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Abstract. Traffic parameters of modern telecommunication networks change 

widely and depend on a large number of network settings, protocol characteristics 

and user experience. In last investigations it have been shown that the network 

traffic of modern networks is possessed of the property of self-similarity. And this 

requires finding adequate traffic simulation methods and download processes in 
modern telecommunications networks. Models of self-similar traffic and the 

process of loading telecommunication networks are based on the methods of 

fractional Brownian motion (FBM) simulation. The self-similarity of the fractional 

Brownian motion can be described by the Hurst index. In this article the methods 

of estimating the Hurst index and the methods of statistical modeling of fractional 

Brownian motion are investigated. The case of modeling with the given accuracy 

and reliability of fractional Brownian motion with respect of  the output of a linear 

system is considered.   
 

 

Keywords:Hurst index, self-similar traffic, fractional Brownian motion, 

Gaussian process. 

 

1. Introduction 

Due to the rapid development of communications and telecommunications and 

the emergence of new types of services, the volume of reporting information has 
increased sharply. Classical distributions are not always suitable for describing 

currently existing flows in modern networks. Therefore, new types of distributions 

are used to analyze traffic behavior, the study of which is not always analytically 

possible. One such distribution is, for example, the Pareto distribution. 

Experimental and numerical studies conducted in recent decades show that 

traffic in many telecommunications and multimedia networks has fractal proper-

ties. Such traffic has a special structure, which is preserved when the scale is 

changed. For example, there are always a number of very large outliers in sample 
with a relatively low average level of traffic. 

During the development of telecommunication networks, their intellectual 

analysis, statistical modeling methods are often used. The main their feature  is to 

use simulation, performing a computational experiment of large number of times, 

instead of analytical methods. The simulation method is well done for problems 

that cannot be solved by classical mathematical methods. Applying statistical sim-

ulation, the characteristics and parameters  are  accumulated that reflect the 

behavior of complex systems, taking into account the influence of possible 
external factors. When using statistical modeling methods, the system is endowed 
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with real properties and modeling is provided under different initial conditions. 

Accumulated data is essentially a source of data for learning. 

In reality, these three tasks are needed to be solved together - Hurst index 

estimation, self-similar traffic modeling, traffic intelligence analysis. 

The study of these properties is the purpose of this work. We continue the 
research presented in [1-4,34]. 

In the last decade, the multifractal properties of traffic have been intensively 

studied. These investigations were started in [5-6]. Self-similar properties of traf-

fic allow to appear a number of traffic models based on self-similar stochastic 

processes [7-14]. Due to discovery of the property of self-similarity of traffic it 

was possible to rethink the probabilistic-temporal characteristics of such networks. 

Fractal or self-similar traffic models introduce concepts such as long-term de-

pendence (the influence of the value of the number of packets that arrived some 
time ago on the number of packets at a given time) and self-similarity of traffic. 

The complexity of the implementation of analytical and algorithmic methods 

for calculating networks depends significantly on the number of streams, nodes 

and lines. The larger these indicators, the more complex the corresponding ran-

dom process and the more difficult it is to conduct a numerical analysis of the 

model. 

The implementation of the corresponding procedures depends on the number 

of components in the simulated random process and on the nature of the distribu-
tion functions for the durations of the time intervals between the events. The ad-

vantage is the capabilities of computing technology. Since the speed of computers 

is constantly increasing, it increases the attractiveness of this method of analyzing 

communication networks. 

Among the main characteristics of multifractal traffic is the Hurst index, which 

determines the degree of long-term dependence (decreasing rate in the correlation 

function). When evaluating the Hurst index, the properties of the obtained estima-

tors are of great importance. Significant properties are unbiasedness, consistency. 
Currently, there are many methods for estimating the Hurst parameter, but all 

of them are focused on such special cases of processes when the self-similarity 

property is combined either with a long-term dependence (fractional Brownian 

motion) or heavy tails. 

