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Abstract. Cross-modal hashing has emerged as a prominent approach
for large-scale multimedia information retrieval, offering advantages in
computational speed and storage efficiency over traditional methods.
However, unsupervised cross-modal hashing methods still face challenges
in the lack of practical semantic labeling guidance and handling of cross-
modal heterogeneity. In this paper, we propose a new unsupervised cross-
modal hashing method called Unsupervised Joint-Semantics Autoen-
coder Hashing(UJSAH) for multimedia retrieval. First, we introduce a
joint-semantics similarity matrix that effectively preserves the seman-
tic information in multimodal data. This matrix integrates the original
neighborhood structure information of the data, allowing it to better
capture the associations between different modalities. This ensures that
the similarity matrix can accurately mine the underlying relationships
within the data. Second, we design a dual prediction network-based au-
toencoder, which implements the interconversion of semantic informa-
tion from different modalities and ensures that the generated binary
hash codes maintain the semantic information of different modalities.
Experimental results on several classical datasets show a significant im-
provement in the performance of UJSAH in multimodal retrieval tasks
relative to existing methods. The experimental code is published at
https://github.com/YunfeiChenMY/UJSAH.

Keywords: Cross-modal Hashing · Multimedia Retrieval · Joint-Semantics
· Dual Prediction.

1 Introduction

With the continuous advancements in science and technology, network data size
and variety are rapidly expanding. Traditional information retrieval methods
that use original data for computation suffer from high computational complex-
ity. Therefore, achieving high retrieval efficiency while requiring minimal storage
space has become a crucial research direction. Hash learning has gained sig-
nificant attention in large-scale multimodal data retrieval due to its efficient
computation speed and low storage requirements [19]. Hash learning involves a
? Corresponding authors.
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hash function to map high-dimensional raw data into a low-dimensional binary
hash code. The mainstream hashing methods primarily rely on classical hash
functions based on features. At the same time, some recent works [21] have in-
tegrated semantic information extraction, hash function training, and hash code
generation into the same framework.

Given the inherent heterogeneity among different modal data, directly cal-
culating their similarity becomes difficult. Cross-modal hashing methods aim
to map the original data from different modalities into a shared binary space,
which enables the similarity calculations between different modalities using the
Hamming distance. The data of real application scenarios are mostly unla-
beled, severely hindering supervised hashing development. The unsupervised
deep cross-modal hashing method utilizes deep networks’ powerful feature ex-
traction capability to fully extract deep semantic features from the raw data,
enabling the generation of binary hash codes rich in semantic information. It [4]
mainly integrates features of different modalities’ raw data to construct simi-
larity matrices and employs deep neural networks to construct hash functions
for the generation of hash codes. Although unsupervised deep cross-modal hash-
ing has gone well, there is still significant room for progress in constructing the
similarity matrix of raw data and cross-modal feature heterogeneity. Traditional
autoencoder hashing methods only consider the decoding and reconstruction of
intra-modal semantic information and lack the mining of cross-modal semantic
information.

We propose a new unsupervised multimedia hashing method called Unsu-
pervised Joint-Semantics Autoencoder Hashing to address the aforementioned
challenge. First, the UJSAH method design joint-semantics similarity matrices
to comprehensively explore similarity relationships between multimodal data.
Second, the UJSAH method uses an encoding module to generate hash codes
for a given data, a decoding module to reconstruct the raw data to ensure that
the resulting hash codes preserve the complete semantic information contained
in the raw data, and a dual prediction module is designed in the autoencoder
that explores the deep correlation relationships between different modal data.
The core work of UJSAH is as follows:

1. The joint-semantic similarity matrix is constructed to explore multi-modal
similarity relations and improve the hash function training guidance. The
similarity matrix is constructed considering the similarity within each modal-
ity and the similarity between different modalities.

2. An autoencoder established on a dual prediction network is designed to
generate hash codes. The method employs an autoencoder to ensure that the
resulting hash codes preserve the complete semantic information contained
in the raw data and uses a dual prediction network to achieve the exploration
of semantic association relationships between multi-modal data.

