
EasyChair Preprint
№ 8081

Pointed-Sort

Armaan Garg and Shashi Shekhar Jha

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 24, 2022

1

Pointed Sort
Armaan Garg, Shashi Shekhar Jha

Department of Computer Science & Engineering

Indian Institute of Technology Ropar

Email: (armaan.19csz0002,shashi)@iitrpr.ac.in

Abstract

Sorting is one of the most studied topics in computer science. It is the technique of arranging any group of entities such as

elements of an array in a particular sequence usually in ascending or descending order. In recent times such a technique is widely

used to query large database systems, which may be the requirement of an end-user or the data is needed in a sorted manner as

an input to another algorithm or a system. In this paper, we propose a new sorting algorithm that performs well in some cases

and comparable in others against baseline algorithms that are known to be the benchmarks in this field of study. The aim of the

proposed algorithm is to sort an array of n elements. The proposed algorithm is known as Pointed-Sort with best and worst-case

time complexity of Ω(𝑁) and O(𝑁 (𝐿𝑜𝑔𝑁)3) respectively.

Keywords: Sorting, Pointers, Time-complexity, Space-complexity

I. INTRODUCTION

Every database in the world relies on efficient sorting algorithms for quicker response time. Any time a user queries the

database of a computer machine/server, the results are presented in a sorted manner based on a defined preference. Sorting

technique is used to make the lookup search efficient and also helps in prepossessing of data in defined order. Opposite of

sorting is random-order/shuffling that is how raw data is present, which is of very little use when it comes to extracting some

useful information out of it. Sorting/Arranging is of key significance since it streamlines the handiness of information. We

can notice a lot of arranging models in our day-to-day existence, for example, we can find required things without much

of a look-around in a shopping center or utility store in light of the fact that the things/utilities are displayed in an ordered

fashion. Observing something from a word reference is certifiably not a drawn-out task since every one of the words is given

in arranged structure. Additionally, observing a phone number, name, or address from a phone index is likewise extremely

simple because of the favors of arranging.

The research on the sorting algorithms have become somewhat saturated, but here we propose a new sorting algorithm -

Pointed-Sort, with best case time complexity better than Merge-Sort and Quick-Sort. Other popular sorting algorithms like,

Bubble-Sort and Insertion-Sort have comparable best case time complexity but with average case time complexity of Θ(𝑁2)

limits there use only to small number of elements. But, there is no single algorithm that is best in sorting all types of data.

2

The contribution of this paper lies in achieving better time complexity (Ω(𝑁)) results that Merge-Sort and Quick-sort in

simpler scenarios (best case) and performing comparable to Merge-Sort in more complicated cases (average case and worst

case) and better than Quick-Sort in worst case.

This paper is organized as follows: section II presents the literature corresponding to various sorting algorithms, section III

presents the proposed method (Pointed-Sort) with illustration of its working step-by-step. Section IV highlights the theoretical

evaluation of the proposed algorithm in terms of its complexity and section V highlights the empirical performance of the

proposed algorithm in comparison with the Merge-Sort and Quick-Sort. Finally, section VI concludes this paper.

II. RELATED LITERATURE

Quick-Sort is one of the most poplar algorithms upto date [1]. It works based on divide and conquer strategy along with

a pivot element. The array elements are partitioned around the pivot element, keeping the smaller ones to the left and bigger

elements to the right of the pivot. The partitions are then sorted recursively in the same manner. That all can be done in

an in-place fashion and very small extra memory is required. This gives the algorithm the space complexity of the order of

O(𝐿𝑜𝑔𝑁). The worst case time complexity of Quick-Sort is of the order of O(𝑁2) and the average case and best case time

complexities are of the order Ω(𝑁𝐿𝑜𝑔𝑁),Θ(𝑁𝐿𝑜𝑔𝑁) respectively.