To estimate the Hurst parameter, the most commonly used analysis is RS anal-

ysis, time analysis of variance (ANOVA) and detrended fluctuation analysis 

(DFA). The common property of these methods is that they are all based on the 

use of statistical properties of second-order samples (variance, standard deviation, 
correlation coefficients). In [15–16], a fractional moment method was developed, 

which is equally applicable for both Gaussian and heavy tails. This method can be 

used to estimate the Hurst parameter. All discussed methods are approximate. In 

[17], the estimates for the Hurst index were obtained, which are based on the use 

of Baxter sums and Levi-Baxter limit theorems. Generalizations of these results 

are given in [18]. 

In the article the methods are considered for estimating the Hurst index based 

on the use of Baxter sums and Levy-Baxter limit theorems, that improve the exist-
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ing ones. The obtained estimators are objective and have all significant statistical 

properties. 

The multifractal traffic model is usually based on random variables and pro-

cesses with heavy-tailed distributions. The use of multi-fractal stochastic process-

es for modeling telecommunication traffic is based on fractional Brownian mo-
tion. The properties of the FBM and its practical applications were studied in [19-

24]. 

The problem of numerical modeling of the traffic of telecommunication and 

computer networks is one of the main ones when creating traffic models. The re-

sult of statistical simulation is a set of realizations of a random series where the 

main properties of a real process are reproduced. Such models can be used in 

modeling telecommunication and computer networks, in the study of unfavorable 

network operating modes, in the numerical study of estimates of traffic character-
istics in a limited sample. 

Based on the simulation results, it is possible to study the influence of traffic 

parameters on various probabilistic-temporal characteristics. Comparative analysis 

allows predicting traffic behavior for various queuing algorithms, such as Primary 

Rate Interface (PRI), Weighted Round- Robin queue (WRR), etc. 

Statistical simulation is used to check the reliability of approximate algorithms 

and engineering techniques for planning communication networks. When using 

the appropriate procedures, special attention should be paid to the tasks of deter-
mining the required number of experiments and investigating the reliability of the 

results obtained. 

One of the important aspects of using a simulation model is to assess the accu-

racy and reliability of the results obtained. Methods for statistical modeling of 

Gaussian random processes with a given accuracy and reliability were studied in 

[25-30]. 

 

2. Evaluation of the Hurst index 
 

Let  P,,  is a  standard probability space.   

Definition 1. We say that the Gaussian process  1,0),( ttB , is called the 

generalized Wiener process (fractional Brownian motion, FBM) with the Hurst 

index  1,0  if  0)0( B ,  0)( tEB  and it has a correlation function 
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is a strongly consistent estimate of the Hurst parameter  .  
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To find the variance estimate  1 D nS


, we use the following lemma. 

Theorem 2. Suppose  0,  tBB t  is fractional Brownian motion with Hurst 

parameter   ],0(   . Then at )1,0(  the following inequality holds: 
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Theorem 4. Suppose  0,  tBB t  is fractional Brownian motion with Hurst 
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4. Spectral representation of FBM 

 

Process with stationary increments. The fractional Brownian motion )(tB  is a 

process with stationary increments [19]. 
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Gaussian process with a correlation function 
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Gaussian stationary process can be given as  
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Let for D  we have   11  iiT  . In this case the following corollary can 

be proved.  

Theorem 13. The model  ,twn  will approximate the process )(tw  with re-

liability 1  and  accuracy   in Banach space )(2 TL , if for the values   and 

n  we obtain 

2
,1 nG   and  

























 ,

2

,
12

exp
12

1
exp

nn
GG

, 

where     




n

i
in

i

i

dg
T

G
0

2

,

1

)(
3

1




 .)( 









 





 dgT

 

In the case of the partition D   in a such way 
n

ii


  1  and 1



n

T
 the 

result is clarified as follows. If we put 
22

1

3

23 


















T

n
,  then  

 
1

121

3

312




















 








n

T
TG n . 

