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Abstract. The basic filters in mathematical morphology are dilation
and erosion. They are defined by a flat or non-flat structuring element
that is usually shifted pixel-wise over an image and a comparison pro-
cess that takes place within the corresponding mask. The algorithmic
complexity of fast algorithms that realise dilation and erosion for color
images usually depends on size and shape of the structuring element.
In this paper we propose and investigate an easy and fast way to make use
of the fast Fourier transform for an approximate computation of dilation
and erosion for color images. Similarly in construction as many other
fast algorithms, the method extends a recent scheme proposed for single-
channel filtering. It is by design highly flexible, as it can be used with flat
and non-flat structuring elements of any size and shape. Moreover, its
complexity only depends on the number of pixels in the filtered images.
We analyse here some important aspects of the approximation, and we
show experimentally that we obtain results of very reasonable quality
while the method has very attractive computational properties.

Keywords: Mathematical Morphology · Fourier Transform · Fast Al-
gorithms

1 Introduction

Mathematical morphology is a highly successful field in image processing with
abundant applications, see [10,11,13]. An elementary mechanism in morphology
is to compare (and order) tonal data within a certain mask sliding over an image.
The mask is defined as part of a so-called structuring element (SE), which is
fundamental in morphological filtering. The SE is characterised by shape, size
and centre location. There are in addition two types of SEs, flat and non-flat [19].
For a given centre pixel a flat SE defines a neighbourhood on which the tonal
comparison takes place, whereas a non-flat SE also contains additive offsets in
tonal space. The basic operations in morphology are dilation and erosion, where
the tonal value at a pixel is set to the maximum and minimum respectively
within the SE centred upon it. Many useful morphological processes, like e.g.
opening or closing, are formulated by combining dilation and erosion.

Let us briefly review some concepts for color morphology. As mentioned
above, a key issue in morphology is to perform a useful comparison of the tonal
values within the SE. In standard grey value morphology this is done relying
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on the concept of a complete lattice, making use of a total ordering of tonal
values [10]. However, the construction of a comparison mechanism is in general
a delicate issue when turning to color imagery, since there is no natural total
ordering of color values. There are thus basically two approaches to tackle color
morphology [5]: (i) channel-based, where each channel is individually treated
like a grey-value image, and (ii) vector-based, where each color is processed as
a vector in an underlying color space, see [3,4] for some approaches to construct
a vector-based ordering. In this article we will resort to channel-wise filtering as
do most fast algorithms.

As indicated, morphological algorithms aiming for computational speed are
usually designed methodically for single-channel data, and applied channel-wise
for color images. Let us refer to [2] for an example where in addition hardware
optimized for channel-wise RGB processing is considered. Most fast (single-
channel) methods either aim to reduce the size of a SE or to decompose it,
or alternatively they attempt to reduce redundant comparison operations, com-
pare [9]. Most of them refer to specific shape or size of the SE, sometimes also
specific hardware like GPUs is addressed, see for instance [15,17,18,20]. There
are just a few fast algorithms for non-flat SEs of arbitrary shape and size, even
for single-channel data. Let us mention [22] which employs histogram updates
during translation of a SE over an image. However, in general the algorithmic
complexity of these fast algorithms inherently relies on size and shape of the SE.

Here we will build upon a different approach which eventually leads to a fast
method having no limitations with respect to size, shape or flatness of the SE.
In [8] it was shown that binary dilation / erosion may be performed employing
specific convolutions. By the convolution theorem this enables the possibility of
computing binary dilation / erosion using the Fast Fourier Transform (FFT) [12].
In [14] this approach was extended to grey value imagery, by processing each grey
value level set as a binary image using the technique from [8], and combining
thereafter the results. The proceeding implies that the method is limited to
flat SEs. We proposed in [23] an alternative construction that circumvents this
limitation by approximating the original convolutions. However, as we observed
experimentally in [23], this comes at the expense of a certain shift in grey value
data.

