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Abstract
A modification to the Metropolis algorithm, which drives Monte Carlo (MC) simulation of grain growth, is suggested here. Though MCsimulation allows for study of effects of variables on growth kinetics and growth inhibition in ways not possible by experimentation,the method has been largely limited to the understanding of these phenomena with a generic metal in mind rather than a specific one.During MC simulation, variables such as time, temperature and grain size have only their simulation equivalents considered and areassumed the same for all materials. The present work manipulates the Metropolis algorithm in such a way that it mimics growthkinetics of known metals, as observed through experimentation. We propose Kalale-Bhat-Mukherjee-Kashyap (KBMK) factors, whichhelp yield precise grain growth exponents. This, along with other results relating length and time scales between real and simulatedmicrostructures, can pave the way for an effective Material-Specific MC simulation of grain growth in future.
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1. Introduction

The Monte Carlo (MC) technique using the Metropolis al-gorithm was first adapted by Anderson et al. (1984) in the1980’s for the simulation of microstructure evolution. Thisalong with Srolovitz et al. (1984) for 2D grain growth andthe later extension to 3D grain growth by Anderson et al.(1989) pioneered renewed research in recrystallizationand grain growth using the various computational tech-niques. Since then computer simulation of grain growthhas come a long way with major contributions towards itsprogress made by several research scientists Miodowniket al. (2000); Zöllner and Streitenberger (2006); Roberts(2008); Phaneesh et al. (2012); Di Prinzio et al. (2013);Nishinaga (2014); Mason et al. (2015); Zöllner et al. (2016),from around the world, to name a few. Grain growth stud-

ies with respect to its kinetics, growth inhibition due toZener pinning, abnormal grain growth, etc., have all beenextensively investigated through MC simulation over theyears. But all such simulations carried out till date has beenwith reference to a generic material, without name or num-ber. Though MC simulations have been able to investigatethe effects of different variables on grain growth, whichotherwise would be very difficult in experimentation, theyhave not been able to allow for comparison with real mate-rials and their microstructures. Ultimately if Monte Carlosimulations have to be used in predicting grain size, ei-ther during grain growth or in pinned regimes, materialspecificities may have tocome into picture, owing to variedreactions of thematerials to the principle operating vari-ables viz. time and temperature. For material-specificMonte Carlo simulations of grain growth to become a real-
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ity, the following challenges have to be met from a broadperspective:
1. To achieve specific grain growth exponents by control-ling the rate at which simulated grains grow.2. To convert the simulation time scale to real time, forthe material in question.3. To adjust the length scales between simulated and realmicrostructures.4. To correlate simulation and real temperatures.
An initial attempt therefore has been made in this work toaddress the first of the four conditions mentioned above.This has been achieved through the manipulation of theMetropolis algorithm which drives the MC simulation.
1.1. Metropolis Algorithm

The Monte Carlo method is a stochastic computer simula-tion technique applied to study grain growth and relatedphenomena. While analytical models predict ensemblecharacteristics of microstructure evolution in polycrys-talline materials, algorithm-based computer simulationshave helped generate snapshots of microstructure evolu-tion with time. Applying this simulation route to metal-lography, both local and ensemble properties of the mi-crostructure may be determined. Quite a few computersimulation methodologies have been tried over the years,and among them, the Monte Carlo method is one of themost effective techniques employed to simulate evolutionof microstructure in polycrystals. This method was ini-tially developed for studying the diffusion of neutrons infissionable materials but was adapted for grain growthstudies since the underlying processes were both stochas-tic in nature.In its basic form, the procedure for MC (Potts model) simu-lation of grain growth and based on Metropolis AlgorithmAnderson et al. (1984) is as follows:
1. Thebasic lattice type is first chosen i.e. square or trian-gular. We have considered a square lattice.2. A square matrix of size ‘N’, populated with randomnumbers, is then generated, using an appropriate cod-ing platform. These numbers range from 1 to Q, where Qstands for the number of grain orientations in the digitallyevolving microstructure.3. Among the N2 elements present in the matrix, a ran-dom element is chosen and is compared with all its nearestneighboring elements, which in the case of square latticeis eight.If i = element randomly picked,j = any of the eight neighboring elements that i is com-pared withthen,
∂ij = 0 if i ̸= j
∂ij = 1 if i = jWhere ∂ij = Kroneckar delta, a relative interaction energyvalue between one element and any other neighboring el-ement. The Hamiltonian is then calculated for the chosen

element by the following relation,
E1 = –J n∑

i
[
∂si∂sj – 1] (1)

4. The Q-value of the chosen element is now flipped intoa new random element, and in its place, the Hamiltonian(E2) is calculated again for the new element using equation(2). This then gives the energy change, ∆E = E1 – E25. If ∆E ≤ 0, the change is acceptedelse if ∆E > 0, the change is rejected.6. In the above process steps 3 to 5 form one iteration ofthe algorithm. Each iteration is then repeated N2 times toconstitute one Monte Carlo Step (MCS).
From the above procedure it is understood that each MonteCarlo step iterates the Metropolis algorithm N2 timeswhich means that there are N2 attempts to swap spinsand also to reduce the system energy which is the Hamil-tonian. If, instead of N2 attempts in each MCS, a differentnumber of attempts are made, the rate at which Hamilto-nian reduces, and therefore the rate at which grains grow,could be controlled. If N2 is multiplied by a fraction, hav-ing values between 0 and 1, the rate at which grains growwould exactly behave the way that we want it to. Sincemost known and important materials have been testedfor growth kinetics through experimentation, their graingrowth exponents (n) are well established Humphreysand Hatherly. For example, the grain growth exponent (n)of Aluminum is 0.25 Liang (2020), that of Iron is 0.4 Hu(1974), and the value for tin is 0.5 Holmes and Winegard(1959). Keeping this as the starting point the Metropolisalgorithm was manipulated to yield precise grain growthexponents in the simulated grain growth environment aswell. In order to obtain significant grain growths in sim-ulation environment, the Metropolis algorithm had to berun millions of times in case of each metal.
2. Results and Discussions