 

Теорема 14. The model  ,twn  approximates stochastic process )(tw  with 

given reliability 1  and accuracy   in Banach space )(2 TL ,  if for   and n  

the inequalities are satisfied 
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Random series. In [28] it’s shown that Fractional Brownian Motion can be ex-
panded in the form of random series] 

      


1
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where  
kk

YX ,  are uncorrelated standard Gaussian random variables, 
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To calculate zeros of Bessel functions we will use the following relationships 
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And to compute Bessel functions it’s useful to apply the next representation 
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 The model of stochastic process we can construct as 

     



M

k
kkkkkk

YtybXtxaMtS
1

cos1sin),(
 ,  

where   
kk

YX ,  are jointly uncorrelated standard Gaussian random variables.  

Simulating independent Gaussian random variables we can obtain the wider 
class of random variables, namely, strictly sub-Gaussian random variables due to 

the accuracy of representation and calculation of real numbers. The zeros of the 

Bessel functions and the values are also calculated with some accuracy.  

We will denote by 
kkkk

yxba


,,,   the approximate values of  
kkkk

yxba ,,, .  

Let   
a

kkk
haa 


,   

b

kkk
hbb 


,    

x

kkk
hxx 


,   

y

kkk
hyy 


,  

Where   y

k

x

k

b

k

a

k
hhhh ,,,   are predetermined accuracy.  
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Then the model of Fractional Brownian Motion will be as follows 

     



M

k
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YtybXtxaMtS
1

cos1sin),(


 . 

The accuracy of the modeling )(t  equals  MtStBt ,)()( 


 . 

Applying this model it’s necessary to compute the zeros of Bessel functions 

with high quality/ It needs a great preprocessing and preparing efforts. 

Теорема 15.  The model ),( MtS


 will approximate the process )(tW  with 

accuracy 0  and reliability 10,1     in the norm of the space 

  TL ,02 , if the following relationships  
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5. The estimation of traffic volume and load process 

Under )(tA  we denote the amount of traffic coming to the network over a 

period of time  T,0 . The increment we denote as  

0),()(),(  stsAtAtsA . In  [5] it’s shown that  input traffic has a view 

)()( tWammttA  , where m  is an average traffic rate, )(tW  - FBM with 

Hurst index  







 1,

2

1
 , a  is some constant. 

If the network has one device with the rate of service mC  , the process of 

loading is determined [6] by the formula  )(),(sup)( stCtsAtQ
ts




. Having n  

independent identically loading device we obtain 
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tributed quantity. 

Investigate now the probability of overloading by threshold b of )(tQ  on time 

interval  T,0 . We will denote 
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Simulation of FBM as input of some system with predetermined accuracy 

and reliability in the space ([0,T])C   with respect of response of the system 

Consider a time-invariant linear system with a real-valued square inte-

grable impulse response function ( )H   which is defined on a finite domain 

[0,T] . This means that the response of the system to an input signal (t)X  

which is observed on [ T,T]  has the following form  

0

(t) ( ) X(t ) d , [0, T]

T

Y H t       (14) 

and 2 ([0,T])H L . 

Some properties and estimators of impulse response function can be found in 

[31,33,36].  

Suppose that the impulse response function is known. We also suggest that the in-

put signal in system (14) is FBM with Hurst index  . From  (14) follows that the 

response of the system (output) (t)Y can be presented as  

 

0

(t) ( c ( ) s ( )),k k k k

k

Y t Y t t





           (15)  
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where the functions (t), s (t)k kc equal  

0

0

c (t) ( )(1 cos(y (t )))d ,

(t) ( )sin(x (t ))d .

T

k k k

T

k k k

b H

s a H

     

    





                          (16) 

In this section we study the model construction of stochastic process (t)X  and 

find the conditions that allows to approximate input signal (t)X , taking into ac-

count the response of the system (output process) (t)Y with given accuracy and re-

liability in Banach space ([0,T])C . To perform such simulation, we use the theo-

ry of Square-Gaussian random variables and processes. The similar results for 

Gaussian process were obtained in [32,35]. 

