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Abstract: The present paper is aimed at a detailed analysis of the effects of rotation on the 

propagation of harmonic plane waves under two-temperature thermoelasticity theory. We consider 

a homogeneous and isotropic elastic medium that is rotating with uniform angular velocity. After 

formulating the problem, we obtain the dispersion relations for the longitudinal and transverse 

plane waves propagating in the medium and the solutions of dispersion relations are obtained 

analytically. The asymptotic expressions of several important characterizations of the wave fields 

are obtained for high frequency as well as for low frequency values. In order to observe the 

behavior of the wave characterizations for the intermediate values of frequency and to examine 

the effects of rotation on them, computational work is carried out to find the numerical values of 

different wave fields for intermediate values of frequency and for various angle of rotation. The 

results are shown graphically. An in-depth analysis of the effects of rotation on plane wave is 

presented on the basis of our analytical and numerical results.  

Keywords:  Two-temperature thermoelasticity; Generalized thermoelasticity; Harmonic plane 

wave; Rotating elastic body; Centripetal and Coriolis acceleration. 

 

1. Introduction:  

In the present work we propose to investigate the propagation of harmonic plane waves in an  

infinite rotating elastic medium under two-temperature thermoelasticity theory. The propagation 

of harmonic plane waves in elastic medium have been the subject of interest during several years.  

Chadwick and Sneddon [4] and Chadwick [5] studied the propagation of plane waves in classical 

thermoelasticity. The propagation of plane waves in the context of generalized thermoelasticity 

with one relaxation time introduced by Lord and Shulamn [21] is discussed by Nayfeh and Nemat-

Nasser [23] and later on by Puri [29]. The propagation and stability of harmonically time-
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dependent thermoelastic plane waves in temperature-rate-dependent thermoelasticity theory 

developed by Green and Lindsay [15] is reported by Agarwal [1].  Investigation on plane waves 

in the context of thermoelasticity theory without energy dissipation (Green–Naghdi [17]) is 

discussed by Chandrasekharaiah [10].  In a recent work Puri and Jordan [26] have investigated 

the propagation of plane waves in the context of GN-III thermoelasticity theory [16].   Wave 

propagation in infinite rotating elastic solid medium was investigated by Schenberg and 

Censor[34] and later on by several other researchers like  Puri [28], Chandrasekharaiah and 

Srikantiah [7], Roychoudhuri [33], Roychoudhuri and Mukhopadhyay[32], Roychoudhuri and 

Bandyopadhyay [31], Chandrasekharaiah [8, 9], Othman[24], Auriault[3], Sharma and 

Othman[35]. [11,12] formulated the two-temperature thermoelasticity theory and this theory 

proposes that the heat conduction on a deformable body depends on two different temperatures: 

the conductive temperature, φ and the thermodynamic temperature, θ. This theory suggests that 

the difference between these two temperatures is proportional to the heat supply and in absence 

of heat supply the two temperatures are equal for time-independent situation [11]. However, for 

time dependent cases the two temperatures are in general different, regardless of the heat supply. 

Uniqueness and reciprocity theorems for the two-temperature thermoelasticity theory in case of 

a homogeneous and isotropic solid have been provided by Iesan [18].  Subsequently, several 

investigations (see Warren and Chen [37], Warren [38], Amos[2], Chakrabarti [6], Ting[36], 

Colton and Wimp [14]) have been pursued by employing the linearized version of this theory.  

This two-temperature thermoelasticity theory has again aroused much interest in the recent years. 

The existence, structural stability, convergence and spatial behavior of two-temperature 

thermoelasticity theory have been discussed in details by Quintanilla [30].  The propagation of 

harmonic plane waves in the same theory is discussed by Puri and Jordan [27].   Several other 

research works [39- 42, 20, 22, 19] have also been carried out very recently on the basis of this 

two-temperature thermoelasticity theory indicated some significant features of this theory. 

