

Note on the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Note on the Riemann Hypothesis

Frank Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. In 2011, Solé and and Planat stated that the Riemann Hypothesis is true if and only if the inequality $\prod_{q \le q_n} \left(1 + \frac{1}{q}\right) > \frac{e^{\gamma}}{\zeta(2)} \times \log \theta(q_n)$ is satisfied for all primes $q_n > 3$, where $\theta(x)$ is the Chebyshev function, $\gamma \approx 0.57721$ is the Euler-Mascheroni constant and $\zeta(x)$ is the Riemann zeta function. Using this result, we create a new criterion for the Riemann Hypothesis. We prove the Riemann Hypothesis is true using this new criterion.

Keywords: Riemann Hypothesis, Prime numbers, Chebyshev function, Riemann zeta function 2000 MSC: 11M26, 11A41, 11A25

1. Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. In mathematics, the Chebyshev function $\theta(x)$ is given by

$$\theta(x) = \sum_{p \le x} \log p$$

with the sum extending over all prime numbers p that are less than or equal to x, where log is the natural logarithm. We denote the nth prime number as q_n . We know the following property for the Chebyshev function and the nth prime number:

Proposition 1.1. For $n \ge 2$ [1, Theorem 1.1]:

$$\frac{\theta(q_n)}{\log q_{n+1}} \ge n \times (1 - \frac{1}{\log n} + \frac{\log \log n}{4 \times \log^2 n}).$$

Proposition 1.2. *For* $n \ge 8602$ [2, *Theorem B* (1.11)]:

$$q_n \le n \times (\log n + \log \log n - 0.9385).$$

 ${\it Email address:} \verb| vega.frank@gmail.com| (Frank Vega)|$

In mathematics, $\Psi = n \times \prod_{q|n} \left(1 + \frac{1}{q}\right)$ is called the Dedekind Ψ function, where $q \mid n$ means the prime q divides n. Say Dedekind (q_n) holds provided

$$\prod_{q < q_n} \left(1 + \frac{1}{q} \right) > \frac{e^{\gamma}}{\zeta(2)} \times \log \theta(q_n).$$

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant and $\zeta(x)$ is the Riemann zeta function. The importance of this inequality is:

Proposition 1.3. Dedekind (q_n) holds for all prime numbers $q_n > 3$ if and only if the Riemann Hypothesis is true [3, Theorem 2], [4].

We define $H = \gamma - B$ such that $B \approx 0.2614972128$ is the Meissel-Mertens constant. We know the following formula:

Proposition 1.4. *We have that* [5, *Lemma 2.1 (1)]:*

$$\sum_{k=1}^{\infty} \left(\log(\frac{q_k}{q_k - 1}) - \frac{1}{q_k} \right) = \gamma - B = H.$$

In addition, we know this value of the Riemann zeta function:

Proposition 1.5. *It is known that:*

$$\zeta(2) = \prod_{k=1}^{\infty} \frac{q_k^2}{q_k^2 - 1} = \frac{\pi^2}{6}.$$

Putting all together yields a proof for the Riemann Hypothesis using the Chebyshev function.

2. What if the Riemann Hypothesis were false?

Theorem 2.1. *If the Riemann Hypothesis is false, then there are infinitely many prime numbers* q_n *for which* Dedekind(q_n) *does not hold.*

Proof. The Riemann Hypothesis is false, if there exists some natural number $x_0 \ge 5$ such that $g(x_0) > 1$ or equivalent $\log g(x_0) > 0$:

$$g(x) = \frac{e^{\gamma}}{\zeta(2)} \times \log \theta(x) \times \prod_{q \le x} \left(1 + \frac{1}{q}\right)^{-1}.$$

We know the bound [3, Theorem 2], [4]:

$$\log g(x) \ge \log f(x) - \frac{2}{x}$$

where f is introduced in the Nicolas paper [6, Theorem 3]:

$$f(x) = e^{\gamma} \times \log \theta(x) \times \prod_{q \le x} \left(1 - \frac{1}{q}\right).$$

When the Riemann Hypothesis is false, then there exists a real number $b < \frac{1}{2}$ for which there are infinitely many natural numbers x such that $\log f(x) = \Omega_+(x^{-b})$ [6, Theorem 3 (c)]. According to the Hardy and Littlewood definition, this would mean that

$$\exists k > 0, \forall y_0 \in \mathbb{N}, \exists y \in \mathbb{N} > y_0 \colon \log f(y) \ge k \times y^{-b}.$$