As a model of stochastic process (t)X  we consider, as usual, a cutting off series 

in (1). 

Definition 3. A stochastic process , (t)NX  is called the model of the process 

(t)X , if   

,

0

( ) ( (1 cos y ) sin x ).

N

N N k k k k k k

k

X t X t b t a t  


       

If the model (t)NX  is considered as an input signal of linear system then the out-

put process is given in this way 

0

( c ( ) s ( )),

N

N k k k k

k

Y t t t



       

 

where the functions 
(t),s (t)k kc

 are from (16). 

Under N t    we denote the sum of square of the differences (t) (t)NX X  and 

(t) (t)NY Y
 

2 2( (t) (t)) ( (t) (t))N N Nt X X Y Y     
 (17) 

Definition 4.  We say that the model (t)NX  approximates a stochastic process 

(t)X  taking into account the response of the system (14) with given reliability 1-

,  є (0,1), and accuracy >0 in the space С([0,T]), if  

[0, ]

sup | ( ) ( ) | .N N
t T

P t E t
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Square-Gaussian stochastic Processes  

Now let’s give the definitions and some properties of Square-Gaussian random 

variables and stochastic processes.  

Assume that  
( , )T 

 is a compact metric space with metric 


. 

Definition 5. Let 
{ , }t t T   

 be a family of centered joint Gaussian random 

variables. A space 
( )SG 

 is a space of Square-Gaussian random variables if any 

element 
( )SG 

 can be presented as   

,T TA E A     
 

where 1 2( , ,..., ), , 1, ,n k k n A      
is a real-valued matrix or an element, 

( )SG 
is a square mean limit of the sequence  

( ).l.i.m
T T

n n n n
n

A E A


     
 

Remark 1.[26]  The space 
( )SG 

 is a Banach space with respect to the norm 

2|| || E� 
.   

Definition 5.A stochastic process 
(t), t [0,T] 

, is Square-Gaussian if for any 

fixed t є [0,T] a random variable 
(t)

 belongs to the space 
( )SG 

and 

[0, ]

| ( ) |sup
t T

t


 

.  

We will use the following theorem on the tail distribution of the supremum of 

Square-Gaussian stochastic process. The proof of the theorem can be found in 

[26].  

 

Theorem 17. [26] Assume that 
(t), t [0,T] 

, is a separable Square-Gaussian sto-

chastic process and   

| |

sup ( ( ) ( )) ,
t s h

D t s h kh
 

        

,   (18) 

where k  is some constant. Then for х such that  
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2 2 max{ , (T/ 2) }
,

k
x 



  

the inequality  

2/ 1/23

[0, ]

2
sup | ( ) | 4 exp 1

2 2 2 2 2t T

x x x
P t x e

   

        
              

        







  

 

holds true where  1/2

[0, ]

sup ( ( ( )))
t T

D X t


 . 

Without any difficulty it could be shown that zero-mean process N Nt E t       

is Square-Gaussian,  where N t   is from  (17). So, Theorem 2 can be used in this 

case.   

Denote  
1 1

2 2

3 3

(t) b (1 cos(y ))(1 cos(y )) (t)c (t);

(t) 2(b (1 cos(y ))sin(x ) (t)s (t));

(t) sin(x )sin(x ) (t)s (t).

kl kl k l k l k l

kl kl k l k l k l

kl kl k l k l k l

a t t c

a t t c

a a t t s

      

     

    

  (19) 

Then by (14), (15) and (17) we have that the process N t   can be written in fol-

lowing form  

 1 2 3

1 1

(t) ( (t) (t) (t) ).N kl k l kl k l kl k l
k N l N

 

   

              (20)  

Let us also denote the increments of the functions 

 1 1 1 2 2 2 3 3 3(t) (s); (t) (s); (t) (s).kl kl kl kl kl kl kl kl kl              (21)  

To perform the main result, we first present the auxiliary relationships concerning 

mean, variance and variance of increments for the process N t  .  