The main objective of the present study is to investigate the effects of rotation on the propagation 

of plane harmonic waves in a homogeneous and isotropic rotating elastic medium in the context 

of the linear theory of two-temperature thermoelasticity.   After obtaining the dispersion relation 

solutions of both the longitudinal and transverse plane waves, we find the asymptotic expansions 

of several qualitative characterizations of the wave fields such as phase velocity, specific loss, 

penetration depth, amplitude coefficient factor and phase shift of the thermodynamic temperature 
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for the high and low frequency values.  It should be mentioned here that in earlier studies 

concerning plane waves only the behavior of the phase velocity, specific loss, penetration depth 

etc. are discussed on the basis of the asymptotic expressions for the high and low frequency 

values.  However, being motivated by the work reported by Puri and Jordan [27] we also make 

an attempt to observe the behavior of the above mentioned quantities for intermediate values of 

frequency with the help of computational work.  For this the numerical values of the wave 

characterizations for intermediate values of frequency and for various values of rotational angle 

are computed and the results are plotted in several graphs.  A detailed analysis of the numerical 

results highlighting the effects of rotation on various wave fields is presented and the analytical 

results are verified with the help of our numerical results. The results are also compared with the 

corresponding results of the case of absence of rotation as reported by Puri and Jordan [27].  

 

2. Basic governing equations 

       We consider a linear homogeneous isotropic thermally conducting elastic medium rotating 

uniformly with the angular velocity 0ΩΩ= p , where p  is the unit vector that represents the 

direction of the axis of rotation. The displacement equation of motion in the rotating frame of 

reference involves two additional terms- the centripetal acceleration ( )Ω Ω u× × due to the time-

varying motion only and the Co-riolis acceleration 2Ω×u , where  u  is the displacement vector. 

The equations governing the displacement and thermal fields in the absence of body forces and 

heat sources under two temperature thermoelasticity theory are therefore taken in usual notations 

as follows: 

 Stress - strain temperature relations:  

                                                   2ij ij ij ije e    = + −                                                             (1) 

 Strain - displacement relations:      ( )
ijjiij uue ,,

2

1
+=                                                                  (2)                                                                         

 Heat conduction equation without heat source: 

                                     , 0ii E

e
K c

t t


  

 
= + 

 
                                                            (3)                                                         
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 where e is the dilatation and defined as  
kke e=  

The stress equation of motion in a rotating medium without body force:  

            ( ) ( ), 2ji j i ii
   =    

+ Ω× Ω× + Ω×u u u                                                       (4) 

The conductive temperature   is related to the thermodynamic temperature   as 

                                                  ,ii  − =                                                                                  (5)   

where >0  (a scalar) is the two-temperature parameter.   

3. Problem formulation  

Using Eqs. (1), (2) and (5) we write the equation of motion (4) in the form  

   ( ) ( ) ( ) ( )( ) ( )2

, 2i i ii i ii
        + +  − − =

 
• + Ω× Ω× + Ω×  u u u u u                      (6) 

From Eqs. (3) and (5) we get  

               2

0 •E E iK c c u
t

    
 

+  = +   
                                                                           (7) 

We introduce the following dimensionless quantities and notations: 

2

0 0

0

, , ' ,i ix c x t c t


  


 = = =
0i iu c u = , 

( )


 22

0

+
=c ,  

K

cE
 = , ' 0

0 2

0c 


 =

( )
a



 
=

+

0
1 ,

2
  

2
=

Kη
a


, 2 2

0 ,c   = 1 ,
2




 
=

+
1 11 = −  

Equation (6) and (7) then transform to the dimensionless forms (after dropping the primes for 

convenience) as    

         ( ) ( ) ( ) ( )( ) ( )2

1 1 1 ,• 2i i ii i ii
a   +  − − = + Ω× Ω× + Ω×u u u u u                              (8) 

2

21 ia
t t


 
  

+  = +    
•u                                                                                                (9)    

 

4.  Plane harmonic waves solutions  

To study the propagation of plane harmonic waves the solutions of equation (8) and (9) are 

assumed in the form 

( ) ( ) ( ), , expb i t x  = −  •u a n                                                                                  (10)  
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where a is
 
a
 
vector and b is an arbitrary constant not both zero.  is the frequency,  is the wave 

number of the wave. n  is the unit vector along the direction of propagation.  is assumed to be a 

positive real and ,,b a are allowed to be complex. 