Merge-Sort is another famous sorting algorithm [2], [3] along with Quick-Sort. It uses the same principle of divide and

conquer. This algorithm divides the array into 𝑁 sub-lists each containing single element and then the sub-list are merged

in pairwise fashion while making sure the sub-lists are joined to give a sorted list. This process is repeated until we have

single complete sorted list/array. Merge-Sort outdoes the Quick-Sort algorithm with its better worst case timer complexity

of O(𝑁𝐿𝑜𝑔𝑁) and is comparable in the best and average cases to that of Quick-Sort with the complexity of the order of

Ω(𝑁𝐿𝑜𝑔𝑁),Θ(𝑁𝐿𝑜𝑔𝑁). It has the drawback in terms of extra memory requirement for the temporary array and gives the

space complexity of the order of O(𝑁).

Another algorithm known as Bubble-Sort [4] is famous in sorting domain due to its simplicity. It loops over the entire array

and swap the adjacent elements if they are in the wrong order. This looping of the entire array has to be done 𝑁 times in the

worst case giving the worst case time complexity of the order of O(𝑁2). Time complexity of the order of Θ(𝑁2)𝑎𝑛𝑑Ω(𝑁) are

found in the average and best case scenarios respectively. This algorithms handles the space complexity better than the above

two discussed algorithm with the order of O(1).

Fourth most popular algorithm among the ones discussed above is known the Insertion-Sort algorithm [3]. It works by

splitting the array into two virtual lists one called the sorted list and the other as unsorted list. Element are picked from the

unsorted list one by one and placed into the sorted list at the correct position. Initially, there is one element in the sorted

section (As single element is always sorted) and when the algorithm finishes we get all the elements in the correct order in the

sorted section. This algorithm has the same time and space complexity of that of Bubble-Sort with best case time complexity

of the order of Ω(𝑁). Time complexity in average and worst case is of the order of Θ(𝑁2)𝑎𝑛𝑑O(𝑁2) respectively. The space

complexity of Insertion-Sort is the order of O(1).

3

Selection-Sort [4] is another famous sorting algorithm with time complexity of O(𝑁2) in all the scenarios (best/average/worst)

and have the space complexity of O(1). It works by iterating through the entire array and finding the least value element and

put it in the beginning in case of sorting in ascending order. This process needs to be repeated N times, hence the time

complexity of O(𝑁2) irrespective of how the original array looks like.

III. PROPOSED APPROACH

The proposed algorithm (Pointed-Sort) uses 3 pointers, a front pointer (𝑓), a rear pointer (𝑟) and a shifting pointing (𝑠). At

the beginning, pointer 𝑓 and 𝑠 points towards the first element in the array and the 𝑟 pointer points at the second element (see

Figure 1).

• Pointer 𝑓 and 𝑟 are compared, and if the element pointed by the 𝑓 pointer is greater than the one pointed by the 𝑟 pointer,

the elements are swapped, given that pointer 𝑓 and 𝑟 are pointing to consecutive elements in the array.

• If the element pointed by the 𝑓 pointer is smaller or equal than the one pointed by the 𝑟 pointer, both the pointers move

one step towards right, given that both are not pointing towards consecutive elements in the array. If so, then only the 𝑟

pointer is shifted one element to the right in the array.

-20 -9 3 4

-20 -9 3 4

Fig. 1: Example of Pointed-Sorting Algorithm

• If the element pointed by the 𝑓 pointer is greater than the one pointed by the 𝑟 pointer and both these pointers are not

pointing towards two consecutive elements in the array, then the 𝑠 pointer comes into use. The element pointed by the

4

𝑠 pointer is compared with the element pointed by the 𝑟 pointer and the 𝑠 pointer moves from starting element to the

position of the 𝑓 pointer.

• Pointer 𝑠 finds the right position for the element pointed by pointer 𝑟 , such that the list is sorted upto the element pointed

by pointer 𝑓 . After the right position is found, the element pointed by 𝑠 pointer is remembered using a temporary variable,

and the element pointed by pointer 𝑟 is copied into the position given by pointer 𝑠. All the elements are copied into there

next cell location one-step towards right upto the location of pointer 𝑟.