3. Comprehensive experiments conducted on the MIRFlickr and NUS-WIDE
datasets verify that the UJSAH method significantly exceeds the mainstream
baseline methods.
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2 Related Work

Current hashing can be broadly categorized into two categories: supervised hash-
ing and unsupervised hashing.

2.1 Supervised Hashing

In supervised hashing, the semantic information present in the labels is uti-
lized to guide the learning of semantic information in the hash codes. SASH [14]
adaptively learns the similarity matrix and saves the association information in
the labels to the data features to extract the label relevance for optimizing the
previously mentioned matrix. [25] proposes incorporating probabilistic code bal-
ance constraints into deep supervised hashing, which enforces a discrete uniform
distribution for each hash code. To guarantee that the binary hash codes gener-
ated by the model align with the semantic information classification think in the
original data, DSDH [9] proposes a deeply supervised discrete hashing algorithm.
Literature [17] presents an end-to-end model that effectively extracts key features
and generates hash codes with precise semantic information. DPN [3] applies dif-
ferentiable bit hinge-like losses to the network’s output channels, ensuring their
values deviate from zero. SHDCH [22] accepts hash codes by explicitly exploring
hierarchical tags. DSH [11] introduces a novel approach to deep supervised hash-
ing, aiming to retain compact hash codes that maintain similarity for large-scale
image data.

Although supervised hashing methods have made significant progress in in-
formation retrieval, most data is unlabeled in real-world scenarios. In contrast,
unsupervised hashing methods are more suitable for handling real-world applica-
tion scenario data and reduce the expensive cost of the manual labeling process
due to its property of not relying on labeled information.

2.2 Unsupervised Hashing

Unsupervised hashing fully uses the semantic information between the raw data
to guarantee its maintenance in the binary hash code. To address the issue of
ignoring neighboring instances and label granularity, DCH-SCR [12] digs deeper
into the semantic similarity information within multimedia data. CAGAN [10]
proposes an adaptive attention network model to retrieve massive multimodal
data efficiently. In order to protect the privacy and security of data, [23] proposes
a data-centric multimedia hash learning approach. To efficiently retrieve cross-
modal remote sensing images, DACH [5] uses generative adversarial network
hashing to extract fine-grained feature information in remote sensing images.
To alleviate the limitations in similarity supervision and optimization strategies,
DAEH [15] uses discriminative similarity matrix and adaptive self-updating op-
timization strategies to generate hash codes and train hash functions.

Existing cross-modal hash retrieval methods have significantly progressed
around data feature extraction and cross-modal association mining. However,
there is still much room for improvement in dealing with cross-modal hetero-
geneity and deep data feature association extraction.



4 Y.F Chen et al.

Fig. 1. The basic framework of the Unsupervised Joint-Semantics Autoencoder Hash-
ing.

3 The Proposed Method

This section describes UJSAH method, including notations, architecture, objec-
tive function, and extensions. The framework consists of an encoding network, a
dual prediction network, and a decoding network. The encoding network main-
tains consistency in multimedia information, the dual prediction network focuses
on reconstructing the different modal data, and the decoding network combines
the original data with the generated hash codes.

3.1 Notations

This paper uses bold uppercase and lowercase letters to represent matrices and
vectors. Given a dataset X = {X1, ...,Xm}|Mm=1 of M modalities, where Xm =
{x1, ..., xn} ∈ Rdm×n, dm is the dimensionality of data modality X, n represents
the size of the dataset. We use two modalities, image and text, to verify the
effectiveness of the proposed method, and we set X = {Xv,Xt}, where Xv and
Xt denote the image and text feature matrices. The proposed UJSAH method is
to generate compact hash code B ∈ {−1, 1}k×n, where k represents the length
of the hash code.

3.2 Architecture

As shown in Fig.1, the proposed method UJSAH is an end-to-end framework
with three main components, i.e., Encoding Network, Decoding Network, and
Prediction Network, to process image and text data.
Similarity Construction

Efficient extraction of the underlying neighborhood structure and maintain-
ing consistent hash code relationships with the original data are crucial in un-
supervised cross-modal retrieval tasks. We employ cosine similarity to estimate
the similarity between different data to achieve this. In this paper, we adopt the
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idea of similarity cross-modal computation and combine the fusion computation
of different modal data with improving the deep mining of the original data sim-
ilarity. To fully explore the semantic relationships in the raw data, we normalize
the raw data information of all modalities and integrate them, then calculate
the similarity between the raw data.