Substituting these expansions into the equations (8) and (9) we get 

( ) ( ) ( ) ( ) ( )2 2 2 2 2

0 1 1 12 1i ia b     + − − − +  = +• Ω • Ω Ωa a n n a a n                        (11) 

( ) ( )2 2

21i b a    − − + =
 

•a n
                                                                                         

(12)  

We note that if 0=a , then equation (11) yields 0b = , but a  and b cannot vanish for the waves 

of the desired type to occur. Therefore, we take a  to be a nonzero vector. We analyze purely 

shear waves and purely dilatational waves on the basis of equations (11) and (12). 

 

Case I: Shear wave 

For purely shear waves, we have 0=•a n , and equations (11) and (12) therefore become 

( ) ( ) ( ) ( )2 2 2 2

1 12 1i ia b    + − + = +− ΩΩ• Ω ×a a a n                                                 (13)          

( )2 21 0i b   − + − =
 

                                                                                                           (14) 

From equation (14), it is evident that the thermal field is uncoupled with purely shear waves. Now, 

taking the scalar product of equation (13) with a , we obtain the following secular equation for 

purely elastic shear wave in the presence of the rotation of the body: 

                                 2 2 2

1 0  − =                                                                                          (15)  

                  where,   2 2 21 sinq  = + , 
2

2 0

2
q




=                                                                              

and  is the angle between the directions of Ω  and u . We note that in the absence of the rotation 

of the body, the secular equation (15) reduces to that which holds in the case of a non-rotating 

body. We also find that equation (15) becomes identical when 0 = or .  

The positive root of equation (15) is given by 
 

1
2 2 2 2

0

1

1
sins  


 = +                                                                                           

    (16)
 

 (I) Phase velocity of shear wave: The phase velocity of wave is defined as 
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 Re

V



=

                                                                                                             

(17)

                                                                                                 

 

Therefore, the phase velocity of shear wave  is obtained as 

1/ 2
2 2

0
1 2

sin
1SV






−

 
= + 

 
                                                                                            (18) 

Case II: Dilatational waves 

For  purely dilatational waves u  and n  have the same directions, so that • = aa n , where a = a  

In this case, on taking the scalar product with n  of equation (13) equations (13) and (14) become       

    ( ) ( )2 2 2 2 2

0 1sin 1 0a ia b    + − + + =                                                                           (19) 

          ( )2 2

2 1 0a a i b    + + + =
                                                                                       (20) 

Equations (19) and (20) clearly imply that the thermal field is coupled with the dilatational wave. 

Eliminating the constants a and b from equations (19) and (20), we obtain the following equation 

for thermoelastic dilatational waves in a rotating body, in the context of the two temperature 

thermoelasticity theory.  For non-trivial solution, the determinant of the coefficient matrix in the 

above system of equations (19) and (20) must be zero. i.e. 

( )

( )

2 2 2 2 2

0 1

2 2

2

sin 1
0

1

ia

a i

    

   

+ − +
=

+ +                                                                 
(21)

 

Therefore, we have a bi-quadratic dispersion relation as 

( ) ( ) 

( )

4 2 2 2 2 2 2 3

0 0

3 2 2

0

1 sin sin

sin 0

i h i h

i

         

  

 + −  + − −  −
 

− +  =                                              (22)    
 

  Now, multiplying above equation throughout by ( )1 i h−  we arrive at the simplified form of 

the dispersion relation as 

( )   ( )
24 2 2 4 2 2 2 2 2 3

0 01 sin sin 0h P iQ h h i              + − − − +  +  + =
    

                (23) 

where, we have used the following notations: 

2 2 2 4 2

0 1sinP A h   =  + + ,
3

2Q A  = + ,
1 2a a = , 1h = +  

2 2 2 2

1 01 sinA h h  = − +   , 2 2

2 0sinA h  = +  . 
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5. Expressions for attenuation coefficient and wave number of dilatational 

waves 

The roots of equation (23) are 
1 and 2 , where ( )