That inequality is equivalent to $\log f(y) \ge (k \times y^{-b} \times \sqrt{y}) \times \frac{1}{\sqrt{y}}$, but we note that

$$\lim_{y \to \infty} \left(k \times y^{-b} \times \sqrt{y} \right) = \infty$$

for every possible positive value of k when $b < \frac{1}{2}$. In this way, this implies that

$$\forall y_0 \in \mathbb{N}, \exists y \in \mathbb{N} > y_0 \colon \log f(y) \ge \frac{1}{\sqrt{y}}.$$

Hence, if the Riemann Hypothesis is false, then there are infinitely many natural numbers x such that $\log f(x) \ge \frac{1}{\sqrt{x}}$. Since $\frac{2}{x} = o(\frac{1}{\sqrt{x}})$, then it would be infinitely many natural numbers x_0 such that $\log g(x_0) > 0$. In addition, if $\log g(x_0) > 0$ for some natural number $x_0 \ge 5$, then $\log g(x_0) = \log g(q_n)$ where q_n is the greatest prime number such that $q_n \le x_0$. Actually,

$$\prod_{q \le x_0} \left(1 + \frac{1}{q} \right)^{-1} = \prod_{q \le q_0} \left(1 + \frac{1}{q} \right)^{-1}$$

and

$$\theta(x_0) = \theta(q_n)$$

according to the definition of the Chebyshev function.

3. A Key Theorem

Theorem 3.1.

$$\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - \log(1 + \frac{1}{q_k}) \right) = \log(\zeta(2)) - H.$$

Proof. We obtain that

$$\log(\zeta(2)) - H = \log(\prod_{k=1}^{\infty} \frac{q_k^2}{q_k^2 - 1}) - H$$

$$= \sum_{k=1}^{\infty} \left(\log(\frac{q_k^2}{(q_k^2 - 1)})\right) - H$$

$$= \sum_{k=1}^{\infty} \left(\log(\frac{q_k^2}{(q_k - 1) \times (q_k + 1)})\right) - H$$

$$= \sum_{k=1}^{\infty} \left(\log(\frac{q_k}{q_k - 1}) + \log(\frac{q_k}{q_k + 1})\right) - H$$

where

$$\begin{split} &= \sum_{k=1}^{\infty} \left(\log(\frac{q_k}{q_k - 1}) - \log(\frac{q_k + 1}{q_k}) \right) - H \\ &= \sum_{k=1}^{\infty} \left(\log(\frac{q_k}{q_k - 1}) - \log(1 + \frac{1}{q_k}) \right) - \sum_{k=1}^{\infty} \left(\log(\frac{q_k}{q_k - 1}) - \frac{1}{q_k} \right) \\ &= \sum_{k=1}^{\infty} \left(\log(\frac{q_k}{q_k - 1}) - \log(1 + \frac{1}{q_k}) - \log(\frac{q_k}{q_k - 1}) + \frac{1}{q_k} \right) \\ &= \sum_{k=1}^{\infty} \left(\frac{1}{q_k} - \log(1 + \frac{1}{q_k}) \right) \end{split}$$

and the proof is done.

4. A New Criterion

Theorem 4.1. Dedekind (q_n) holds if and only if the inequality

$$\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x: \ x > q_n\}}(q_k)) \times \log(1 + \frac{1}{q_k}) \right) > B + \log\log\theta(q_n)$$

is satisfied for the prime number q_n , where the set $S = \{x : x > q_n\}$ contains all the real numbers greater than q_n and χ_S is the characteristic function of the set S (This is the function defined by $\chi_S(x) = 1$ when $x \in S$ and $\chi_S(x) = 0$ otherwise).

Proof. When $\mathsf{Dedekind}(q_n)$ holds, we apply the logarithm to the both sides of the inequality:

$$\log(\zeta(2)) + \sum_{q \le q_n} \log(1 + \frac{1}{q}) > \gamma + \log\log\theta(q_n)$$
$$\log(\zeta(2)) - H + \sum_{q \le q_n} \log(1 + \frac{1}{q}) > B + \log\log\theta(q_n)$$
$$\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - \log(1 + \frac{1}{q_k})\right) + \sum_{q \le q_n} \log(1 + \frac{1}{q}) > B + \log\log\theta(q_n)$$

after of using the Theorem 3.1. Let's distribute the elements of the inequality to obtain that

$$\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x: \ x > q_n\}}(q_k)) \times \log(1 + \frac{1}{q_k}) \right) > B + \log\log\theta(q_n)$$

when $\mathsf{Dedekind}(q_n)$ holds. The same happens in the reverse implication.

5. The Main Insight

Theorem 5.1. The Riemann Hypothesis is true if the inequality

$$\theta(q_n)^{1+\frac{1}{q_n}} \ge \theta(q_{n+1})$$

is satisfied for all sufficiently large prime numbers q_n .

