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                                                        ABSTRACT 

We investigate a failing system that experiences unpredictably harsh shocks from its 

surroundings. Assume that while the system is working, every shock will cause some 

damage to it; however, shocks that cause only minor damage are innocuous for the system, 

whereas shocks that cause significant damage may cause the system to fail. The system’s 

disintegration is brought about by both the outside shocks and the interior load. An 

extended extreme shock (EES), the maintenance model for systems disintegrating under 

monotone processes by using increasing Alpha series processes (ASP), is studied. 

Perceptionally an exact expression for the long -run mean cost for each unit time under   

strategy is derived and an optimal strategy    for reducing long -run mean cost for each 

unit time is determined. A numerical illustration is also given. 

Keywords: Renewal Process, Alpha Series Process, Geometric Process, Geometric 

distribution, Substitution Strategy, Exponential distribution, Shock Model. 

1 Introduction 

   The analysis of maintenance issues is still a crucial area of reliability. A large number of 

academics have produced a number of results in the field of “repair as new.” The general 

premise of this research study on repair substitution problems is that a system that has 

been repaired is “as good as new.” However, it is not always accurate or the same for a 

failing system. Due to wear and tear from use and accumulated damage, the majority of 

repairable systems disintegrate over time. The majority of maintenance models concentrate 

solely on the internal cause of system failure rather than considering an external cause. A 

system could malfunction as a result of outside factors like shock. However, shocks with 

“minor” levels of damage are not harmful to the system, whereas shocks with higher levels 

of damage could lead to have damage are not harmful to the system, whereas shocks with 

higher levels of damage could lead to system failure. Both internal and external loads 

influence how the system is determined. The amount of shock damage that a system can 

withstand from external causes reduces as more repairs are made, whereas for internal 
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reasons, the time between repairs grows as more repairs are completed. For a system that 

is degrading, Chen and Li (2007) presented and investigated an EES maintenance model in 

which the subsequent repair time is a geometric process (GP).  

The system is considered in two aspects: internal and external. First, if the system fails due 
to a shock, it is repaired or substituted with a new and identical one. Due to ageing and 
constant wear and tear, the repair time increases and tends to infinity, eventually the 
system becomes unrepairable, so the repair time cannot be ignored. Therefore, we model 
the repair times after system failures as an increasing ASP. It was introduced by Braun et al. 
(2005). 

Although the GP is a better model for systems disintegrating, Braun et al. (2008) were 

created an alternative model called the ASP that has similar qualities. Additionally, Braun et 

al. (2008) emphasised that while the increasing GP only increases in time logarithmically, 

the decreasing geometric process is almost certain to undergo an explosion at some point. 

The ASP grows with time either exponentially. It was also claimed that a central limit 

theorem is satisfied by the ASP but not by the GP .They showed that the ASP and the 

increasing GP both have a finite first moment under certain generic conditions. 

Next, shocks are studied from system surroundings. There were several papers that called 

extreme trauma models. In these models, a shock is called a fatal shock, if the amount of 

damage a shock does to the system exceeds a certain threshold and the system fails. These 

types of shock models are called “extreme shock models.” Practically speaking, the systems 

disintegrating after repair should be weak and easy to break. Consequently, as the number 

of repairs performed increases, the threshold value   for exceeding lethal shock decreases.  

Below are some preliminary definitions and findings about the ASP. 

Definition1.1. Let *                +be a sequence of non-negative independent 

random variables (RV), if the distribution function of    is   ( )   ( 
  )  for α is real 

number,          and then*                +is said to form an ASP. The real α is 

called the exponent of process. See e.g Braun (2005) 

Remark1.1. Let *                + be a sequence of non-negative independent RV, if 

the density function of   is  ( )   
  (   ). 

Remark1.2. If *             + is an ASP and  (  )     then  (  )  
 

  
    

See.Braun(2005) 

Remark1.3. Wald’s equation. If          independent and identically distributed (i.i.d) RV 

are having finite expectations and if  the stopping is time for           such that 

 , -     then  ,∑   
 
   -   , - ,  - See e.g. Lam (1988b) 

 



2 Model Assumptions 

Under the ensuring presumptions, we assume an EES the maintenance model for a systems 

disintegrating. 

A1. Initially, a fresh system was established. When a system malfunctions, it is either 

repaired or substituted out for an entirely new one. 

A2. When the system begins working, the shocks from the surroundings show up, as 

indicated by a renewal process. Let *              + be the intervals between 

the(   )   and the     shock after the (   )   repair. Let  (   )     Assume that 

*             + are i.i.d. sequences for all    

A3. Let *             + be the order of magnitude of shock damage caused by the     

shock after the (   )   repair. Let  (   )     Expect that *             + are i.i.d. 

sequences for all    

A4.  In the     working stage, after the (   )   repair, the system fails if the amount of 

shock damage initially exceeds       where        the system fails, it is shut,and 

random shocks at repair time have no effect on the system. 