We can compute the cosine similarity matrices Sv = c(X̃v, X̃v) and St =
c(X̃t, X̃t) to represent the semantic association information for the images and
texts. We first integrate Sv and St summed by weights as follows:

S̃ = µSv + (1− µ)St, s.t.µ ∈ [0, 1]. (1)

Next, we consider S̃ as a similarity relation between multimodal instances.
The unified characterization of multimodal semantic relations can be achieved
by computing SvSt

> to dig deeply into the semantic associations between dif-
ferent modal data to achieve a comprehensive representation of the associative
relations between Sv and St. We propose a joint-semantics similarity matrix
S = J(Sv,St) ∈ [−1,+1]n×n to construct the semantic similarity between input
instances Xv and Xt. To introduce the hybrid function J , we finally define the
joint-semantics similarity matrix S as follows:

S = J(Sv,St) = (1− η)S̃ + η
SvSt

>

n
, (2)

where η is the trade-off parameter that regulates the similarity description.
Encoding Network:

Hash retrieval techniques mainly map the high-dimensional original feature
into a low-dimensional information space while effectively preserving the orig-
inal data’s semantic information and semantic relationships. In the encoding
stage, we use Image Encoder to transform image data Xv ∈ Rdv×ε into feature
Zv ∈ Rdev×ε denote the dev−dimensional image feature vector with ε instances
and further input hash layer to generate binary hash code Bv ∈ {−1, 1}k×ε.
Text Encoder extracts feature Zt ∈ Rdet×ε represents the det−dimensional text
feature vector with ε instances from the original text data Xt ∈ Rdt×ε and gener-
ates binary hash code Bt ∈ {−1, 1}k×ε. The function of developing binary hash
code is as follows:

Zm = f(Xm; θm),Bm = sign(Zm), (3)

where θv, θt denotes the parameter weights of the corresponding neural network.
Dual Prediction Network:

In the dual prediction stage, since different modalities of the same data have
similar semantic information, we use the Image Prediction Network to convert
the text information Zt into image information Z̄v. The Text Prediction Network
extracts the information in image feature Zv to generate the corresponding text
feature Z̄t. The dual prediction network can explore the semantic association of
different modal information of the data. The process of dual prediction is defined
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as follows:

Z̄v = f(Zt; θpv), Z̄
t = f(Zv; θpt), (4)

where θpv, θpt denote the parameter weights of the corresponding network.
Decoding Network:

In the decoding stage, we use the potential features Z̄v which are generated
by the dual prediction network as the input of the decoding network to gener-
ate the original data instances X̄v, and input Z̄t to generate X̄t to achieve the
decoding of different modalities’ data, ensuring that the potential features Z̄m

generated by the dual prediction network contain the comprehensive semantic
information in the original data. Moreover, construct the similarity matrix be-
tween the original data instances to constrain the validity of the data features
generated by the dual prediction network.

X̄t = G(Z̄t) = f(Z̄t; θdt), X̄
v = G(Z̄v) = f(Z̄v; θdv), (5)

where θdv and θdt denote the parameter weights of the corresponding networks.

3.3 Objective Function

To guarantee the quality of the resulting hash codes, we fully consider that the
generated hash codes Bv and Bt maintain a similar relationship intra-modal
and inter-modal of the original instances to improve the performance of retrieval
further. Ultimately, the hash code generation loss Lh is defined as follows:

min
θv,θt
Lh = α ‖ S−BvBt> ‖2F +β ‖ S−BvBv> ‖2F

+β ‖ S−BtBt> ‖2F +γ ‖ Bv −Bt ‖2F ,
(6)

where θv, θt are the parameters of encoding network, and α, β, γ are the weight-
ing factors. In order to ensure that the predicted generated data instances X̄m

strictly maintain the similarity relationship between the raw data, the objective
function is defined as follows:

min
θdv,θdt

Lpre = δ
∑

m∈{v,t}

‖ X̄m −Xm ‖2F , (7)

where δ is the weighting factor. The definition of the final objective function is
given founded on the above several modular loss functions as follows:

min
θm
L = Lh + Lpre

= α ‖ S−BvBt> ‖2F +β
∑

m∈{v,t}

‖ S−BmBm> ‖2F

+γ ‖ Bv −Bt ‖2F +δ
∑

m∈{v,t}

‖ X̄m −Xm ‖2F ,

(8)

where θm ∈ {θv, θt, θpv, θpt, θdv, θdt} denote the parameter weights of network.
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3.4 Extensions