• After that, the pointer 𝑠 is reassigned towards the starting of the array (in the next iteration of the while loop), pointing

towards the first element and pointer 𝑟 is moved by one position to the right. The loop goes on until the 𝑟 pointer reaches

at the end of the array and the 𝑓 pointer moves to the second last element of the array.

IV. THEORETICAL EVALUATION

The best case (Ω(𝑁)) of Pointed-Sort occurs when most of the elements are already present in the right order and very

less number of copying and pasting operations are required. Time complexity of Pointed-Sort in such cases is better than

Quick-Sort and Merge-Sort and is comparable to that of Bubble-Sort and Insertion-Sort.

When the list is in reverse order (required ascending order, but given descending order), Quick-Sort gives the worst case

time complexity of (O(𝑁2)) and Merge-Sort gives time complexity of (O(𝑁𝐿𝑜𝑔𝑁)). Pointed-Sort in comparison improves on

Quick-Sort complexity by reducing it to (O(𝑁 (𝐿𝑜𝑔𝑁)3)).

The worst case of Pointed-Sort occurs when the shift pointer has to move from beginning of the array to the location of

𝑓 pointer in every iteration and also all the elements upto the 𝑟 pointer needs to be copied into the next cells. The average

and worst case time complexity of pointed-Sort is the order of Θ(𝑁 (𝐿𝑜𝑔𝑁)3),O(𝑁 (𝐿𝑜𝑔𝑁)3) respectively. This complexity is

calculated from the Pointed-Sort code using Iterative method.

The worst and average case time complexity of Pointed-Sort are verified empirically. For 𝑁 = 10000, the inner most

while loop of Pointed-Sort is called approximately 2,50,36,188 times at most, were the 𝑁 numbers are in random order. This

value increased to 4,99,94,999 approximately, when most of the numbers were in decreasing order or the entire array was in

decreasing order. This is of the order of 𝑁 (𝐿𝑜𝑔𝑁)3 (having base of Log as 2), which is proved to be better that 𝑁2 where,

𝑁 ≥ 𝑎 where, (𝑎 ∈ N). Similar complexity of 𝑁 (𝐿𝑜𝑔𝑁)3 for Pointed-Sort is realised at higher values of 𝑁 .

Proving worst case time complexity of Pointed-Sort is better than Quick-Sort:

(Log base 2 is considered in the proof)

To prove : 𝑁 (𝐿𝑜𝑔𝑁)3 < 𝑁2 where, 𝑁 ≥ 𝑎 (𝑎 ∈ N)

Put 𝑁 = 𝑎 = 983

𝑁2 = 983 x 983 > 983 x 982.4 = 𝑁 (𝐿𝑜𝑔𝑁)3

Now suppose that, 𝑁 (𝐿𝑜𝑔𝑁)3 < 𝑁2 where, 𝑁 ≥ 983

//Removing 𝑁 from both sides

5

=⇒ (𝐿𝑜𝑔𝑁)3 < 𝑁

//Rewriting the above statement

= (𝐿𝑜𝑔𝑁)3 < 2𝐿𝑜𝑔𝑁

//Let 𝑢 = 𝐿𝑜𝑔𝑁

=⇒ 𝑢3 < 2𝑢

2𝑢+1 = 2𝑢.2

> 2𝑢3

= 𝑢3 + 𝑢3

> 𝑢3 + 9𝑢2

= 𝑢3 + 3𝑢2 + 6𝑢2

> 𝑢3 + 3𝑢2 + 54𝑢

= 𝑢3 + 3𝑢2 + 3𝑢 + 51𝑢

> 𝑢3 + 3𝑢2 + 3𝑢 + 1

= (𝑢 + 1)3

Based on the above proof using induction, it can be said that 𝑁 (𝐿𝑜𝑔𝑁)3 = O(𝑁2)

