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Abstract. Regardless of existing and well-defined processes, some defects are inevitable, 

resulting in software performance degradation. The use of traditional machine learning 

techniques can automate the prediction of software defects. This automated approach 

significantly improves the quality of the finished product and reduces the cost incurred during 

development and maintenance stages. The accuracy of artificial neural networks for the automatic 

prediction of software bugs, can be further enhanced with the use of metaheuristics algorithms. 

We propose a hybrid approach which combines Genetic Algorithm (GA) and Deep Neural 

Network (DNN) to better classify software defects. GA is used as a pre-learning phase to 

automatically optimize the input features for the DNN, as irrelevant variables have a substantial 

negative impact on the prediction accuracy. Results from experiments using the PROMISE 

dataset, demonstrates that a DNN consuming optimized features yields better results. 

 

Keywords: machine learning, software bugs, defect prediction, hybrid model, genetic algorithm, 

deep neural network. 

1. 0 Introduction 

The technological evolution of software has become an essential and pervasive part of 

our personal and professional life. Today’s wearable technology, implanted medical 

devices and autonomous driving cars are just a few examples that demonstrate the 

beginning of a new era of software transformation. The purpose of software defect 

prediction is to discover major design and programmatic issues which can reduce the 

huge costs and time imperatives associated with them (Safial, 2019). IEEE defined the 

term fault or bug as ‘inappropriate and unexpected behavior in a computer program’. 

However, due to exponential growth in application software, the assurance of quality 

in software remains largely an unnoticed subject leading to performance degradation of 

the industry. As a concern, testing comes into play to find defects or bugs while running 

a program to produce a zero-defect software (Chauhan and Singh 2014). Without 
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proper testing, a project becomes a definite recipe for disaster that can raise its cost and 

affects its quality. While bugs persistently continue to worsen the performance of 

software, the necessity of effective and rapid methods to find software defects is high.  

 

There have been several techniques introduced to reduce the presence of defects in 

software. For instance, metrics based on object-oriented, traditional and process 

approaches have broadly been employed in almost every defect prediction model 

(Emam et al.2001; Catal and Diri, 2009). Further applications of software metrics are 

demonstrated by Khoshgoftaar et al.2007 with a statistical prediction model based on 

function-approximation problem analysis and regression. Unfortunately, most of the 

presented methods fail in providing efficient results, mainly because the architecture of 

each software is almost unique. As such, prediction models have to take into 

consideration parameters which are completely different, thereby having difficulty to 

generalize. To overcome this complicated issue, non-parametric techniques like 

machine learning and computational intelligence can be considered. 

 

Despite of multiple powerful advances in programming languages and bug detection 

techniques, software defects affect virtually almost all software products and services. 

In response to this problem, researchers have widely been studying the topic bug 

prediction using machine learning approaches which have the potential to leverage the 

prediction of software bugs (Puranika et al.2016, Hassan, 2009; Menzies et al.2007; 

Kim et al.2008; Menzies et al. 2008). Nevertheless, there still exist many uncertainties 

with machine learning approaches, as no single techniques have prevailed due to 

existing imbalanced datasets and lack of formal approaches (Hassan et al.2018). We 

present a novel hybrid approach in this paper using deep neural network along with GA 

to build an efficient classification-based optimization system for prediction of software 

defects.  

 

The rest of the paper has been prepared as follows. Section 2.0 provides a short view of 

related works that have been done in the field of software defects defection. Section 3.0 

provides the proposed model. Experimental outcomes and results of the proposed 

approach are described in Section 4.0. Performance analysis and discussion of results 

are discussed in section 5.0. Finally, Section 6.0 presents a brief conclusion and future 

work of the proposed model. 



2.0 Literature Review 

This section discusses the different software defect prediction techniques identified in 

the literature. Recently, machine learning approaches have become very popular 

techniques for defect prediction in software (Hall et al.2012; Catal and Diri, 2009). In 

this context, many algorithms have been designed each having its own data 

requirements and levels of complexity. Examples comprise of regression algorithms, 

classification techniques, clustering methods, deep learning and hybrid techniques 

which is a blend of optimization algorithm and machine learning. 

 

Several supervised classification algorithms such as neural networks, naïve bayes, 

Support Vector Machines (SVM), linear regression, and K-nearest neighbor, as 

described by Perreault et al. 2017 have been used for the prediction and detection of 

software bugs. On the other hand, regression approaches have been tackled using SVM 

by Elish et al. 2008. SVM has also been used for classification (Gray et al. 2009) of 

defects, which has a special focus on the pre-processing of the input data. Shivaji et al. 