Proof. The inequality

$$\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x: \ x > q_n\}}(q_k)) \times \log(1 + \frac{1}{q_k}) \right) > B + \log\log\theta(q_n)$$

is satisfied when

$$\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x: \ x \ge q_n\}}(q_k)) \times \log(1 + \frac{1}{q_k}) \right) > B + \log\log\theta(q_n)$$

is also satisfied, where the set $S = \{x : x \ge q_n\}$ contains all the real numbers greater than or equal to q_n . In the inequality

$$\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x: \ x \ge q_n\}}(q_k)) \times \log(1 + \frac{1}{q_k}) \right) > B + \log\log\theta(q_n)$$

only change the values of

$$\log(1 + \frac{1}{q_n}) + \log\log\theta(q_n)$$

and

$$\log \log \theta(q_{n+1})$$

between the consecutive primes q_n and q_{n+1} . It is enough to show that

$$\log(1 + \frac{1}{q_n}) + \log\log\theta(q_n) \ge \log\log\theta(q_{n+1})$$

for all sufficiently large prime numbers q_n . Indeed, the inequality

$$\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x: \ x \ge q_n\}}(q_k)) \times \log(1 + \frac{1}{q_k}) \right) > B + \log\log\theta(q_n)$$

is the same as

$$\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x: \ x \ge q_{n+1}\}}(q_k)) \times \log(1 + \frac{1}{q_k}) \right)$$

$$> B + \log \log \theta(q_{n+1}) + \log(1 + \frac{1}{q_n}) + \log \log \theta(q_n) - \log \log \theta(q_{n+1})$$

where q_n and q_{n+1} are consecutive primes. From the previous inequality, we note that if

$$\log(1 + \frac{1}{q_n}) + \log\log\theta(q_n) - \log\log\theta(q_{n+1}) \ge 0$$

is satisfied, then

$$\sum_{k=1}^{\infty} \left(\frac{1}{q_k} - (\chi_{\{x: \ x \ge q_{n+1}\}}(q_k)) \times \log(1 + \frac{1}{q_k}) \right) > B + \log\log\theta(q_{n+1})$$

is also satisfied which means that $\mathsf{Dedekind}(q_{n+1})$ holds according to the Theorem 4.1. Therefore, if the inequality

$$\log(1 + \frac{1}{q_n}) + \log\log\theta(q_n) - \log\log\theta(q_{n+1}) \ge 0$$

is always satisfied starting for some natural number n_0 , (i.e. it is always satisfied for $n \ge n_0$), then we obtain that $\mathsf{Dedekind}(q_{n+1})$ always holds for $n \ge n_0$. However, this contradicts the fact that if the Riemann Hypothesis is false, then there are infinitely many prime numbers q_{n+1} for which $\mathsf{Dedekind}(q_{n+1})$ does not hold when $n \ge n_0$. We obtain this contradiction as a consequence of the Theorem 2.1. By contraposition (or reductio ad absurdum), we have that the Riemann Hypothesis is true when

$$\log(1 + \frac{1}{q_n}) + \log\log\theta(q_n) - \log\log\theta(q_{n+1}) \ge 0$$

is always satisfied starting for some natural number n_0 . This last statement would be the same as the result that

$$\log(1 + \frac{1}{q_n}) + \log\log\theta(q_n) \ge \log\log\theta(q_{n+1})$$

is satisfied for all sufficiently large prime numbers q_n . This is

$$\log\left((1+\frac{1}{q_n})\times\log\theta(q_n)\right)\geq\log\log\theta(q_{n+1}).$$

That is equivalent to

$$\log \log \theta(q_n)^{1 + \frac{1}{q_n}} \ge \log \log \theta(q_{n+1}).$$

To sum up, the Riemann Hypothesis is true when

$$\theta(q_n)^{1+\frac{1}{q_n}} \ge \theta(q_{n+1})$$

is satisfied for all sufficiently large prime numbers q_n .

6. The Main Theorem

Theorem 6.1. The Riemann Hypothesis is true.

