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Abstract. Analyzing performance of MPI application usually requires non-trivial 

approaches. Classical hotspot-based analysis is often misleading for such an ap-

plications because hotspots optimization might not actually cause any speedup, 

but just increase the time ranks spent on waiting for each other. 

One of the solutions is representing MPI program as a graph (known as Program 

Activity Graph) and perform only analysis of activities on Critical Path of this 

graph (the longest path containing computation and communication, but not wait-

ing). Reducing computing time on Critical Path obviously reduces elapsed time 

of the whole application. While there are many papers in this area, Critical Path 

analysis representation in well-known performance tools is still quite limited. 

One side of this is that real-life HPC applications running on large scale produce 

huge Program Activity Graphs and scalability of classical graph algorithms is 

quite poor to calculate Critical Path reasonably fast. Another one relates to the 

limited capabilities performance tools provide based on Critical Path using tim-

ing information only. This paper describes an algorithm of building Program Ac-

tivity Graph and calculating Critical Path which naturally scales to the same 

amount of CPU cores as profiled MPI application uses. We also show how to 

combine Critical Path analysis with Performance Monitoring Unit (PMU) data to 

enable efficient root causing of MPI imbalance issues even on very high scale. 
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1 Introduction 

Developing parallel scalable applications is a very challenging task and its complex-

ity grows significantly with the growth of scale. One of the poor scaling reasons is 

imbalance of work assigned to the hardware resources. Using MPI, load imbalance can 

be detected by various tools measuring amount of time spent within MPI API calls, 

however it is very hard to root cause the reason of imbalance – for example, different 

MPI ranks might execute different amount of job, the slowdown might be caused by 

specific CPU Microarchitecture issues happening within dedicated ranks only, the com-

munication path between particular ranks takes longer than for others, etc. All these 

cases cause increase the time spent within MPI API functions waiting on implicit bar-

riers. 
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The traditional performance analysis methodology is based on statistical sampling – 

an interrupt is triggered every N events (or just time – milliseconds), instruction pointer 

(address) is captured for the interrupted thread, N is attached for this sample as perfor-

mance data (event count). Finally it can be represented as a list of hotspot functions 

(modules, threads, etc) aggregating event counters across all the samples and grouping 

by various things (e.g. function name, source line number, etc). This analysis usually 

provides quite detailed and precise information about places in the code where CPU 

spent its time, however, it might not be a surprise to see spin locks within MPI runtime 

as top hotspots quite often. 

MPI program can be represented as a graph (known as Program Activity Graph) to 

analyze only activities on Critical Path of this graph (the longest path containing com-

putation and communication, but not waiting). Reducing computing time on Critical 

Path obviously reduces elapsed time of the whole application. 

In order to simplify the analysis of MPI workloads, we propose to combine PMU-

based data with Critical Path analysis to show only hotspots on Critical Path naturally 

representing the root causes of imbalance and minimize amount of useless data (e.g. 

there is no wait time on the Critical Path by definition). We show how to find Critical 

Path in a fast and reliable way performing scalable calculation right on the MPI cluster 

used for the application execution. We demonstrate the usefulness of data retrieved as 

result of this performance tuning approach. 

2 Prior State of the Art 

Algorithms for finding Critical Path in the Program Activity Graph ([1], [2]) related 

to the Parallel MPI applications have been described in [1]-[4]. Possible optimizations 

to reduce graph size on collection time are described in [1], however the overhead 

claimed exceeds 8%. It also proposes further reduction steps on post-processing stage, 

but scalability of this step is not clear. 

Known solutions suggest to preprocess data in the runtime in order to reduce post-

processing data time, however this increases collection overhead. The scalability of the 

post-processing step is quite poor or not specified. 

In this paper we propose a solution for constructing Critical Path with less than 5% 

of collection overhead and less than 10% of application elapsed time spent on post-

processing independently on the number of ranks maintaining a good scaling of the 

algorithm. 

3 Root causing MPI Imbalance issues 

There are many tools measuring MPI Imbalance Time for the application execution, 

however they usually do not provide any clues about the reasons of imbalance. Consider 

the following hotspots data: 

    Function                        Module                  CPU Time(s) 

    ------------------------------------------------------------------- 

    hmca_bcol_basesmuma_bcast_k...  hmca_bcol_basesmuma.so   2838.6540 
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    uct_dc_mlx5_iface_progress_ll   libuct_ib.so.0.0.0        2795.7913 

    gomp_barrier_wait_end           libgomp.so.1.0.0          2396.5551 

    uct_mm_iface_progress           libuct.so.0.0.0           2327.4292 

    opal_progress                   libopen-pal.so.40.30.1    2090.3369 

 

There is a significant MPI Imbalance Time in the application causing spinning from 

within MPI runtime to take the leading position in the hotspots data. However, analyz-

ing spinning functions is a wrong way since we have to determine why there is so much 

waiting in the ranks. 

Grouping of PMU samples on critical path allows to naturally filter out all the spin-

ning (since there is no wait time on critical path by definition) and get only meaningful 

information: 

    Function                        Module                  CPU Time(s) 

    ------------------------------------------------------------------ 

     __mapz_module_MOD_ppm2m        cesm.exe                 1977.2391 

    __clubb_intr_MOD_clubb_tend...  cesm.exe                 1969.3700 

    memcpy                          libc-2.28.so             1342.6702 

    __physics_types_MOD_physics...  cesm.exe                 1200.6958 

    __mo_nln_matrix_MOD_nlnmat      cesm.exe                  859.0117 

 

4 Finding Critical Path in Program Activity Graph 

First of all, we have to trace all the MPI calls executed from within application in all 

the ranks. This is usually done via wrapping MPI function using LD_PRELOAD and 

PMPI interface in order to preserve the data about API name, begin/end timestamps, 

data size and other data required on post-processing step. There are few important 

things to note: 

1. MPI functions are matched according to id of communicator provided within func-

tion argument. 