2013 investigated a naïve bayes classification algorithm combined with feature 

selection module for efficient prediction. Each of the approaches have shown different 

levels of efficiency, making them difficult to implement. A more efficient deep learning 

neural network model is presented by Yang et al. 2015. Along the same approach the 

work of Gondra et al. 2008 demonstrates that labelled datasets with software metrics 

can help better train neural network models. Another model proposed by Yang et al. 

2006 shows the combination of neural network with radial basis function and Bayesian 

method.  

 

In unsupervised clustering algorithms, the application of ambiguous datasets has been 

very popular. For instance, Bishnu et al. 2012 came up with a k-means clustering model 

for software bug prediction. Hybrid approaches based on K-means algorithms have 

been attempted, such as application of the Neural-Gas and Quad Tree techniques for 

optimum exploration and cluster labelling of real-world datasets (Rani and 

Rajalakshmi, 2012; Meenakshi et al.2012).  

 

Hybrid approaches have the advantage of combining the best of different techniques 

and hence further improves the accuracy of prediction models. Azar et al. 2011 

developed a model using ant-colony optimization technique for prediction of software 

bug. Another study (Rong et al.2016) proposed a hybrid Support Vector Machine model 



combined with the bat search algorithm. Manjula and Florence, 2018 presented a 

machine learning based hybrid model by combining genetic optimization algorithm 

with decision tree algorithm. Wahono et al. 2014 build a model using neural network 

based on bagging technique and genetic algorithm for prediction of software bug in 

order to improve performance. 

 

In regards to the above work, we noticed that software defect prediction models have a 

high cost associated with it. While some approaches have high processing time other 

are intricately complex. Genetic Algorithm (GA) has been extensively used in neural 

network optimization and is known to be successful in achieving optimal solutions. 

While substantial work has been done regarding neural network parameter optimization 

using GA in several applications, there has not been sufficient research performed on 

investigating them in the field of defect prediction. To overcome this problem, we 

present a hybrid-based model using GA to optimize deep neural network for software 

defect prediction.  

 

3.0 Proposed Model 

 

The proposed software defect prediction model comprises of a Deep Neural Network 

(DNN) and Genetic Algorithm (GA). It therefore follows a two-fold approach, as 

below:  

i) Application of GA for feature optimization. 

ii) Application of DNN for classification purpose. 

 

3.1 Genetic Algorithm 

Genetic Algorithm is a metaheuristic evolutionary algorithm based on the principle of 

selection and mutation. In our context, GA is applied for the purpose of searching the 

parameter space, finding the global optimum solution and optimizing the weight and 

threshold of the neural network effectively (Suzuki et al.2013). The parameters that has 

been used for the implementation of GA were set as: size of population = 100; number 

of generations = 50; probability of crossover = 0.5; and mutation probability = 0.2.  

 

3.1.1 Deep Neural Network 

This section defines the Deep Neural Network used for this study related to prediction 

of software defects. Deep neural network is useful for the learning of effective features 



and discriminative patterns in nature, especially for software bug prediction (Yang et 

al.2015). DNN can also be applied to unlabeled datasets. In our model, we used one 

input layer and 10 hidden layers to produce the output.  

 

3.1.2 Hybrid Intelligence of Genetic Algorithm with Deep Neural Network 

The fundamental ideologies of GA are to generate an initial population of chromosomes 

followed by selection and crossover in order to achieve effective population having the 

fittest chromosome (optimal value) among them. Figure 1 below shows the proposed 

architecture, involving the steps required to build the hybrid predictive model using GA 

together with DNN.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
             Fig 1: Steps involving building process of GA and DNN.  

 

 

4.0 Experimental Study and Results 

The experimental studies carried out for this proposed approach is described in this 

section. The hybrid DNN+GA model has been developed using Python packages 

(Tensor Flow, Scikit-Learn and Keras). TensorFlow is used to train and calculate 

accuracy of the prediction model. Scikit-Learn is used to read and split the dataset for 
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training and testing purpose. Keras provides the possibility to speed up experimentation 

cycles on CPU and GPU. All experiments have been conducted using a laptop 

consisting of the following configuration: Corei7-6500U CPU, x64 based processor and 

16 GB RAM. The PROMISE datasets have been used for training and prediction.  

 

4.1 Dataset details 

In PROMISE repository consists of five primary datasets, namely: AR1, AR3, AR4, 

AR5, AR6. Since they are all related having similar attributes (e.g. loc, comment loc, 

cyclomatic complexity), we have decided to combine the dataset altogether. The dataset 

consists of 29 features, and 1050 records, out of which 70% will be used for training 

and the remaining 30% used for testing. A random state of 65 is used to ensure that 

each experiment splits the dataset with the same record in every set to acquire 

appropriate calculation of prediction accuracy for the model.   