Proof. The Riemann Hypothesis is true when

$$\theta(q_n)^{1+\frac{1}{q_n}} \ge \theta(q_{n+1})$$

is satisfied for all sufficiently large prime numbers q_n because of the Theorem 5.1. That is the same as

$$\theta(q_n)^{1+\frac{1}{q_n}} \ge \theta(q_n) + \log(q_{n+1})$$

$$\theta(q_n)^{\frac{1}{q_n}} \ge 1 + \frac{\log(q_{n+1})}{\theta(q_n)}$$

after dividing the both sides of the inequality by $\theta(q_n)$. We would only need to prove that

$$1 + \frac{\log \theta(q_n)}{q_n} \ge 1 + \frac{1}{n \times (1 - \frac{1}{\log n} + \frac{\log \log n}{4 \times \log^2 n})}$$

because of

$$\frac{\theta(q_n)}{\log q_{n+1}} \ge n \times \left(1 - \frac{1}{\log n} + \frac{\log \log n}{4 \times \log^2 n}\right)$$
$$\theta(q_n)^{\frac{1}{q_n}} = e^{\frac{\log \theta(q_n)}{q_n}} \ge 1 + \frac{\log \theta(q_n)}{q_n}.$$

That is equivalent to

$$\left(n \times (1 - \frac{1}{\log n} + \frac{\log \log n}{4 \times \log^2 n})\right) \times \log \theta(q_n) \ge q_n.$$

Therefore,

$$\left(n \times (1 - \frac{1}{\log n} + \frac{\log \log n}{4 \times \log^2 n})\right) \times \log \theta(q_n) \ge n \times (\log n + \log \log n - 0.9385)$$

which is

$$\left(1 - \frac{1}{\log n} + \frac{\log\log n}{4 \times \log^2 n}\right) \times \log\theta(q_n) + 0.9385 \ge \log n + \log\log n$$

$$\theta(q_n)^{1 - \frac{1}{\log n} + \frac{\log\log n}{4 \times \log^2 n}} \times e^{0.9385} \ge n \times \log n$$

$$e^{0.9385} \ge \frac{n \times \log n}{\theta(q_n)^{1 - \frac{1}{\log n} + \frac{\log\log n}{4 \times \log^2 n}}}.$$

However, we know that

$$\overline{\lim_{n \to \infty}} \frac{n \times \log n}{\theta(q_n)^{1 - \frac{1}{\log n} + \frac{\log \log n}{4 \times \log^2 n}}} = \lim_{n \to \infty} \frac{n \times \log n}{\theta(q_n)^{1 - \frac{1}{\log n} + \frac{\log \log n}{4 \times \log^2 n}}} = 1$$

since

$$\lim_{n \to \infty} \left(1 - \frac{1}{\log n} + \frac{\log \log n}{4 \times \log^2 n} \right) = 1$$

$$\theta(q_n) \sim q_n, \quad (n \to \infty)$$

$$q_n \sim n \times \log n, \quad (n \to \infty).$$

Certainly, a sequence of real numbers (x_n) in $[-\infty, \infty]$ converges if and only if

$$\underline{\lim}_{n\to\infty} x_n = \overline{\lim}_{n\to\infty} x_n$$

in which case $\lim_{n\to\infty} x_n$ is equal to their common value, where $-\infty$ or ∞ is not considered as convergence. By definition, the limit superior of a sequence of real numbers x_n is the smallest

real number b such that, for any positive real number ε , there exists a natural number m such that $x_n < b + \varepsilon$ for all n > m. Hence, for any positive real number ε , there exists a natural number m such that

$$\frac{n \times \log n}{\theta(q_n)^{1 - \frac{1}{\log n} + \frac{\log \log n}{4 \times \log^2 n}}} < 1 + \varepsilon$$

for all n > m, because of the definition of limit superior. Moreover, we can see that $e^{0.9385} > 2.5561$. Consequently, it is enough to take any positive real number $\varepsilon \le 1.5561$. Putting all together yields the proof of the Riemann Hypothesis.

Acknowledgments

The author would like to thank Patrick Solé and Thomas Schwabhäuser for helpful comments and his mother and friends Sonia and Arelis for their support.

References

- [1] A. Ghosh, An asymptotic formula for the Chebyshev theta function, Notes on Number Theory and Discrete Mathematics 25 (4) (2019) 1–7. doi:10.7546/nntdm.2019.25.4.1-7.
- [2] J.-P. Massias, G. Robin, Bornes effectives pour certaines fonctions concernant les nombres premiers, Journal de Théorie des Nombres de Bordeaux 8 (1) (1996) 215–242.
- [3] P. Solé, M. Planat, Extreme values of the Dedekind ψ function, arXiv preprint arXiv:1011.1825, (2010).
- [4] P. Solé, M. Planat, Extreme values of the Dedekind ψ function, Journal of Combinatorics and Number Theory 3 (1) (2011) 33–38.
- [5] Y. Choie, N. Lichiardopol, P. Moree, P. Solé, On Robin's criterion for the Riemann hypothesis, Journal de Théorie des Nombres de Bordeaux 19 (2) (2007) 357–372. doi:10.5802/jtnb.591.
- [6] J.-L. Nicolas, Petites valeurs de la fonction d'Euler, Journal of number theory 17 (3) (1983) 375–388. doi:10.1016/0022-314X(83)90055-0.