Our contribution. In this paper we extend the method described in [23] to
color imagery. The basic construction is extended channel-wise in a straightfor-
ward way. We confirm that favourable computational properties are maintained
in the color setting. Furthermore, we discuss the occurring tonal shift in detail,
as this may be of importance when filtering multiple channels. We derive an
estimate for the size of the shift and give experimental evidence that its effect
appears to be negligible in practice, since the vast majority of morphological
applications naturally relies on combinations of dilation and erosion. In various
experiments, we show that our method is extremely fast and yields competitive
quality compared to other possible methods for color morphology.
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2 Basic Definitions

We start by considering a two dimensional, discrete image domain Ω ⊂ Z2. A
single-channel, grey value image can be represented as a function f : Ω → L,
where L is the set of possible grey values. In non-flat morphology, the SE itself
can be perceived as a grey value image. A non-flat SE b can thus be defined as
a function b : B → L, for B denoting a suitable set centred at the origin. A flat
filter is just a special case where b(x) = 0 for all x ∈ B.

Dilation, Erosion and its Combinations The fundamental building blocks of
mathematical morphology are dilation and erosion. The dilation of an image f by
a SE b is given by f⊕b : Ω → L, where (f⊕b)(x) = maxu∈B {f(x− u) + b(u)}.
The erosion of an image f by a SE b is given by f 	 b : Ω → L and can be
computed by (f 	 b)(x) = minu∈B {f(x+ u) − b(u)}.

Many morphological operations of practical interest can be composed by
dilation and erosion, cf. [10]. As important examples let us mention here opening
f ◦ b = (f 	 b)⊕ b and closing f • b = (f ⊕ b)	 b. Similarly, composite operation
of white top hat is defined as f�(f ◦b), where (f�(f ◦b))(x) = f(x)−(f ◦b)(x).
The black top hat is (f • b) � f , and the Beucher gradient is (f ⊕ b) � (f 	 b),
internal gradient is f � (f 	 b) and external gradient is (f ⊕ b) � f .

Channel-Wise Color Morphology The most intuitive and simple approach to
color morphology we will also follow in this work, is to deal with the image
component wise. There are many formats to represent a digital image [6]. We
employ here the classic RGB format using three separate channels to store the
red, green and blue value for each pixel of an image. On a discrete domain
Ω ⊂ Z2, a RGB color image can be thus represented as fC : Ω → LC . Here,
LC = Lr×Lg×Lb, where Lr, Lg and Lb are the possible values of pixels in red,
green and blue channel respectively. For RGB it holds Lr = Lg = Lb = L, and
L is the set of non-negative integers ≤ 255.

Let us extend the concept of single-channel non-flat SE, to non-flat SE with
3 channels, in a straightforward fashion. A SE is given by the function bC :
B → LC . Thus an image fC can be separated into three channels (fr, fg, fb)
and each of these channels can be treated like a grey value image. Similarly, a
SE bC can be separated into (br, bg, bb) and each of the components acts on the
corresponding channel of the image. Thus, for instance, we define color dilation
of image fC by SE bC as fC ⊕C bC = (fr ⊕ br, fg ⊕ bg, fb ⊕ bb). The definitions
of other component-wise color morphological operations follow in accordance.

3 Fast Approximation of Color Morphology

We first recall briefly the basics and implementation of the method from [23].
Observe that by channel-wise extension to color images, we are considering the
most general form of color SE with no restriction on its shape or size. After
that we investigate an important property of the method, namely the tonal shift
arising by approximation in each color channel.
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3.1 Fourier-Based Approximative Morphology

We have found in [23] an efficient way to dilate or erode grey scale images
by means of Fourier transforms. For this purpose, we approximated the sup
contained in the continuous-scale formulation of grey value dilation using

sup(x1, . . . , xk)
.
= lim

m→∞

1

m
log

(
k∑

i=1

emxi

)
. (1)

Thus one may obtain for dilation in an individual channel the representation
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]
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[
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]]

(x),
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for which the convolution theorem was applied, and where b was extended to the
whole domain by setting b(x) to −∞ outside of the set B. In order to retrieve a
flat structuring element, one may set b(x) = 0 over B. Let us note, b(x) can be
suitable defined to realise any non-flat SE over B.

