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commonsense representation & inference about spacetime dynamics on the one hand, and pow-
erful low-level visual computing capabilities, e.g., pertaining to object detection and tracking on
the other.

Deep Semantics: (Systematically) “Integrating AI and Vision”
The development of domain-independent computational models of perceptual sensemaking —
e.g., encompassing capabilities such as visuospatial Q/A, spatio-temporal relational learning,
visuospatial abduction— with multimodal human behavioural stimuli such as RGB(D), video,
audio, eye-tracking requires the representational and inferential mediation of commonsense and
spatio-linguistically rooted abstractions of space, motion, actions, events and interaction. We
characterise Deep Semantics [12] within a declarative AI setting as:

! general methods for the processing and semantic interpretation of dynamic visuospatial im-
agery with an emphasis on the ability to abstract, learn, and reason with cognitively rooted
structured characterisations of commonsense knowledge about space and motion.

! the existence of declarative models –e.g., pertaining to space, space-time, motion, actions
& events, spatio-linguistic conceptual knowledge (e.g., Table 2)– and corresponding formali-
sation supporting (domain-neutral) reasoning capabilities (e.g., visual Q/A and learning, non-
monotonic visuospatial abduction)

Formal semantics and computational models of deep semantics manifest themselves in declara-
tive AI settings such as constraint logic programming, inductive logic programming, and answer
set programming. Naturally, a practical illustration of the intergated “AI and Vision” method
requires a tight but modular integration of the (declarative) commonsense spatio-temporal ab-
straction and reasoning with robust low-level visual computing foundations (primarily) driven
by state of the art visual computing techniques (e.g., for visual feature detection, tracking).

KEY CONTRIBUTIONS
This research is situated within the broader auspices of the scientific agenda of cognitive vi-
sion and perception, which addresses visual, visuospatial and visuo-locomotive perception and
interaction from the viewpoints of language, logic, spatial cognition and artificial intelligence
[12] (Sec 5). The key contribution of this paper is to develop a general and systematic declara-
tive visual sensemaking method capable of online abduction: realtime, incremental, commonsense
question-answering and belief maintenance over dynamic visuospatial imagery. Supported are
(1–3):

(1). Human-Centred Representation for Space and Motion

Declaratively modelled ontological characterisation of human-centric relational representations
that are semantically rooted to commonsense spatio-linguistic primitives pertaining to space and
motion as they occur in natural language [16, 53].

(2). Systematic High-level Abductive Reasoning

Driven by Answer Set Programming (ASP) [23], the ability to abductively compute common-
sense interpretations and explanations in a range of (a)typical everyday driving situations, e.g.,
concerning safety-critical decision-making; the declarative model of space and motion, in ad-
dition to supporting abductive reasoning about space and change, is also naturally amenable to
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high-level semantic interpretation (e.g., by question answering) for post-hoc analytical purposes
(e.g., as might be relevant in situations requiring diagnosis et al for litigation, insurance claims).

(3). Online Performance of Modularly Integrated Vision and Semantics

Online performance –in an “active vision” context– of the overall framework modularly integrat-
ing high-level commonsense reasoning component with state of the art low-level (deep learning
based) visual computing for practical application in real world settings (with autonomous driving
serving as a solid demonstration platform).

ORGANISATION OF THE PAPER.

The rest of the article is organised as follows:

• Section 2 presents the ontological and formal representational foundations of the devel-
oped visual sensemaking framework; main focus is on the commonsense representation
aspects pertaining to the modelling of space, space-time, motion, events, and other aspects
relevant to modelling and reasoning about spatio-temporal dynamics.

• Section 3 presents the overall visual sensemaking framework and its technical implemen-
tation with a central focus on the general answer set programming based method for online
abduction; we elaborate on the declarative model directly vis-a-vis the ASP implementa-
tion.

• Section 4 demonstrates & empirically evaluates the core online abduction component with
community established real-world datasets and benchmarks, namely: KITTIMOD [39],
MOT-17 [54], and MOT-20 [31].