More modalities: The UJSAH method can accomplish the task of multimodal
scenarios, and when there are multiple modalities, a new network model can be
added for each modality with appropriate modifications to the objection function
Eq.9 is shown below:

min
θm
L = Lh + Lpre

= α
∑

m1,m2∈G
‖ S−Bm1Bm2> ‖2F +β

∑
m∈G

‖ S−BmBm> ‖2F

+γ
∑

m1,m2∈G
‖ Bm1 −Bm2 ‖2F +δ

∑
m∈G

‖ X̄m −Xm ‖2F .

s.t.G = {1, ...,M},m1 6= m2, θm ∈ {θ1, ..., θM, θp1, ..., θpM, θd1, ..., θdM}.

(9)

Out-of-Sample: After the modal is fully trained, we can employ the trained
model to develop binary hash codes for any sample of a new query. In detail,
give a query data x = Xm ∈ Rdm×1, we can obtain the hash code as follows:

b = sign(f(x; θm)), s.t.m ∈ {1, ...,M}. (10)

3.5 Computational Complexity Analysis

This section examines the computational complexity of the UJSAH method, as
shown in Algorithm 1. During the experiments, the primary time cost lies in
Eq.(8). In each iteration of the model training, we calculate the function Eq.(8),
which has a time complexity of O(n/nb(n

2
bdi + n2bdt)) = O(n(nbdi + nbdt)).

Generally, the computational complexity of the algorithm for each iteration is
O((n(nbdi + nbdt))t), where nb, di, dt, k, t� n and t means the number of itera-
tions required for the model training. This time complexity can be simplified to
O(n), linearly correlated to the dataset size.

4 Experiments

To validate the usefulness of our UJSAH method, we have executed comprehen-
sive experiments on MIRFlickr [7] and NUS-WIDE [1] datasets.
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Algorithm 1 Unsupervised Joint-Semantics Autoencoder Hashing
Input: The training data: {Xv,Xt},max training epoch E min-batch size: ε, hash code
length: c, balance parameters: α, β, γ, δ.
Output: Parameters of the network: θv, θt.
Procedure:
Random initialization of the neural network parameters θm;
Extraction of image and text features from the dataset and construct similarity matrix;
Repeat:
1: Select ε image-text pairs from the dataset in turn for training;
2: Construct a similarity matrix S for the selected data according to Eq.2;
3: Compute Zv = f(Xv; θv),Zt = f(Xt; θt) for samples by forward-propagation;
4: Generate binary hash codes
5: Compute Bv,Bt, Z̄v, Z̄t, X̄v, X̄t according to Eq.3, and Eq.4, Eq.5;
6: Calculate the loss L with the Eq.8;
7: Update the network parameter θv, θt, θpv, θpt, θdv, θdt by using backpropagation;

Until convergent.
Return: θv, θt.

4.1 Datasets

MIRFlickr [7] contains 20,015 instances of image and text pairs and its semantic
information can be classified into 24 label classes. The dataset is split into 18015
training data pairs and 2000 test data pairs, and we utilize all the available data
for our experiments. NUS-WIDE [1] contains 270k image and text instance
pairs, and this experiment selects 186,577 instance pairs from 10 of these labeled
categories and 1867 image and text pairs as queries.