Following our specifications in [23] for implementation in individual color
channels, the method is easily extended to channel-wise processing. In order to
consider arbitrary sets B as shapes for the SE, we extend b(x) to the whole
image domain by setting b(x) to −256 for implementation. Analogously to [23]
let us declare the function Expm(·) as Expm(f)(x) = e(m·f(x)). It should be
noted that we use functions of the NumPy package [24] to implement all the
functions described in this section, unless otherwise mentioned.

To obtain the fast convolution of Expm(f) and Expm(b), we use the FFT
as in [23]. To this end we employ the function scipy.signal.fftconvolve(·) from
the SciPy package [21]. When using the FFT with large numbers, which may
occur during the discrete transformations, it is in principle possible that some
overflow errors or errors of the form 0/0 or ∞/∞ may occur. Though such an
error has not occurred during our experiments, one may handle such exceptions
in a straightforward manner which can be included in the definition of a function
h that yields the discrete convolution of Expm(f) with Expm(b), cf. [23].

Finally, we need the corresponding Fourier-based inverse of Expm(·). For this
we define InExpm(·) as InExpm(h)(x) = 1

m · log(h(x)). Thus one can completely
transfer (1) to the discrete domain in a channel-wise setting.

The fast dilation is therefore given by f ⊕ b ≈ Inte(h), where Inte(h)(x) =
bh(x)c. So by the well-known complexity of the FFT, the whole process takes
place in O(n log n) if the SE size is smaller than the image under consideration,
where n denotes the number of image pixels. This theoretical complexity is
confirmed by experiments in Section 4.1. The analogous fast erosion technique
follows directly from the duality property of erosion and dilation in each channel,
as f 	 b = 255− ((255− f)⊕ b̆), where b̆(−x) = b(x) ∀x ∈ B.
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3.2 Tonal Shift Analysis

We have noted a certain shift of tonal values in our work [23], but not analyzed.
In the context of filtering in multiple channels, this shift may represent a major
hindrance since shifts of varying magnitude in different channels may potentially
spoil results of combinations of dilation and erosion.

By Figures 1 and 2, one may observe that there is a positive (negative) shift in
each channel when the fast approximation method is used for dilation (erosion).
By this dilation (erosion) results appear lighter (darker). For this reason, we
want to calculate an upper bound for the positive shift with fast dilation in the
respective channels. Similar calculation holds for negative shift with fast erosion.

Let A be a finite set of non-negative integers, i.e A = {x1, x2, · · ·xn}. Fur-
thermore let the maximum be denoted by maxA = xk and approximated by

α =

⌊
1

m1
ln (
∑n

i=1 e
m1·xi)

⌋
, where m1 > 0 is some constant.

Clearly, the difference between the approximation and the actual maximum,
α− xk, is non-negative as:
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⌊
1
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ln (em1·xk)

⌋
≤
⌊

1
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)⌋
= α. (3)

Thus, we do not observe any negative (positive) shifts during dilation (erosion).
Next, we calculate the worst-case scenario for positive shift during dilation,

that is, the upper bound of the difference α− xk, as follows:
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⌊
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It follows that α− xk ≤
⌊

1
m1

ln (n)

⌋
and if m1 > ln (n) then

⌊
1

m1
ln (n)

⌋
= 0 ,

i.e α = xk.
Therefore, in Figure 1 an upper bound on the positive shift with fast dilation

is

⌊
1

0.16 ln (7× 7)

⌋
=

⌊
1

0.16 ln (49)

⌋
= 24. Similarly, the fast erosion in Figure

1 has a negative shift of magnitude ≤ 24. This estimate is clearly confirmed
uniformly over all color channels in the respective histograms, see Figure 2.

Considering the color histograms, let us comment that a certain smoothing
of the color distribution is observed for the fast approximations of dilation and
erosion. This is an interesting effect not pointed out in [23]. However, it is clearly
observed that major characteristics of the histogram as well as peak magnitudes
are largely the same as with the standard channel-wise filtering procedure.