( )

( )

2

1,2 222 1

P iQ D

h




 

− 
=

 +
 

                         (24) 

( ) ( )

( ) 
( ) ( ) 

4 4 2 2 2 2 2 2

0 1 0 2 0

34 2 2 2 2 2 2

1 0 2 0

2 36 2 8 4 2

1

Re sin 2 sin 4 sin

2 sin 2 4 4 sin

2 4

D A A h

A h A h h

A h h h

     

      

     

=  +  − +   

+ +  − + + 

+ − + +

 

( ) ( ) ( )

( ) ( )

22 2 3 2 2 2 2

0 2 1 2 0 0

25 2 7 3

2 1

Im[ ] 2 sin 2 2 2 sin 4 4 sin

4 2 2

D A A A h

h A h A h

       

      

 =  − + − −  + + 
 

 + − + −
 

 

 

It is to be noted here that only two out of the four roots of  given by Eq. (23) have the imaginary 

parts as negative. We are interested only in these two roots as only these roots yield the negative 

value of the decay coefficient, ( )Im  of the propagating wave.   The two values of   with the 

negative imaginary parts can be obtained from equation (24) by employing the theorem of complex 

analysis [25, 27]. These two values correspond to two different modes of the dilatational wave.  

One of these is predominately elastic and other is predominately thermal in nature.  Let the value 

of   associated with the former one be denoted by 1 and the other one by 2 .  It should be 

mentioned here that in absence of rotation (i.e., when 
0 0 = ) above dispersion relation (23) 

reduces to the corresponding relation as reported by Puri and Jordan [27]. 

 

6. Analytical results 

 In this section, we will consider two different cases which correspond to the waves of small 

frequency and waves of high frequency and we will analyze two different modes of dilatational 

wave in order to find out the effects of rotation on the waves in both the cases. 
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 Special cases 

6.1.1. High frequency asymptotic expansions 

We consider 1  . Therefore expanding the expressions for 1,2  from equation (24) in powers of 

1,−  we obtain after detailed and long calculations, the asymptotic expressions of 1 and 2  for 

high frequency values as follows: 

( )

( ) ( )

2 2 3 2 2 2

0 0
1 2 22 2

4 sin 4 2 4 2 sin1 1
 1 1

2 28 4

hi

hh h h

       


   

     +  − + + −  
  + + − −                   

(25) 

2
2 2 2 2 2

0 0
2 2 4 3 2 2

3 sin sin1 1 1 1 4 1 3
1 1

2 2 4 8 8
i

h h

   


     

        +   
  + − − − −      
              

          (26) 

6.1.2. Low–frequency asymptotic expansions 

 
We consider 1  . Expanding the expressions for 1,2  from equation (24) in powers of   we 

obtain after detailed and long calculations the asymptotic expansions of 1 and 2  for low 

frequency values as follows: 

( ) ( )  ( )2 2 22
02

1 0 4 4 2 2

0 0

2 sin 2 2 2 44 3 1
sin 1

8 8 sin 2 sin

h
i

        
   

 

   + + − + −− +      + + − + 
              

(27) 

( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

0 0 *

2 2 2 2

0 0

2
2 2 2 2 2 2 2 2

0 0 0 02 2

4 4 4 4

0 0

sin sin
1 1 ,

2 2 sin 2 sin

2 sin 4 sin 2 sin 4 sin
1 1

2 4 sin 4 sin

i

i

     
   

 


             

 
 

    −  −    
 + − −    

         


     − −  −  − −  −     
− − −    

         

*, 








  =
  

     

                                                                                                                   

(28) 

where 

 

2 2

0

*
sin





=


 

is the critical value of the two-temperature parameter.  Clearly the critical 

value depends on the thermoelastic coupling constant as well as on the magnitude of rotation.

 

 

a.  Asymptotic results of different wave fields 

We obtain the asymptotic expressions of different characterizations of wave fields such as phase 

velocity, specific loss, penetration depth etc. of both the modified elastic and modified thermal 
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mode dilatational waves and examine these quantities under the cases of high frequency values as 

well as low frequency values. 