4.2 Baselines and Evaluation Metric

In our experiments, we experimentally analyze the proposed UJSAH method
with advanced unsupervised cross-modal hash retrieval approaches, including
CVH [8], IMH [16], LCMH [27], CMFH [2], LSSH [26], DBRC [6], RFDH [20],
DJRH [18], AGCH [24], and DUCH [13]. All of these methods are evaluated
for cross-modal retrieval, which includes retrieval of textual data by visual im-
age information (Image-to-Text) and retrieval of visual image data by textual
data (Text-to-Image). The evaluation metrics employed to estimate the retrieval
accuracy of our UJSAH method and the baselines are mean average precision
(mAP) and top-K accuracy. In our experiments, we set K = 50 as the value for
top-K accuracy.

4.3 Implementation Detail

For the proposed UJSAH method, the parameters α, β, γ, and δ are used to
balance the weights of different data items. In our experiments, when we set
{α = 0.08, β = 18, γ = 200, δ = 0.12}, {α = 1, β = 5, γ = 200, δ = 1.2} for
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Table 1. The mAP results for all methods on two datasets.

Method
I→ T T→ I

MIRFlickr-25K NUS-WIDE MIRFlickr-25K NUS-WIDE
16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits 16bits 32bits 64bits 128bits

CVH 0.606 0.599 0.596 0.598 0.372 0.362 0.406 0.390 0.591 0.583 0.576 0.576 0.401 0.384 0.442 0.432
IMH 0.612 0.601 0.592 0.579 0.470 0.473 0.476 0.459 0.603 0.595 0.589 0.580 0.478 0.483 0.472 0.462
LCMH 0.559 0.569 0.585 0.593 0.354 0.361 0.389 0.383 0.561 0.569 0.582 0.582 0.376 0.387 0.408 0.419
CMFH 0.621 0.624 0.625 0.627 0.455 0.459 0.465 0.467 0.642 0.662 0.676 0.685 0.529 0.577 0.614 0.645
LSSH 0.584 0.599 0.602 0.614 0.481 0.489 0.507 0.507 0.637 0.659 0.659 0.672 0.577 0.617 0.642 0.663
DBRC 0.617 0.619 0.620 0.621 0.424 0.459 0.447 0.447 0.618 0.626 0.626 0.628 0.455 0.459 0.468 0.473
RFDH 0.632 0.636 0.641 0.652 0.488 0.492 0.494 0.508 0.681 0.693 0.698 0.702 0.612 0.641 0.658 0.680
UDCMH 0.689 0.698 0.714 0.717 0.511 0.519 0.524 0.558 0.692 0.704 0.718 0.733 0.637 0.653 0.695 0.716
DJSRH 0.810 0.843 0.862 0.876 0.724 0.773 0.798 0.817 0.786 0.822 0.835 0.847 0.712 0.744 0.771 0.789
AGCH 0.865 0.887 0.892 0.912 0.809 0.830 0.831 0.852 0.829 0.849 0.852 0.880 0.769 0.780 0.798 0.802
DUCH 0.850 0.863 0.873 0.893 0.753 0.775 0.814 0.827 0.826 0.855 0.864 0.877 0.726 0.758 0.781 0.795
UJSAH 0.884 0.913 0.927 0.936 0.812 0.835 0.858 0.867 0.853 0.879 0.881 0.893 0.765 0.790 0.803 0.813

MIRFlickr and NUS-WIDE datasets respectively. The network architecture is
designed as follows: The image encoder (dv → 4096 → relu → k → tanh), the
text encoder (dt → 2048 → relu → k → tanh), the dual prediction network
(k → 1024 → relu → k → tanh), the image decoder (k → 4096 → relu →
4096 → relu → dv → relu), the text decoder (k → 2048 → relu → 2048 →
relu → dt → relu). We conducted all experiments with the same experimental
setting to ensure validity and accuracy.

4.4 Retrieval Accuracy Comparison

In this subsection, Table 1 manifests the mAP scores of our UJSAH compared
to baselines in the "Image-to-Text (I→T)" and "Text-to-Image (T→I)" retrieval
studies, with hash code lengths ranging from 16 to 128 bits. By analyzing Table
1, we can obtain the following conclusions:

1) Our UJSAH method reaches a satisfactory result compared to baselines
with various hash code lengths and verifies the validity of the method. In partic-
ular, on the I→T task, the mean mAP scores of the proposed UJSAH are 2.9%
and 1.5% higher compared to the AGCH in the MIRFlickr and NUS-WIDE
datasets, respectively. On the T→I task, the mean mAP scores of the proposed
UJSAH are 2.3% and 1.1% higher compared to the second highest baseline in
the MIRFlickr and NUS-WIDE datasets. We propose that UJSAH outperforms
baseline methods in all datasets in the cross-modal retrieval.

