
EasyChair Preprint
№ 5572

Hyper-Parameter Analysis of Deep Auto Encoder
for Flow Prediction

Prakrit Tyagi, Pranav Bahl and B B Arora

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 21, 2021



Hyper-Parameter analysis of Deep Auto
Encoder for Flow Prediction

Prakrit Tyagi1, Pranav Bahl1, and BB Arora2

Delhi Technological University, Delhi 110042, India

Abstract. Reducing the order of the system from high order dynam-
ical space to a low dimensional subspace has been a challenging task
and the models that achieve this are referred to Reduced Order Models
(ROMs). Linear Projection methods have been used extensively in the
past for building such ROMs, some common examples are POD,DMD
etc. Though they have been successful in modelling several non-linear sce-
narios, their usage limits their applications pertaining to complex High
order dynamical systems efficiently. In this study we aim to make use of
advancement made in the field of Deep Learning to build a DL based
ROM. We aim to probe the impact of hyper-parameters pertaining to
flow prediction using deep autoencoders built with the help of artificial
neural network. The parameters for our study that were used here were
three different network sizes and two data sizes to compare the perfor-
mance in flow prediction. Dataset for the Vorticity was generated using
in-compressible URANS CFD solver icoFoam in an open-source CFD
toolbox OpenFOAM. Von-Karman Vortex Street at Reynolds’ number
100 around a bi-dimensional cylinder was simulated for our study.

Keywords: Deep Autoencoder · Von Karman Vortex Street · Hyper-
pararmeters.

1 Introduction

Advances in Machine Learning techniques has made its usage reliable and eco-
nomical and opened plethora of applications in fields of robotics , neuro sci-
ence, economic and financial prediction, system dynamic modeling and predic-
tion etc.. Autoencoder is one such technique which learns by itself to represent
large data in reduced form. This is advantageous as using low dimensional data
for analysis and calculation is efficient, computationally economical and reduces
cost. Therefore this technique has found extensive usage in flow reconstruction,
reduced-order modeling [1], prediction of fluid flow dynamical system [2] and
flow prediction [3].

Computational fluid dynamics is the go to technique for simulating fluid flow
but it is computationally expensive and if a users has inadequate resources,
he/she will find it difficult to simulate and innovate. However, CFD has found
its application across various engineering disciplines such as Aerospace industry,
Heating and Ventilation applications, Flows corresponding to cardiovascular op-
eration, Fluid machinery etc [4]. The need for such simulation often requires
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very high temporal and spatial resolution and hence the high order dynam-
ics are simulated using Full-order-Models (FOMs) which are various numerical
methods such as Finite Volume Method (FVM), Finite Element Method (FEM)
etc. which are based on the governing equations (Partial Differential Equations).
These models hence hinders its use in Multi-query [5, 6] scenarios which require
rapid simulation result generation. The application of building large scale dy-
namical systems to simulate highly complex and non-linear flows seems to be
failing in its use without taking a lot of computational burden. Hence there is
an inherent need to represent higher order dynamics in reduced representations,
which could be further used to evolve dynamics and when required can be re-
construct back to it’s high-order form. These techniques are often referred to as
Reduced-order-Models (ROMs) and many academicians have made their con-
tributions in the past to model such techniques [7–10]. Building ROMs is not
an easy task, since the models doesn’t perform well in situations where the dy-
namical systems are complex since the parameters aren’t robust enough. There
are various projection based methods which have been introduced in the past
which makes use of linear basis to form basis functions with help of snapshots
generated using FOMs. These methods have found its acceptance among many
researchers, such as Proper Orthogonal Decomposition(POD) [11–13], Dynamic
mode Decomposition(DMD)[14, 15], Koopman Theory[16, 17] etc.