Lemma 1. Let N t   be stochastic process from (17). Then  

 

 

1 3

1

1 2 2 2 3 2

, 1

1 2 2 2 3 2

, 1

(t) ( (t) (t));

(t) 2( (t)) ( (t)) 2( (t)) ;

( (t) (s)) 2( ) ( ) 2( ) .

N kk kk
k N

N kl kl kl
k l N

N N kl kl kl
k l N

E

D

D



 



 



 

    

      

       







 

Proof.   

Since random variables , , 0, 0,k l k l     are jointly independent Gaussian with  

mean 0 and variance 1 then  by (8)  we have  
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1 2 3

1 1

1 3

1

(t) ( (t) E (t) E (t) E )

( (t) (t))

N kl k l kl k l kl k l
k N l N

kk kk
k N

E
 

   



 

           

  

 



 

To calculate the variance of the process N t  , we should at first find the second 

moment  

 

2

2 1 2 3

, 1

( (t)) ( (t) E (t) E (t) E ) .N kl k l kl k l kl k l
k l N

E E


 

 
             

 
   

We use Isserlis formuls to compute the moment of the forth order for standard 

Gaussian random variables: 

 1 2 3 4 1 2 3 4 1 3 2 4 1 4 2 3EX X X X EX X EX X EX X EX X EX X EX X   .  

Then we obtain 

2 1 1 1 2 2 2

1 1

3 3 3 2 1 3

( (t)) ( (t) (t) 2( (t)) ( (t))

(t) (t) 2( (t)) 2 (t) (t)).

N kk ll kl kl
k N l N

kk ll kl kk ll

E E
 

   

        

      

 
   

Therefore, the variance of stochastic process N t   equals  

 

2 2

1 2 2 2 3 2

, 1

(t) ( (t)) (E (t))

2( (t)) ( (t)) 2( (t)) .

N N N

kl kl kl
k l N

D E



 

     

     
 

Similarly, it can be proved the formula for variance of process increments 

(t) (s)N N  .  

If we put  1 2 2 2 3 2

[0,T]

sup (2( (t)) ( (t)) 2( (t)) )kl kl kl kl
t

d


      . Then 

1/2

0
, 1

(t) : (N).N kl
k l N

D d


 

 
    

 
    

Under some conditions it could be shown that 
1/2( ( (t) (s))) (N) | t s | , (0,1],N ND K                (22)  

 

 

where the function (N)K  depends on the quantity N.   

The following theorem gives the conditions on the model to approximate FBM, 

taking into account the response of the system with predetermined accuracy and 

reliability.  

Theorem 18.  Suppose that the conditions (10) are satisfied. The model (t)NX  

approximates FBM (t)X   with respect to the response (1) with reliability 1-,  є 

(0,1), and accuracy >0 in the space С([0,T]) , if for N  The inequalities  

 max{ (N),K(N) (T/ 2) } , (0,1],
2 2
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2/ 1/23
2

4 exp 1 ,
2 2 (N) 2 2 (N) 2 (N)

e

  

      
           
      




  


  

 

hold true. 

 

6. Conclusions 

 

In the paper the important tasks were considered such as the analysis and  de-

velopment of the telecomunication networks, the estimation of Hurst index and the 
methods of statistical simulation of FBM. The obtained estimators of Hurst index 

is consistent and improve existing one. The great attention should be paid to Hurst 

index 
4

3
 . 

Methods for estimating the Hurst parameter are based on the Baxter sum and e 

Levi-Baxter limiting theorems. The confidence intervals of these etimators were 

found. A special cases of the second and the third orders were studied. 

In the article, the simulation algorithms for FBM were giventhat use spectral 

representations. We also obtained the accuracy and reliability of the models. 

In many applied problems, it is necessary to model the processes on the outputs 

of the linear systems. In this case, an algorithm for modeling such processes was 

investigated, given the accuracy and reliability. 
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