2. After non-blocking MPI function PMPI_Test is executed to detect the situation of 

immediately execution (needed for optimization). 

3. Communicator creation APIs are carefully handled as well in order to maintain com-

municator IDs. 

Applying known approaches with construction of Program Activity Graph in one place 

and then apply standard Critical Path finding algorithms (e.g. Dijkstra) is not going to 

scale due to its synchronization and dependency issues. Instead, we don’t actually con-

struct the whole Program Activity Graph, instead we record all the MPI API called and 

replay all these calls in some dedicated form to find Critical Path. 

Algorithm has 3 main steps: 

 Replay Point-to-Point (P2P) calls to exchange information about both parties of 

P2P calls 

 Create critical path edges for all the MPI calls 
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 Restore critical path by edge 

Let introduce some terms: 

 ICF – Immediately Call Function. This is either a blocking MPI function, non-block-

ing MPI function with further MPI_Wait function call or non-blocking MPI function 

that was processed immediately (further PMPI_Test returned true). 

 WALLS – wait all strategy which allows to replay MPI_Waitall behavior optimally. 

The idea is to create an array of requests of all the non-blocking MPI functions that 

were not immediately completed (further PMPI_Test returned false) and also create 

an array MPI_Irecv results. Then call PMPI_Waitall and store requested data to use 

it in the next algorithm steps. 

Step 1: 

Fig. 1 – Step 1 

Repeat ICF calls and use WALLS algorithm to repeat P2P calls and send data (Figure 

1). Figure 2 illustrates how MPI_Recv gets information about pair call. Algorithm 

stores information about rank 0 (MPI_Send) in rank 1 and then sends information about 

MPI_Recv from rank 1 to rank 0. 
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Fig. 2: result of the first step 

 

 
Figure 3 

 

The second stage is transfer information about MPI_Recv function to the corresponding 

rank (Figure 3, step 1). After that we got information about pair call in MPI_Send func-

tion (Figure 3, step 2).  

 

 
Fig. 4 

At the end, all the P2P calls have information about their pair (Figure 4). 

 

Step 2 
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Fig. 5 

 

Algorithm in this step does not call any P2P function, it only repeats collective call. 

When the program reads ICF from the file, it is decided in each rank to which rank edge 

has to be made (Figure 5). 

 
Fig. 6 

 

 When collective function  is read from file, PMPI_Allreduce with MPI_MIN is ex-

ecuted to find out collective call segment with the lowest duration and ranks with the 

duration bigger than minimal mark time. Ranks create critical path edge to the rank that 

has a minimal length of MPI collective call (Figure 6). 
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Fig. 7 

 

 The result for the whole graph is illustrated on Figure 7. 

 

Step 3 

In this step write critical path segments into each rank file locally.

 
Fig. 8 

 

Find out rank finished last and start restoring path from it (Figure 8, step 1). 

 
Fig. 9 

 

Block scheme on Figure 9 represents an operation executed within all the ranks. The 

result about critical path segment is recorded in each rank. At the end, “writer rank” 

sends stop message (Figure 8, step 7) and all ranks call PMPI_Finalize. 
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5 PMU samples aggregation on Critical Path 

In order to improve efficiency of root causing the reasons of imbalance, we suggest 

aggregating PMU samples on critical path because: 

 Hotspots on Critical Path based on PMU samples naturally highlight activities on 

the critical path which have the most significant influence on application elapsed 

time. Optimization of the hotspots on critical path obviously leads to the reduction 

of application elapsed time. Various situations are easily handled with Hotspots on 

Critical Path: 

─ Load imbalance due to difference in the code flows (e.g. amount of load) within 

ranks 

─ CPU Microarchitecture Issues happening in particular ranks only 

─ Communication problems (e.g. improper MPI stack configuration) 

 It brings natural scaling capability for the performance analysis tool, because aggre-

gation of PMU samples on Critical Path always limits the amount of aggregating 

samples to the number of samples collected from within just a single node: 

 

Fig. 10 – Scaling of PMU data analysis with critical path 

6 Performance Evaluation 

Scale 

(HW nodes 

* Ranks) 

Elapsed 

time(s) 

 

Elapsed 

time under 

collector(s) 

Runtime 

overhead 

 

Post-processing  

s % 

64 (1x64) 735.2751 753.9689 2.54% 1.5102 0.20% 

121 
(1x121) 429.0090 444.5571 3.62% 1.7102 0.38% 

256 
(4x64) 290.4169 297.1639 2.32% 1.5312 0.52% 

484 
(4x121) 167.2342 172.6392 3.23% 1.7423 1.01% 

Fig. 11. Collection overhead and data post-processing time for NASA Parallel bench-

mark BT class D 
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As you can see, the runtime overhead is less than 4%, post-processing time is almost 

stable and doesn’t depend on the number of ranks taking just 1% of application elapsed 

time in the worst case. 

7 Conclusion 

In order to improve efficiency of performance analysis of MPI parallel applications, 

we developed a novel scalable approach for finding Critical Path in the Program Activ-

ity Graph of the application which scales well and doesn’t require any complex opera-

tions on data collection. Combining critical path intervals with PMU data we can effi-

ciently root cause MPI Imbalance issues. 
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