(I) Phase velocity: The phase velocity is given by 

                     

, 1,2

1,2Re
E TV V




= =

                                                                                                

(29)

                                                                                                 

 

where VE is the velocity of elastic mode dilatational wave and VT is the velocity of the thermal 

mode dilatational wave. Now we obtain the asymptotic expansions of these phase velocities from 

Eqs. (25) – (28) and the formula (29) as follows: 

High frequency asymptotics 

( )

( )

2 2

0

22

4 sin1
1

28
EV h

h

  

 

  + 
  − + 

      

,

                 

( ) →                                                  (30) 

( )
2

2 2 2
3/ 22 0

2 4 3

3 sin1 1 4
2 1

2 4
TV

h h

 
 

 

  +
  − − 
   

 , ( ) →
                                                

 (31) 

 

Low frequency asymptotics 

( ) ( )  ( )2 2 22
02

4 4

0 0

2 sin 2 2 2 44 3
1

sin 8 8 sin
E

h
V

       


 

   + + − + −− +
   − +
   

  

, ( )0 →
    

(32) 

( )

( ) ( )

2
2 2

0 *

2 2

0

2 2 2 2

0 02 *

4 4

0

sin
2 1 ,

2 sin

2 sin 4 sin
2 1 ,

4 sin

TV

  
   



      
   



   −    −         
   − −  −  
  + = 

     

     

 ( )0 →
         

 (33) 

 

(II)  Specific loss: The specific loss of wave is defend as the ratio of energy dissipated per stress 

cycle to the total vibrational energy and is given by 

                    

1,2

, 1,2 1,2

Im
4

ReE T

W W

W W






       = =   
                                                                             

(34) 

Eqs.(25) - (28) and the formula given in  (34) yield the high frequency and low frequency 

asymptotic expressions for the specific loss of both the modes of dilatational wave as 
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High frequency asymptotics 

( )

3 2
2 2

022

2 1 4 2 4 1
1 sin

24E

W h

W h h

   


  

  − + + 
 − −        

,       ( ) →
                     

           (35) 

2 2

0

2 2

sin1 3
8 1

8 8T

W

W

 


  

  
 + −  

   
,                           ( ) →                                  (36) 

Low frequency asymptotics 

( ) ( )  ( )2 2 22
02

2 2 4 4

0 0

2 sin 2 2 2 44 31
2 1

sin 8 8 sinE

hW

W

       
   

 

   + + − + −− +      + − +            

,   ( )0 →
  

 

(37) 

( ) ( )

2 2
*0

2 2

0

2 2 2 2

0 02 *

4 4

0

sin
4 1 ,

sin

2 sin 4 sin
4 1 ,

2 sin

T

W

W

  
   



      
   



   − 
−    

     
     − −  −    

 − =       

   ( )0 →
         

(38) 

               

                                                 

       

 (III) Penetration depth:  The penetration depth is defined as 

                      

,

1,2

1

Im
E T


=

                                                                                                       

(39) 

Therefore from Eqs. (25) - (28) and formula (39), we find the high frequency and low frequency 

asymptotic expansions for the penetration depth as follows: 

  

 
High frequency asymptotics 

                      

( )

( )

3/ 2 3 2
2 2

022

2 1 4 2 4 1
1 sin

24
E

h h

h

   
 

  

  − + +
  + −  

        

,     ( ) →           (40) 

                    

2 2

0

2 2

sin1 3
1

8 8
T

 
 

  

  
 − −  

       

,

                           

( ) →                     (41) 
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Low frequency asymptotics 

                         
( )

0

2 2

0

2 sin

1 sin
E




  




+ 
 

,

       

( )0 →                                                             (42)

 

( ) ( )

2 2
*0

2 2

0

2 2 2 2

0 02 *

4 4

0

sin2
1 ,

2 sin

2 sin 4 sin2
1 ,

4 sin

T

  
  

 


      
  

 

   − 
+    

   
 

  − −  −  
 + =       

 ,   ( )0 →
             

 (43) 