Here we make use of an Auto-encoder Neural Net to learn the spatial and
temporal distribution of flow and give satisfactory results with low error when
compared to CFD results. Our efforts are to make use of advancements that
have been made in the Neural networks or Deep Learning methods to build an
efficient ROM (Reduced order Model) that would be able to capture the High
Order Dynamics effectively and represent it in reduced latent space capturing
the essential features and thereby reconstructing high order snapshot for the
next time step. This paper presents results for comparisons with different hyper-
parameters. Three different network sizes are used and following this different
data sizes were used for training and comparison was made among them. Below
is the generalized mathematical foundation of our model which presents the
wt+1 predicted vectorized state, the model and its parameters ϕ(; θϕ) and the
input to the model i.e. the current time step wt. ’e’ represents the error term
generated by model corresponding to the actual true state, hence predicted state
is represented as ŵt+1 and the True state as wt+1.

wt+1 = ϕ(wt; θϕ) + e (1)

e = wt+1 − ŵt+1 (2)

2 Deep Learning Architecture : Auto-encoder

Artificial Neural Network is a computational model consisting of various neurons
or functional nodes which helps in passing of information and manipulation of
the data among themselves. The role of these neurons are often closely compared
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to the biological neuron present in our brains. A Deep Neural Network represents
an ANN with several layers of neurons between the input and the output layer.
The input features, which are often represented as ”xi” are fed into each neuron
of input layer where different i ∈ 0 → N where ”N” represents the number of
features. The input data is multiplied to corresponding weights and an bias is
added following which an activation function is applied to the whole output of
the neuron to add the non-linearity to the function. The activation functions also
allows or facilitates in deciding the amount of relevant information and in which
quantity to be passed forward. Some common examples of activation functions
are ReLU, sigmoid, Leaky-ReLU etc. The output of the first layer of neurons
are then used as an input to the next layer of the neurons. A loss function is
decided at the end of the network as a means to optimize the parameters of
the model. The optimization of the network is facilitated with the help of back-
propagation. There are several optimization algorithms used so as to optimize
the weights of the models such as ADAM,RMS etc. The Autoencoder which
has been used here is a type of Unsupervised ML algorithm that is composed
three main subdivisions referred to as Encoder, Bottle-neck Layer and Decoder.
It is used as a means to compress the data and then use it back to reconstruct
the high order space. The compression of the data leads to representation of
only essential features and thereby using it again to reconstruct to the original
features. Unlike its counter-parts which rely only on linear projection methods,
it’s non-linearity gives it an added advantage.

Fig. 1: Autoencoder Architecture
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3 Proposed Approach

In this section, we will put forward the details of the framework for Deep Learn-
ing based model which can be used as a Reduced Order Model for predict-
ing future time steps of the High Order Model with less computational efforts.
The model is based on a Linear Auto-encoder approach which makes use of
encoder and decoder architecture for reducing the number of computational
nodes. The approach is used to learn the reduced latent subspace through a non-
linear approach which helps in reducing the loss of information with comparison
to its counterparts such as Proper Orthogonal Decomposition (POD), DMD,
Petrov-Gaalerkin approach etc. which on other hand uses linear approach for
the aforementioned function. Training of the model uses vectorized form of data
τ = [τ1, τ2, τ3, ...., τn] ∈ Nt which represents the data over t time steps. The state
vector represented as w ∈ Nw and predicted data as τ = [τ1 +1, τ2 +1, τ3 +1, ....]
The expression of the predicted state variable at time step ”t+1” is as presented
below.

Fig. 2: Auto-encoder Architecture

ζ = ψ(wt; θψ) (3)

φ(ζ) = ŵt+1 (4)

ŵt+1 = φ(ψ(wt; θψ); θφ) (5)

Where the φ(; θφ) represents the decoder network which projects the reduced
latent space back to the original high order space with θφ being its network
parameters to optimize. The ψ(wt; θψ) network represents the encoder which
reduces the previous time step’s high order data to a nonlinear reduced subspace
with θψ being the network parameters to optimize. We present in the paper
following using this architecture that non-linear approach to project is an efficient
method in comparison to it’s counter-parts. The optimization of the network has
been carried out using Mean Squared Error (MSE) approach for the optimization
of the network parameters. The mathematical formulation has been presented
below, wherein the ”e” represents the difference between the predicted and the
true state vector.

α = min
1

N − 1

N−1∑
n=0

‖e‖22 (6)
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α = min
1

N − 1

N−1∑
n=0

∥∥wt+1 − φ(ψ(wt))
∥∥2
2

(7)

4 Methodology

The Auto-encoder approach as stated in this paper involves the use of a deep
neural network containing neurons which in the first place are reduced as moving
in the forward layers and then increased, so as to reconstruct the next time step.
There are two split parts which are referred to as encoder and decoder wherein
the encoder compresses the data, thereby performing the function of a Reduced-
order-Model and then the decoder reconstructing the reduced state back to the
high order output. During the training phase of the architecture, input to the
encoder is the vectorized form of the flow-field at the time step ”t” and the
label corresponding to the output of the decoder is the vectorized form of the
flow field at time step ”t+1”. The Auto-encoder architecture mentioned in the
paper has 5 layers of neural network with 3 hidden layers and 3rd layer being the
bottle-neck layer. The activation function used here for the purpose of adding
non-linearity to the ANN was chosen as ReLU. Linear activation is used in the
end layer for predicting the vectorized form of the fluid flow prediction. ReLU
has been used here since it is computationally less expensive. The mathematical
formulation of ReLU function has been presented below.