Simulations were run on a 1000 x 1000 matrix consid-ering square lattice and under periodic boundary con-ditions while the code was developed on JAVA platform.It was coded in such a way that instead of N2 iterationswhich would make one MCS, a fraction of it was consid-ered. Table 1 gives a list of many such values which whentaken as a fraction of each MCS,would control grain growthrate during simulation and hence yield the required graingrowth exponent values. We wish to call them Kalale-Bhat-Mukherjee-Kashyap factors or KBMK factors.KBMK factors share an exponential relationship withgrain growth exponent (n) and can be approximated as,
KBMK factor = e29.32n–13.9 (2)

Using eq. 2 we can substitute the grain growth exponentvalue of any metal as n and the resulting KBMK factor can
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Table 1. Kalale-Bhat-Mukherjee-Kashyap(KBMK) factors to yield different‘n’ values
Grain growthexponent (n) KBMKfactors Grain growthexponent (n) KBMKfactors0.1958 0.0005 0.3168 0.020.2033 0.00055 0.3444 0.050.2101 0.0006 0.3798 0.10.2223 0.0007 0.3999 (Fe) 0.150.233 0.0008 0.4204 0.20.2418 0.0009 0.4413 0.30.2504 (Al) 0.001 0.4487 0.40.3357 0.005 0.4539 0.50.3343 0.006 0.4591 0.580.3248 0.01 0.4965 (Sn) 2

be multiplied to N2 of the Metropolis algorithm to achievegrain growth as applied to a known material. Simulationswere run for varying number of MCS (which is the simula-tion equivalent of time) to allow for grain growth, and ateach juncture the average grain size (R (mean)) was foundthrough coding. From theory, Burke and Turnbull Burkeand Turnbull (1952) have given us the equation which re-lates the average grain size and time as,
R(mean) = kt 1n (3)

Where,t = timen = grain growth exponentk = constant of proportionality.Applying the above equation to simulation, and replacingtime with MCS, we can find n as the slope of the curve oflog (R (mean)) vs. log MCS,
Grain Growth Exponent, n = log R(mean)log MCS (4)

Figure 1 shows the engineered Log R(mean) vs. log MCScurves for specific materials, where R (mean) is theaverage grain size at any point of grain growth as dictatedby the number of MCS at that juncture. The slopes of thesecurves yield grain growth exponent of that curve, andin this case, that of the particular material. It should benoted here that this is perhaps the first work to attemptachieve specific grain growth rates in simulated regimes.Thus all simulations carried out to investigate variousgrain growth parameters can now be related to specificmaterials rather than a generic one. This, we are sure,will open up new roads towards grain growth studies ofspecific and industrially important materials.
The second step towards achieving material-specificMC simulation of grain growth is to convert simulationtime to real time and vice-versa. Saito (1997), Saito andEnomoto (1992), Haghighat and Taheri (2008) and so on,have addressed the issue of establishing a relation for con-version of the simulation time to real time, in differentways. Saito (1997), especially, have suggested an idea,

based on the diffusion-controlled mechanism of graingrowth, for converting Monte Carlo Steps to real time. Ac-cording to this conversion, the real time value in secondsfor one MCS was given by,
1 (MCS) = d2

6DQ (5)
Where,D = grain boundary diffusion coefficientd = simulation lattice constantQ = Q-States of grain orientations.On the third condition required for achieving material-specific MC simulation, i.e. towards adjustment of lengthscales, Rollett et al. (1992) have analyzed the relationshipbetween grain size in the Monte Carlo model and phys-ical grain sizes, although in the realm of recrystalliza-tion and not grain growth. Nosonovsky et al. (2009), andmore recently Lim et al. (2016), too have worked on the is-sue of scaling relationships between physical time/lengthand the MC step/cell size. Thus our contribution towardsachieving grain growth exponents of known materialsthrough MC simulation can be combined with others’ con-tribution to overcome challenges mentioned earlier andmove towards material-specific MC simulation of graingrowth in future.
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Figure 1. Material-specific grain growth rates

3. Conclusions

Monte Carlo simulation of grain growth was carried out insuch a way that the resultant grain growth rate imitatedgrowth kinetics of known metals. This was achieved by in-troducing KBMK factors, which is our contribution to avail-able literature, as a modification tailored into the Metropo-lis algorithm. Through this work we are able to achievegrain growth comparable to known materials in simulatedregimes as well. Combining this with work proposed byothers in the domains of relating length, time and temper-ature between real and simulated microstructures, moremeaningful material-specific research in microstructureevolution can be achieved in the coming years.
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