 

The datasets are categorized as follows:  

 

i) LOC counts (total_loc, blank_loc, comment_loc, 

code_and_comment_loc, executable_loc, unique_operands, 

unique_operators, total_operands, total_operators): Defines numbers of 

lines of code 

ii)  Halstead (vocabulary, length, volume, level, difficulty, effort, error 

time): Based on number of operators and operands 

iii) McCabe (cyclomatic_complexity, cyclomatic_density, decision_density, 

design_complexity, design_density, normalized_cyclomatic_complexity, 

formal_parameters): This keeps a measure of the number of possible 

alternative paths through the code 

iv) Others (branch_count, decision_count, call_pairs, condition_count, 

multiple_condition_count)  

 

4.1.1 Fitness Evaluation using performance evaluation metrics 

 

For the performance of the defect prediction model, the following metrics have been 

used using these annotations which are as follows: 

TP = True Positive, FP = False Positive, TN = True Negative, and FN =False Negative.  

 



Metric Description Formula 

Accuracy Used for the 

determination of 

chromosomes selection 

and for performance 

measurement of the 

hybrid prediction model 

(TP+TN)/Total number of 

samples used 

 

Recall The percentage result that 

have correctly been 

classified by our 

algorithm 

TP/ (TP+FN) 

Precision Defined as the proportion 

of occurrences predicted 

as defective which 

actually are defective 

TP/(TP+FP) 

   Table 1: Evaluation metrics.  

 

 

5.0 Performance analysis and discussion of results 

 

5.1 Experimental scenario 1 

In first instant, experiments were conducted whereby only the DNN has been taken into  

consideration. These experiments are conducted for AR1, AR3, AR4, AR5, AR6 

(combined dataset) with all 29 attributes in the dataset. The efficiency of the DNN 

prediction model is evaluated and presented statistically in table 2 and in a confusion 

matrix in table 3. The time taken to run the algorithm was 31. 34 seconds 

 

 

 

Table 2: Result for statistical performance analysis using Deep Neural Network (DNN). 

 

      Precision               Recall               Accuracy   

 

       0.895                                         0.895    87.21% 

 

 

 

 

 

 

 



Table 3: Confusion matrix using Deep Neural Network (DNN). 

 

Actual class   Predicted Class 

 

 

    Defective   Non-Defective 

 

  

Defective    5            17 

 

Non-Defective   7           243 

 

 

Figure 2 depicts the ROC curve that shows the performance of the classification model 

by plotting the true positive and false positive rate; achieving an accuracy of 92.21% 

for DNN.  

 

   Fig.2 ROC analysis curve.  

 

5.1.1 Experimental scenario 2 

Secondly, using the same settings and configurations, experiments has been conducted 

using the proposed hybrid model, and the results are presented in Table 4 below. 

 

The attributes that had been considered for GA to perform feature selection on DNN 

was LOC counts and Halstead only. The time taken to run the algorithm was around 12 

hours.  

 

 

 

 



Table 4: Result for statistical performance analysis using proposed hybrid approach 

(DNN+GA).  

 

Precision       Recall           Accuracy 

 

  0.896                               0.896                          92.21% 

 

 

 

Table 5: Confusion matrix using Deep Neural Network (DNN) and GA.  
 

Actual class   Predicted Class 

 

 

    Defective   Non-Defective 

 

  

Defective    3            5 

 

Non-Defective   6           258 

 

 

Figure 3 depicts the ROC analysis curve which takes into consideration both the true 

positive rate and false positive rate where proposed hybrid approach illustrates better 

performance when compared to DNN with an accuracy rate of 95%. 

 

 
                      Fig 3: ROC analysis curve.  

 

 

The result of experimental study shows that the proposed hybrid approach provides 

reliable performance that can be used for software defect prediction model. The result 



produced for the hybrid model has achieved accuracy of 92.21 % while DNN an 

accuracy of 87.21%.  

6.0 Conclusion and Future work 

In recent years, early prediction of software defects methods along with their problems 

and applications are emerging rapidly. This paper presents a hybrid approach for 

software defect prediction using Deep Neural Network (DNN) classification scheme 

combined with Genetic Algorithm (GA) using benchmark dataset from PROMISE 

repository. The performance of this hybrid approach when compared with a 

conventional DNN shows an increase of around 5% with regards to prediction accuracy.  

 

Future research is highly applicable for this current study where this methodology 

implemented can be improved by using real-time application datasets. Furthermore, 

there are some requirements to consider such as overfitting phenomena and noise 

factors when designing the neural network. Thus, parameters of the learning functions 

for the neural network should be selected properly for better optimization of hyper 

parameters in the networks. In addition, control parameters like crossover rate and 

mutation rate of genetic algorithm should be taken into consideration in order to derive 

suitable combinations to enhance performance of the model.  
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