Similar results are realised from the plots given in Figure 2. When the 𝑠 pointer finds the element larger than the one pointed

by 𝑟 pointer relatively quicker, the number of comparisons are less but the number of copy and paste operations are more,

200 400 600 800 1000

200000

400000

600000

800000

1 x 106

2000 4000 6000 8000 10000

2 x 107

4x 107

6 x 107

8 x 107

1 x 108

Fig. 2: N(LogN)3 vs N2 time complexity comparison plot based on the number of elements.

similarly vice-versa is also true. The copy and paste operations limits the space complexity of Pointed-Sort to O(1) (Just

the memory required to store the small number of temporary variables). This outdoes the space complexity requirements of

Merge-Sort and Quick-sort as they have the space complexity of the order of O(𝑁) and O(𝐿𝑜𝑔𝑁) respectively. The source-code

6

Algorithm 1 Pointed-Sort

int pointed sort(int [] a, int n)
2: int *p,*q,*u,*u2,u3,*p1,*p3,*p4,*q1

int *p2,*q2,t,t2,k,k1,m1,m2,k4,t4;
4: p=a;

q=a+1;
6: u=a;

while q ≤ a+(n-1) do
8: //Loop until the rear pointer reaches at the end of the array.

if (*p>*q) then
10: //If the front pointer element is larger than the one pointed by the rear pointer.

if ((q-p)==1) then
12: //If the front and rear pointer are pointing at consecutive elements, swap the elements.

p1=p;
14: q1=q;

t=*p1;
16: *p1=*q1;

*q1=t;
18: else

while (u≤p && *u<*q) do
20: //If the front and rear pointer are not pointing towards consecutive elements.

u=u+1;
22: end while

//Move the shift pointer towards the right until an element larger than the one pointed by the rear pointer is found.
24: //Copy the element pointed by the rear pointer in the position pointed by the shift pointer.

q2=q;
26: p2=p;

u2=u;
28: k4=*u;

t4=*(u+1);
30: u3=*u2;

*u2=*q2;
32: p3=u;

while (p3<q2) do
34: //Copy the elements into the right side cell.

p3=p3+1;
36: *p3=k4;

k4=t4;
38: t4=*(p3+1);

end while
40: end if

else
42: if ((p+1)!=q) then

//If the front and rear pointer are not pointing towards consecutive elements.
44: p=p+1;

q=q-1;
46: end if

end if
48: q=q+1;

//Move the rear pointer towards the right by one position.
50: u=a;

end while

7

of the proposed approach is given by Algorithm 1. Table I compares the best to worst case time complexities of the discussed

algorithms from the literature with the proposed algorithm along with space complexity.

Algorithms Time Complexity Space Complexity
Best Average Worst Worst

Bubble-Sort Ω(𝑁) Θ(𝑁2) O(N2) O(1)
Insertion-Sort Ω(𝑁) Θ(𝑁2) O(N2) O(1)
Selection-Sort Ω(𝑁2) Θ(𝑁2) O(N2) O(1)
Quick-Sort Ω(𝑁𝑙𝑜𝑔𝑁) Θ(𝑁𝑙𝑜𝑔𝑁) O(N2) O(𝐿𝑜𝑔𝑁)
Merge-Sort Ω(𝑁𝑙𝑜𝑔𝑁) Θ(𝑁𝑙𝑜𝑔𝑁) O(NlogN) O(𝑁)
Pointed-Sort Ω(𝑁) Θ(𝑁 (𝐿𝑜𝑔𝑁)3) ON(LogN)3) O(1)

TABLE I: Time and Space complexity comparison of proposed algorithm with various algorithms from literature.