 (V) Amplitude coefficient factor and phase shift of thermodynamic temperature 

   Using Equations (10) and (5) we can write the thermodynamic temperature as 

( ) ( )2 2, (1 ) exp (1 ) ( )x t b i t x Mexp i       = + − = + =  •n                               (44)                                          

where,  21M = +  ,  ( )21Arg = +
            

(45) 

Here M is termed as the amplitude coefficient factor and  
  
is the phase-shift.  Now according to 

the expressions given by Eq. (45) we obtain the asymptotic expansions of these quantities as 

follows:                                                                           

High frequency asymptotes 

( )

( )

2
2 2
02 2

41
1 sin

4
E

h
M

h h


 

 

  +
   + + +

    

 

 ,          ( ) →
       

                                 (46) 

 E
h




 
 −   ,            ( ) →                                                                                                (47) 

2 2 2 2
0 0

2 2

9 sin sin1 1 9 9 64
1

4 42 16
TM

    

  

     − 
 + + −              ,      ( ) →                   (48) 

2
T


  −

     

,   ( ) →                                                (49) 

Low frequency asymptotes 
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( )
( )

( )

2 2 2 2
0 1 22 2 2

E 0 2 2
0

sin 2
1 sin 1

21 sin

c c
M

  
  

 

   −    +  + +    +    

  , ( )0 →                          (50) 

where 
( ) ( )  ( )2 2 22

0

1 4 4

0

2 sin 2 2 2 44 3

8 8 sin

h
c

       



  + + − + −− +
 = +
 
 

  

         

( )2 2

0

2 2 2

0

1 sin

2 sin
c

  



+ 
=


 

         

E  −

     

,

                                

( )0 →
                                                                   

(51)

( ) ( ) ( )

2
2 *

2 2
0

2 2 2 22
0 02 4 *

4 4
0

1 ,
2sin

2 sin 4 sin
1 ,

2 2 sin

TM

 
  



      
   



  
+ −      

  − −  −  
+ − = 

    ,   ( )0 →     (52) 

( ) ( )

*

2 2 2 2
0 0 2 *

4 4
0

,

2 sin 4 sin
1 ,

2 sin

T

  

      
   



− 

   − −  −     − − =       

 ,   ( )0 →             (53) 

 

7. Numerical results 

In this section, we illustrate the asymptotic results obtained in the previous sections in order to 

examine the behavior of phase velocity, specific loss, penetration depth, amplitude coefficient 

factor and phase shift of the thermodynamic temperature due to rotation.  For computational work, 

we assume 00.071301, 0.01 =  =  and  = 0.0168  . Using the formulae given by (29), (34), 

(39) and (45) we compute the values of the quantities directly from Eq. (23) for various values of 

frequency,  and the rotational angle, . We also compute the numerical values of different 

characterizations for the case of absence of rotation by putting  = 0
 
. We have plotted the results 

in different Figures.   
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Fig. 1(a):  EV  Vs  -  0 = :  Thin solid line, 
6


 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 = : Thick  

                  solid line, 
2


 = :  Thin dashed line. 

 

 

   

                                                Fig. 1 (b ): 
EV  Vs  for 0 =      
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Fig. 1(c): EV  Vs  - 0 = :  Thin solid line, 
6


 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 = : Thick  

                   solid line, 
2


 = :  Thin dashed line. (All the curves for the case of 0  are merged   

             together.) 

 

Fig. 1(d) : TV  Vs  - 0 = :  Thin solid line, 
6


 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 = : Thick  

                   solid line, 
2


 = :  Thin dashed line.  (All the curves are merged together.) 
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  Fig. 1(e): SV  Vs - 0 = :  Thin solid line, 
6


 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 = : 

Thick                    solid line, 
2


 = :  Thin dashed line. 

 

 

 

Fig. 2(a): 

E

W

W

 
 
 

Vs  - 0 = :  Thin solid line, 
6


 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 = :  

                   Thick solid line, 
2


 = :  Thin dashed line. 
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    Fig. 2(b) : 

E

W

W

 
 
 

Vs   for 0 =
 

 

 

Fig. 2(c): 

E
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 
 
 

Vs   - 0 = :  Thin solid line, 
6
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 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 =

:                   Thick solid line, 
2


 = :  Thin dashed line. (All the curves are merged together.) 
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Fig. 2(d): 

T

W

W

 
 
 

Vs  - 0 = :  Thin solid line, 
6


 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 =

:                   Thick solid line, 
2


 = :  Thin dashed line. (All the curves are merged together.) 