A5. Allow     be the repair time after the    failure, and ( ) be the distribution functions of 

   For,         Let    signify the repair time following the     failure. The distribution 

function of    is then assumed to be  (   ) for         is a genuine number. This 

generates an ASP with increasing successive repair times *            +  , Also assume 

that  (  )           where the repair time is negligible.   ( )is the process of  

counting the number of shocks after the (   )st repair. It is clear that (  )  
 

  
. 

A6. Allow   to be the substitution time, with ( )   . 

A7. The process*             +,*              +, *            + and   are 

independent. 

A8. The maintenance cost rate is    the reward rate is   and the substitution rate is    

3 Average cost rate 

Definition 3.1. In general, Let    be the first substitution time,  for       

Let    be the time between the (   )   and the   th substitution. Then obviously  

*           +  generates the renewal process.  

The point of the review is to find an optimal substitution   with the end goal that the long 

run mean cost for every unit time is limited. 



According to renewal reward hypothesis of Ross (1983), the long-run mean cost for each 

unit time under the substitution strategy   is given by 

                                 ( )  
                                     

                              
                                               (1) 

In our models, we do not specify the distribution of the shocks inter arrivals, i.e., the 

distributions of    and     may be arbitrary, it uses the geometric distribution. 

We want to initially work out the geometric distribution and the expectation for   , the 

genuine working time of the system after the (   )   repair. 

            Denote               *       
    +                                                                (2) 

That is     is the number of shocks until the first deadly shock occurred following the 

(   )   failure. Then  

                                          ∑    
  
                                                                                          (3)       

And     follows a geometric distribution  (  )  with  

                                       (    )    (    )
                                                  (4) 

Where 

                                           (     
    )                                                                         (5)       

By equation (4) , we have  

                                        (  )  
 

  
                                                                                             (6)        

As  *              + and   *             +  are independent, obviously      and 

*              +  are independent. 

Then,at that point, from conditions (3), (4) and by Wald’s equation. We have  

                                           (  )   (  ) (   )  
 

  
                                                     (7)  

Since      from equations(5) and(7). We can derive that       is decreasing in    

From equation (1), 
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4 The optimal substitution strategy     

In this part, we decide an optimal substitution strategy for limiting  ( )  

From condition (8), we have 
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(   ) .∑
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Where                           ( )  ∑     .∑
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To accuire the optimal strategy  , we want to explore the distinction between 
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As the denominator of     (   )   ( ) is generally certain. Obviously the indication of  

 (   )   ( ) is equivalent to the indication of its numerator. 

Subsequently we present the auxillary function  ( ) as follows. 

                          ( )  
(   ) .∑   

 
          .∑
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                                          (11) 

Subsequently we have the accompanying lemma. 

Lemma 4.1.                          (   )   ( )   ( )    



 (   )   ( )   ( )    

                                                       (   )   ( )   ( )                                               (12) 

Lemma (4.1) shows that the monotonicity of   ( ) can be determined by the value of  ( ) 

From equation (11) we have  
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 Because    is decreasing in   and     this demonstrates that  ( ) is not decreasing in .  

 We can derive the following theorem using lemma (4.1). 

Theorem 4.1. The optimal substitution strategy not entirely settled by  

                                                      *   ( )   +                                                         (13) 

Besides, the optimal replacement strategy    is special if and provided that   (  )     



5 A Computational example 

We concentrate on a mathematical model with the supposition that      has an exponential 

distribution with expectation  . 

Then                                       ( )   (     )     
 .
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From equation (5), we have  
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 Then by equation (7), we have  
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Substitute equation (15) in equation (9) and (11), the exact expression for  ( ) and  ( ) 

are   
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Let 

                                                             

The numerical results are presented in Table 1 and the corresponding figures are plotted in 

Figure 1 and Figure 2 respectively. 

     
  

 ( )  ( )    ( )  ( ) 

1 62.71378243 0.02862918 10 3.64595261 0.69378903 

2 28.94257705 0.07507138 11 3.43664941 0.77152329 

3 17.25365310 0.13569171 12 3.31351515 0.84659007 

4 11.59934997 0.20654302 13 3.25081222 0.91883968 

5 8.42880843 0.28411102 14 3.23075356 1.00012229 

6 6.50549464 0.36552940 15 3.24082219 1.05475939 

7 5.28622768 0.44859551 16 3.27208457 1.11851447 

8 4.49555734 0.53169253 17 3.31809507 1.17958295 

9 3.97953895 0.61368059 18 3.37416518 1.23807733 

               Table : The values of  ( ) and  ( ) for different values of    
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                                                  Figure 2 
 

 

 Clearly  (  )              is the minimum of the long run average cost. On the 

other hand  (  )               and         *  ( )⁄   +     



 

6 Conclusion 

By considering an EES maintenance model for a systems disintegrating, an exact expression 

for the long-run mean cost for each unit time under a monotone process is derived. 

Perceptionally, an optimal substitution strategy    for reducing the long-run mean cost for 

each unit time is determined. A computational example is given to illustrate the 

methodology developed in this research work. As a system parameter, the threshold value 

can be approximated. The project’s goal is to carry on. As a result, for a system that has 

been upgraded, we can develop an optimal substitution strategy     
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