• Section 5 discusses related works primarily from the viewpoints of knowledge represen-
tation, and visual computing as pursued in computer vision research.

• Section 6 concludes with a brief summary of our work, together with pointers to immediate
research questions for follow-up, as well as more broad-based directions that this work
aims to open up.

Appendices A–C. AppendixA provides annotations of select Answer Set Programming source
code relevant to the declarative model presented in Section 3. AppendixB presents additional
examples chosen from community benchmark datasets together with sample data; it also includes
an elaborated version of a running example used in the paper. AppendixC provide a succinct view
of (select) data corresponding to (select) scenes.

2. COMMONSENSE – SPACE – MOTION:
ONTOLOGICAL AND REPRESENTATIONAL ASPECTS

We present the ontological and formal representational foundations of the developed visual
sensemaking framework while focussing on the commonsense representational aspects pertain-
ing to the modelling of space, space-time, motion, events, and other aspects relevant to modelling
and reasoning about spatio-temporal dynamics. Towards this, Table 1 summarises the individual
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FIGURE 8: Sample Safety-Critical Episodes: (a). overtaking event in front of the car; (b). occlusion while
turning left; (c). abrupt lane change on the highway; (d). pedestrian suddenly appearing from between two parked
cars; and (e). (relatively) crowded and chaotic inner city traffic.

• VO235 the visual observation, consisting of the object detections, given by the bounding
box, the type and the confidence:

det(det_0, person, 99). det(det_1, bus, 99). det(det_2, traffic_light, 86).

det(det_3, traffic_light, 81). det(det_4, traffic_light, 78).

det(det_5, traffic_light, 59).

box2d(det_0, 1114, 450, 148, 270). box2d(det_1, 8, 305, 992, 333).

box2d(det_2, 656, 205, 21, 56). box2d(det_3, 179, 137, 42, 75).

box2d(det_4, 108, 89, 46, 86). box2d(det_5, 784, 202, 21, 44).

• P235 the predictions for each track, given by the predicted bounding box, the state in which
the track currently is, and the type of the tracked object:

trk(trk_3, traffic_light). trk_state(trk_3, active). trk(trk_7, traffic_light).

trk_state(trk_7, active). trk(trk_8, traffic_light). trk_state(trk_8, active).

trk(trk_12, bus). trk_state(trk_12, active). trk(trk_13, car).

trk_state(trk_13, active). trk(trk_15, person). trk_state(trk_15, active).

box2d(trk_3, 178, 136, 43, 73). box2d(trk_7, 105, 90, 49, 82).

box2d(trk_8, 655, 205, 21, 55). box2d(trk_12, 48, 294, 915, 350).
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halt(trk_13) assign(trk_15,det_0) assign(trk_12,det_1) assign(trk_8,det_2)

assign(trk_3,det_3) assign(trk_7,det_4)

The assignment actions are linked with high-level events for explaining the assignments, i.e., the
halted track trk 13 can be explained either by missing detections or by the track hiding behind
another track. In this case track trk 13 is hiding behind track trk 12, this can be abduced based
on possible events, which in this case is the hides behind event.

For the event hides behind\2 the predicted tracks have to be overlapping. This is ensured by
(spatial) preconditions of the event, given by the predicate poss\1:

poss(hides_behind(Trk1, Trk2)) :-

trk(Trk1, _), trk(Trk2, _),

position(overlapping_top, Trk1, Trk2),

not holds_at(visibility(Trk1), not_visible, curr_time),

not holds_at(visibility(Trk2), not_visible, curr_time).

In our example we can now abduce that the track trk 13 representing the car is ended, because
the car got hidden by the bus represented by track trk 12. In the formal representation of event
calculus this is represented by the predicate occurs at\2 as follows:

occurs_at(hides_behind(trk_13,trk_12),235)

At time point 268 the car reappears, after passing behind the bus. Due to the previously ab-
duced event hides behind\2, the visibility fluent for the track of the car trk 13 has now the value
not visible.