 

 

                                                                                                                       

Fig. 3(a): 
E Vs  - 0 = :  Thin solid line, 

6


 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 = : Thick  

                  solid line, 
2


 = :  Thin dashed line. 
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                                                         Fig. 3(b): 
E  Vs  0 =

 

 

 

Fig. 3(c): 
E Vs  - 0 = :  Thin solid line, 
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 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 = : 

Thick                solid line, 
2
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 = :  Thin dashed line. (All the curves are merged together.) 
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Fig. 3(d): T Vs  - 0 = :  Thin solid line, 
6


 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 = : 

Thick                   solid line, 
2


 = :  Thin dashed line. (All the curves are merged together.) 

 

  

Fig. 4(a): TM Vs  - 0 = :  Thin solid line, 
6


 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 = : 

Thick                       solid line, 
2


 = :  Thin dashed line. (All the curves are merged together.) 

 

50 100 150 200 250 300 350

0.2

0.4

0.6

0.8

1.0

1.2

1.4

T

0.00 0.02 0.04 0.06 0.08 0.10

1

1

1

1

1

MT



20 

 

 
                                                    Fig. 4(b): TM Vs  0 =   

 

  

Fig. 4(c): TM Vs  - 0 = :  Thin solid line, 
6


 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 = : Thick           

                  solid line, 
2


 = :  Thin dashed line. (All the curves are merged together.) 
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 Fig. 4(d): T Vs  - 0 = :  Thin solid line, 
6


 = :  Thick dotted line, 

4


 = : Thick dashed line,

 3


 = :   

           Thick  solid line, 
2


 = :  Thin dashed line. (All the curves are merged together.) 

                                                                                               

         

         Summary and observations  

 
Harmonic plane waves propagating in a rotating elastic medium under two-temperature 

thermoelasticity theory are investigated.  Dispersion relation solutions of longitudinal as well as 

transverse plane waves are determined. The transverse wave is observed to be unaffected due to 

thermal field. High and low frequency asymptotics of different wave characterizations for 

longitudinal elastic (predominated) and thermal waves (predominated) are found out and detail 

analysis of the results highlighting the effects of rotation is presented with the help of different 

graphs.  The following important facts are observed: 

(1) There are elastic shear wave and predominantly elastic and thermal mode dilatational 

waves for all 0  .  All waves are dispersive in nature. 

(2) There exists a critical value of two-temperature parameter given by 
2 2

0

*
sin





=


and

 

this critical value is clearly effected due to rotation.  

50 100 150 200 250 300 350
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(3) Effects of rotation on shear wave and elastic dilatational wave is prominent for lower 

values of  .  But effects on thermal wave mode longitudinal wave is negligible. 

(4) Phase velocity decreases and the specific loss increases with the increase of rotational 

angle, .  The phase velocity of elastic mode wave shows a local minimum in absence of 

rotation but in presence rotation there is no such extreme value. 

(5) The penetration depth for elastic wave has a constant limiting value 

3

22 h


 as→  in 

presence of rotation and similar result is found in absence of rotation (see ref. (27)).  But 

in presence of rotation this profile shows two extreme values (one minimum and one 

maximum).  T   tends to the constant limiting value   as →  in all cases.     

(6) We note that in all cases TM b b ,
 
i.e. the thermodynamic temperature   exhibits a lesser 

magnitude as compared to the conductive temperature and it experiences a phase shift 

0T  ,
 
where 

0

lim 0T



→

=

  
and

  
lim .

2
T





→

= −

 
 

(7) The limiting values of all quantities when →  are exactly the same in all cases and 

therefore no effect of rotation is observed for higher values of frequency.  As 0→ , the 

limiting values of all quantities except 
EV are also found to be the same. 
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