2) Data analysis indicates that the performance of all baseline methods shows
significant improvement as the hash code length increases. Longer hash codes
have the potential to capture and represent richer semantic information. How-
ever, it is essential to note that some baseline methods may experience a degra-
dation in retrieval performance as the hash code length increases. This can be
attributed to adding redundant information and introducing potential noise in
more extended hash codes.

The top-K precision curves for a hash code length of 128 bits on the two
datasets are depicted in Fig.2. Experimental results show that the UJSAH
method outperforms the baseline hashing method at various return numbers.
The experimental analysis further demonstrates the effectiveness and excellence
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Fig. 2. The top-K precision cures of UJSAH with 128-bit on two datasets.

of UJSAH method in the field of unsupervised large-scale multimedia informa-
tion retrieval.

4.5 Parameter Sensitivity Analysis:

Fig.3 shows the sensitivity analysis of parameters α, β, γ, and δ set from 1e−5

to 1e4, and parameters µ and η set from 0.1 to 1.0. 1) From Fig.3 (a) and (b),
it can be seen that parameter a is set from 0.01 to 100, and β can achieve good
results regardless of the value of the model. 2) From the analysis of Fig.3 (c)
and (d), we can have the conclusion that the parameter γ is less than 1e4, and
parameter δ is set at any value, the model effect is very stable, and the retrieval
results are very satisfactory. 3) From the analysis of Fig.3 (e) and (f), it can be
concluded that the I2T of the model is greater than 0.9 and T2I is greater than
0.75 for any value of parameters µ, η. The comprehensive performance of the
UJSAH method is stable and not sensitive to the changes of parameters µ, η.

4.6 Ablation Experiments

To assess the effectiveness of each component and confirm their usefulness, we
conduct ablation experiments by designing various variants for each component.

UJSAH -1: We modify the similarity matrix S as S = µSv + (1−µ)St, using
the traditional similarity matrix fusion as semantic constraint information, and
have verified the validity of the joint-semantics similarity matrix.

UJSAH -2: To verify the effectiveness of our designed dual prediction autoen-
coder, we modify the input (Z̄m) of the decoding module in UJSAH framework
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Fig. 3. The effects of the parameters with 128-bit on MIRFlickr-25K.

Table 2. The ablation experiments for different variants of UJSAH on MIRFlickr-25K.

Method I→ T T→ I
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

UJSAH 0.884 0.913 0.927 0.936 0.853 0.879 0.881 0.893
UJSAH-1 0.763 0.880 0.909 0.920 0.785 0.842 0.865 0.881
UJSAH-2 0.695 0.844 0.922 0.934 0.690 0.798 0.875 0.886

to input (Zm) in the traditional way to experiment the importance of dual pre-
diction network.

As the analysis in Table 2 can be concluded, the joint-semantics similarity
matrix and dual prediction autoencoder in the proposed UJSAH model can
effectively improve the retrieval accuracy.

5 Conclusion

In this paper, we present a Unsupervised Joint-Semantics Autoencoder Hash-
ingmethod for multimedia retrieval. The generated hash codes are guaranteed
to retain more information about the similarity of the raw data by autoencoder.
The design of the joint-semantics similarity matrix achieves efficient mining of
multimedia data similarity matrix by using a mixture of similarity matrix within
each modality and the cross-modal similarity matrix construction proposed in
this paper. An autoencoder established on a dual prediction network is pro-
posed to realize the association of semantic information of cross-modal data by
converting hash codes of different modal data to each other. Finally, we exe-
cute extensive experiments on the widely used datasets to prove the significance
and sophistication of the UJSAH method. In future research, we plan to study
fine-grained correlations, capture more complex relationships between different
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modalities in multimodal data, and extend the proposed architecture and simi-
larity relation mining to shallow hash models.
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