For the detection det 1 we can then abduce that track trk 13 unhides from behind track trk 12
based on the following event definition, stating that the event unhides f rom behind\2 is possible
when Trk1 is not visible and Trk2 is not not visible:

poss(unhides_from_behind(Trk1, Trk2)) :-

trk(Trk1, _), trk(Trk2, _),

holds_at(visibility(Trk1), not_visible, curr_time),

not holds_at(visibility(Trk2), not_visible, curr_time).

resume(trk_13,det_1) assign(trk_15,det_0) assign(trk_12,det_2) assign(trk_7,det_3)

assign(trk_8,det_4) assign(trk_3,det_5)

occurs_at(unhides_from_behind(trk_13,trk_12),268))

Similarly, when looking at a slightly more complex scene, like the one depicted in Fig. 10, we
get an event sequence describing the interactions happening in the scene:
...

occurs_at(hides_behind(trk_34,trk_16),283)

occurs_at(unhides_from_behind(trk_34,trk_16),293)

occurs_at(hides_behind(trk_37,trk_34),296)

occurs_at(unhides_from_behind(trk_37,trk_34),311)

...

20











motion (e.g., using particle filters or optical flow based prediction) are straightforward: i.e.,
improving tracking is not the aim of our research.

5. DISCUSSION AND RELATED WORK

Answer Set Programming is now widely used as a foundational declarative language and ro-
bust methodology for a range of (non-monotonic) knowledge representation and reasoning tasks
[23, 62, 37, 36, 38]. With ASP as a foundation, and driven by semantics, commonsense and
explainability [30, 29], this research aims to bridge the gap between high-level formalisms for
logical visual reasoning (e.g., by abduction) and low-level visual processing by tightly integrat-
ing semantic abstractions of space and change with their underlying numerical representations.
More broadly, this goal is pursued within the larger agenda of cognitive vision and perception
[12], which is an emerging line of research bringing together a novel & unique combination
of methodologies from Artificial Intelligence, Vision and Machine Learning, Cognitive Science
and Psychology, Visual Perception, and Spatial Cognition and Computation. Research in cog-
nitive vision and perception addresses visual, visuospatial and visuo-locomotive perception and
interaction from the viewpoints of language, logic, spatial cognition and artificial intelligence
[74, 67, 72, 70, 71]. In this broader context, the principal motivation and developmental goal of
this research follows a one-point agenda, namely:

to develop a systematic, general, and modular integration of (methods in) Computer
Vision and AI, particularly emphasising the integration of high-level knowledge rep-
resentation and reasoning techniques with low-level (i.e., quantitatively) based vi-
sual computing techniques (which in the present scientific status quo are primarily
driven by end-to-end, black-box deep learning pipelines).

The integration of Vision and AI addressed in our research is motivated by the need to realise
human-centred criteria pertinent to the design and implementation of high-level visual sense-
making technology, e.g., within autonomous driving systems where such criteria emanating from
standardisation and regulation considerations are of utmost priority. Although this paper selec-
tively focusses on the needs and challenges of active / online sensemaking in autonomous driving,
the generality and modularly of the developed framework ensures foundational applicability in
diverse applied contexts requiring perception, interaction and control; e.g., a case in point here
being the fact that the demonstrated application and evaluation also directly function with gen-
eral datasets such as MOT concerned with moving objects (Sec 4). Of at least equal importance
are the modularity and elaboration tolerance of the framework, enabling seamless integration
and experimention with advances in fast evolving computer vision methods, as well as experi-
menting with di↵erent forms of formal methods for reasoning about space, actions, and change
[10, 11] that could either be embedded directly within answer set programming, or possibly be
utilised independently as part of other declarative frameworks for knowledge representation and
reasoning.

Perception and Abduction: A KR Perspective. Within KR, the significance of high-level (ab-
ductive) explanations in a range of contexts is long established: planning & process recognition
[44, 43], vision & abduction [66], probabilistic abduction [19], reasoning about spatio-temporal
dynamics [11], reasoning about continuous spacetime change [56, 41] etc. Dubba et al. [32]
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