F (x) = Max(0, x) (8)

Fig. 3: ReLU Activation Function

The training of the network has been carried out with the help of ADAM
Optimizer with a learning rate of 0.01. The parameters corresponding to encoder
and decoder are represented as θψ and θφ which are optimized with the help of
ADAM algorithm. For regularization of the network we use L2 regularization to
eradicate the possibility of over-fitting. Weight decay of 0.5 have been used here
so as to regularize the network.
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5 2D Von Karman Vortex Street : OpenFOAM

Here we consider a Two-dimensional flow past a cylinder which is shaped of a
circular configuration with the Reynolds’s number of the flow as 100. The prob-
lem is world-wide known phenomenon which is characterized by periodic vortex
formation behind the circular body which is laminar in nature. The computa-
tional domain of the model has been shown below wherein the structured mesh
of the domain was generated using the BlockMesh utility of OpenFOAM. Open-
FOAM which has been used here as a means to generate synthetic data for the
the training of the model is an Open-source CFD ToolBox which is widely used
for performing complex fluid flow simulations across the academic community.
The cylinder has a diameter of 1 unit along with its distance corresponding to
the centre from the inlet is 8 units and from the outlet is 25 units. Boundary
conditions of the domain corresponds to the unit velocity from inlet and pressure
of 0 at the outlet. A no-slip BC has been initiated for the circular body. The
simulation carried out here is of Unsteady RANS simulation using OpenFOAM.
The solver used here is icoFoam which is an incompressible Navier-stokes solver.
For the sake of training of only the relevant features the cut out of the computa-
tional domain is taken , whose cut-out stretches from [ -2 2 ] in Y-direction to [
0 16 ] in X-direction. The data has been linearly interpolated in this domain for
80 x 320 points. The objective here is to predict and generate the vorticity-field
at the following time-step from the current time-step.

Fig. 4: Numerical Experiment - SetUp
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6 Results

6.1 Effect of Network Size

In this section we present the effect of network size. Three network architec-
ture were chosen with hidden layers as given network:1 [200, 100.200], network:2
[100, 50.100] , network:3 [50, 25.50] .The data size contained 400 time steps and
each architecture was trained on it. It can be seen in fig:5 that as the network
size was increased the training error decreased sharply in case of network one
and in case of network three it decrease sharply in initial epochs but the accuracy
later decreased due to underfitting.

Fig. 5: Effect of Network Size

6.2 Effect of data Size

In this section we present the effect of data size. Two data sizes were used
with size one having 921 time steps and size two having 400 timestamps for the
training set. It can be seen in fig:6 that with training with larger data size the
error decreased rapidly but with smaller data size the error plateaued because
it got stuck locally. Below in fig:7 and fig:8 is spatial representation of predicted
output compared with true values in the case data size two.
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(a) (b)

Fig. 6: Effect of data size: (a) plot for data size one (b) plot for data size two

Fig. 7: Comparison of True and predicted at time step 50
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Fig. 8: Comparison of True and predicted at time step 100

7 Conclusion

This paper presents the Hyper-parameters comparison between different Auto-
encoder architectures and there comparison pertaining to each other. This paper
presents a Deep learning based Reduced order Model (ROM) which is expected
to reduce the losses in the information and extract only relevant data in the
bottleneck layer so as to reconstruct the high order dynamics efficiently from the
reduced state. We have made comparison between network architectures wherein
the following conclusion was made, i.e. the training error sharply decreased as
we increased the network size, which has its underlying reason for added non-
linearity in the network but also leads to a relatively more computationally
expensive model to its counter-part architecture. Following this we also make
comparison between increased size of dataset and lower amount of dataset which
were generated with the help of different time-steps. It was seen and concluded
that a larger dataset helped in converging to the solution much rapidly and easily
in comparison to the shorter dataset.
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