With fast closing as an example for combining dilation and erosion, the tonal
shifts are not apparent as they appear uniformly over the color channels. Thus we
conjecture that the positive and negative shifts from dilation resp. erosion cancel



6 V. Sridhar ET AL.

Fig. 1. Component-wise morphological operations with flat square 7 × 7 filter on
512 × 512 Pepper image. Top row: Classical method. Bottom row: Proposed fast
approximations. From left to right: Dilation, erosion and closing.

each other out. This is an aspect of high practical relevance, as most applications
of morphology rely on suitable combinations of dilation and erosion.

4 Experiments

Let us comment first on the choice of the parameter m. As indicated via formula
(1) theory seems to motivate to choose m in accordance to m → ∞. But since
we form the maximum over a finite range of discrete values, it is sufficient to
choose a finite value of m. Furthermore, the relation (1) is evaluated in the
Fourier domain. So in practice, the value of m refers to the implementation
of the FFT. Since, we perform the computations using numpy.float datatype,
it is observed that the choice of m = 0.16 avoids overflow errors and provides
reasonable approximations.

For useful comparison we employed a highly efficient channel-wise morphol-
ogy implementation which we could find openly available, via morphological
dilation in the SciPy package [21]. The SciPy routine ndimage.grey dilation()
technically makes use of an efficient implementation of a sliding window tech-
nique in the style of [1], to compute channel-wise dilation with arbitrary non-flat
SE similarly to the process described in [22]. Note that the worst case complexity
of this traditional fast morphological method with non-flat SE, even if optimised
in implementation, is theoretically still O(nb × n).
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Fig. 2. Histograms of component-wise morphological operations with flat square 7× 7
filter on 512×512 Pepper image, compare visual results in Figure 1. Top row: Classical
method. Bottom row: Proposed fast approximations, From left to right: Dilation,
erosion and closing

4.1 Comparison of Computational Times

Let us briefly recall the asymptotic complexity of our process for approximating
component-wise color dilation. We start with the trivial assumption that the size
nb of the filter is ≤ size n of the image. For each channel, fast dilation involves
a sequence of linear time processes, except for FFT and inverse FFT which are
O(n log n). Erosion, computed using duality, involves two linear time operations
preceding and one linear time operation following the dilation. Therefore, fast
erosion is also asymptotically O(n log n). Since most of the other morphological
operations are combinations of erosions, dilations and linear in time operations,
the fast approximations of combined operations are also performed in O(n log n).

In the first experiment, Figure 3 Left, we evaluate the time taken by varying
size of filter on a fixed size of image. The image used is again Pepper of size
512 × 512. The filter size increases from 1 × 1 to 43 × 43. The filters are color
filters generated using np.random.randint(), with range of values from 0 to 255.
It is clearly visible that the SciPy method behaves linearly with respect to size
of filter, taking 0.12 seconds for filter size 5 × 5 to around 7.5 seconds for filter
size 43 × 43. The fast method remains constant with respect to the size of the
filter, taking on average about 0.09 seconds, i.e. 0.03 for each channel.

In the second experiment, Figure 3 Right, we evaluate the time taken for
component-wise color dilation by a fixed size of color filter, 51× 51, on varying
image sizes. The image size increases from 101×101 to 1201×1201. The images
and the filters are generated using np.random.randint(), with range of values
from 0 to 255. The SciPy method takes 0.08 seconds for the 101 × 101 image
and increases to about 53 seconds for the 1201× 1201 image. The proposed fast
method is efficient overall and the rate of increase in time with respect to the
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Fig. 3. Time comparison of component-wise color dilation using the proposed fast
method versus the dilation function ndimage.grey dilation() in the SciPy Package. Left:
Varying SE sizes on an image of size 512× 512. Right: SE of size 51× 51 on varying
image sizes.

size of the image is very low. It takes 0.02 seconds for the 101× 101 image and
0.48 seconds for the 1201× 1201 image.