V. EMPIRICAL EVALUATION

The performance of Pointed-Sort is measured in terms of CPU time using the system clock of the machine, while making

sure of minimum background processing. Size of input array is varied from 1K,2K,3K....,10K (where, K means thousand)

and comparisons are drawn between proposed algorithm (Pointed-Sort), Merge-Sort and Quick-Sort. Best case and worst case

scenarios are considered and the input elements are kept same for all the three algorithms. The input range for the array element

is varied from -100000 to 100000. The approximate results can be easily reproduced by giving the same array of elements to

all the three algorithms. The array elements for these experiments were generated using online tool. The implementation is

run on Dell Precision 7820 Tower Workstation with NVIDIA Quadro RTX 4000 8GB graphics card, 64GB DDR4 RDIMM

ECC Memory, Intel Xeon Silver Series processor and primary storage of 512GB and 2TB 7200rpm SATA secondary storage.

A. Implementation Process

1) Generate 1K elements using online number tool.

2) (Optional) Generate nearly sorted list in increasing or decreasing order for best and worst case results respectively.

3) User input this list into the array.

4) Record the time using clock t typedef that is present in <time.h> library.

5) (Optional) Apply this to Quick-Sort and Merge-Sort for comparison.

6) Increase the number of elements by 1K and repeat steps 2 to 5.

B. Results and Analysis

As can been observed in Figure 3(a), Pointed-Sort significantly improves over the CPU time efficiency of Merge-Sort and

Quick-Sort in best case scenario. For average and worst case scenarios, Pointed-Sort is significantly able to improve in terms

of time efficiency as compared to CPU time of Quick-Sort as observed in Figure 3(b).

8

Pointed-Sort
Quick-Sort
Merge-Sort

Pointed-Sort
Quick-Sort

Fig. 3: (a) Best case time complexity comparison between Pointed-Sort, Quick-Sort and merge-Sort (b) Worst case time
complexity comparison between Pointed-Sort and Quick-Sort

VI. CONCLUSION

We introduce a new sorting algorithm (Pointed-Sort) with the worst case complexity of O(𝑁𝐿𝑜𝑔𝑁3). It works based on

the mechanism of pointers, where a shift pointer is moved within a pointed range of the array and perform sorting operation.

Pointed-Sort performs better than Merge-Sort and Quick-Sort in terms of time efficiency of the order of Ω(𝑁) in simpler

scenarios where much of the elements are sorted. When it comes to complex/worst case scenario, Pointed-Sort performs

better than Quick-Sort and comparable to Merge-Sort with the time complexity of O(𝑁𝐿𝑜𝑔𝑁3). Theoretical and empirical

evaluation shows that pointed-Sort is better alternative as compared to the major sorting algorithms in simpler scenarios and

gives competitive time complexity in case of worst scenarios.

After comprehensive experimental evaluation, we show that Pointed-Sort outperforms Quick-Sort in worst case scenario

when the value of 𝑁 ≥ 983 and outdoes Merge-Sort in best case scenario. With it’s technique Pointed-Sort also performs better

than Merge-Sort and Quick-Sort in terms of space complexity that is the of the order of O(1) as compared to that of O(𝑁)

O(𝐿𝑜𝑔𝑁) for Merge-Sort and Quick-Sort respectively.

VII. ACKNOWLEDGMENTS

First author would like to thank TCS for their support under the TCS Research Scholar Program.

REFERENCES

[1] C. A. R. Hoare, “Quicksort,” The Computer Journal, vol. 5, no. 1, pp. 10–16, 01 1962. [Online]. Available: https://doi.org/10.1093/comjnl/5.1.10

[2] D. E. Knuth, The art of computer programming. Addison-Wesley, 1998.

[3] J. Katajainen and J. L. Träff, “A meticulous analysis of mergesort programs,” Lecture Notes in Computer Science Algorithms and ComplexityJyrki

Katajainen and Jesper Larsson Traff: A meticulous analysis of mergesort programs, p. 217–228, 1997.

[4] E. H. Friend, “Sorting on electronic computer systems,” Journal of the ACM, vol. 3, no. 3, p. 134–168, 1956.

