response that we can 

rely on further on the online experiment. This analysis had confirmed the location 

choice of the tactile stimulators and the workability of this setup. 

 Most BCI studies usually rely on LDA technique [8]. However, using a machine 

learning algorithms such as SVM classifier results in high classification accuracy [9]. 

In this paper, using ERP trials with 10 repetitions, we achieved an average accuracy 

of 76.30% (standard deviation (SD): 3.89%) among two classes (chance level is 50%) 

using SVM classification. Furthermore, we achieved a classification accuracy of 

62.23% (SD: 14.63%) using LDA method. The statistical difference between classifi-

cation accuracies obtained using LDA and SVM classifiers was quite remarkable. 

Through this work, we can combine a EEG and EOG to increase the classification 

accuracy of EEG-based tactile BCIs. Recently, Belkacem et al. [10, 11, 12] proposed 

an algorithm to extract eye blinking and EOG information from EEG data for real-

time classification of eye movements in five different directions and this algorithm 

was used for controlling a video game even with closed eyes. The combined use of 

EEG and EOG has also gained interest in the research community, and some research 

has attempted to use EOG artefacts as an extra source of information to improve the 

performance of EEG-based BCIs. We sought to contribute to the development of 

hybrid tactile BCIs combining brain activity and eye movements.  

CONCLUSIONS 

We carried a series of EEG experiments to evaluate our proposed tactile EEG-

based BCI system. The offline chosen methods can be implemented for a next online 

experiment which is a target of our near future project. The preliminary classification 

result among two classes demonstrates the promise of portable tBCI systems and the 

proposed sensor positions. We will continue this line of research in order to further 

improve and validate the proposed tBCI paradigm for severely disabled patients in 

Algeria. 
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