Let us note that we have not employed GPUs in the above experiments.
It is worth pointing out that attempts to use GPUs to compute grey value
morphology usually places restrictions of symmetry and/or flatness on the SE,
see discussions in [16,20]. However, there are several efficient implementations of
FFT and inverse FFT on the GPU, see e.g. [7]. Therefore, our method could be
sped up utilising the GPUs, without any restrictions on the SE.

4.2 Visual Quality Comparison

To assess visual quality of filtering, we consider in addition to channel-wise
filtering the Loewner ordering method from [25]. For the latter, color images
are formulated as fields of symmetric 2 × 2 matrices and processed by rather
complex rules inspired by theoretical physics. We restrict ourselves here to flat
SEs and a selection of experiments.

Fig. 4. Dilation of 512× 512 Pepper image by flat 21× 21 diamond shaped SE. Left:
Loewner. Centre: Classic component-wise. Right: Proposed fast method
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Fig. 5. Beucher Gradient of 512 × 512 Pepper image by flat 3 × 3 square shaped SE.
Left: Loewner. Centre: Classic component-wise. Right: Proposed fast method

Dilation results in Figure 4 are at first glance qualitatively similar. A care-
ful inspection shows that the Loewner scheme shows few more details than the
channel-wise methods, and that the fast approximation result appears as ex-
pected a little lighter and smoother.

Let us turn to the Beucher gradient as an example of a morphological process
that could be useful (as internal or external gradient) for edge detection or
segmentation. Results displayed in Figure 5 show that the Loewner method
gives apparently a different color distribution than the channel-wise methods.
Let us note that the Loewner method relies on the underlying structure of a
different color space than the RGB-based channel-wise methods. All methods
give cleanly the apparent edges of the input image.

Now let us consider another composed filter, the white top hat, see Figure
6. It is expected that the filtering results highlight points or structures that are
lighter than their surrounding (in terms of the individual color channels). This
means, it is expected here that results allow to identify shiny highlights as well
as the trunks of the two peppers in the foreground of the image. As it can be
observed, all the methods give useful results in this respect.

Fig. 6. White top hat of 512× 512 Pepper image by flat 21× 21 diamond shaped SE.
Left: Loewner. Centre: Classic component-wise. Right: Proposed fast method



10 V. Sridhar ET AL.

Fig. 7. As an example for potential applications, we take a retinal image of size 1411×
1411 (source: Wikipedia), set the red channel as 0, and perform a black top hat with
the proposed method, using a 25× 25 flat square S.E. We then do a gamma correction
followed by thresholding and an inversion for visualization of the blood vessels. The
whole process takes ≤ 1.6 seconds, without the use of GPU. Left: Retinal test image.
Right: Inversion after thresholding (≥ 11) after Gamma Correction with γ = 0.85.

As a last example for visual quality assessment and at the same time as a
proof-of-concept for the usefulness of the developments, we consider to process a
retinal image, see Figure 7. Such images arise in ophthalmic examination, and by
advances in medical imaging the image resolution for given tasks of automatic
processing is ever-growing. Therefore the need arises for very fast methods for
processing such data, compare e.g. [26]. As Figure 7 shows, our method is capable
of useful filtering such images.

5 Conclusion

Our method not only works with complexity O(n log n) with respect to the size
of the image, it is also extremely fast in practice. Let us stress again that it
performs overall much faster than standard efficient implementations of mor-
phology as available in SciPy. At the same time it is highly versatile, as there
are no restrictions to shape, size or flatness of the SE.

As we have demonstrated, our method may perform very fast with imagery
from modern acquisition devices, which may often be of high resolution and in
color. By morphological filtering of high resolution images, naturally also the size
of useful SEs is at least moderate. We conjecture that a method whose complexity
is independent from the SE size parameter may be useful for applications.

Future work may include extension to multi-spectral imagery. In this con-
text it may be important that the method offers high potential to accelerate
it even further using GPUs for the incorporated FFT. Furthermore, we aim
to study alternative transforms that may reduce the tonal shift visible in pure
dilation/erosion filtering.
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