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Abstract—It is evident that our technologically-dependent
society rightly expects systems engineers to produce systems
having increasing levels of performance, efficiency, and reliability.
As such, we must convolve academic and industrial approaches
to provide theory, systems, and working technologies which
can catalyze and propel engineers, developers, and technical
professionals of various disciplines toward the ultimate goal of
consistent delivery of quality systems. There exist tools and
processes for improving the quality-oriented posture of the
systems engineering industry; in practice, the most perpetual
form of software testing continues to be rote repetition of test
cases through either manual testing or scripted automation of
those same manual tests.

We describe Lodestone: a real-time approach for generating
workload in software systems. This real-time approach to LT
uses streaming log data to generate and dynamically update
user behavior models, cluster them into similar behavior profiles,
and instantiate distributed workload of software systems. We
show that Lodestone outperforms Markov4JMeter through a
qualitative comparison of key feature parameters as well through
experimentation based on shared data and models.

Index Terms—Software quality, Software performance, System
performance, Performance analysis, Software testing, System
testing, Automatic testing, Automatic test pattern generation

I. INTRODUCTION

Our society has become wholly reliant upon the continuous
creation, operation, maintenance, and improvement of human-
machine systems. The metrics and tools for verifying and vali-
dating system quality can range from the opaquely theoretical
to the overly simplistic - having few solutions of practical
use between the two extremes. The number of approaches
to automatically evaluate the quality of a software system
are continuously increasing; however, such approaches do not
readily incorporate real-time understanding of and feedback
from a system under test (SUT). Systems which are continu-
ously monitored (or systems under observation (SUO)) allow
for logs and metrics to be captured. To preempt and reduce
the monetary cost of system maintenance, quality assurance
professionals (QA) use manual processes and automated tools
to validate an acceptable level of quality within a SUT. One
set of tools and processes, load-testing (LT), is a sub-discipline
of automated testing which focuses upon the non-functional
qualities of a SUT (such as security, stability, and scalability)
through exposing the SUT to various simulations of expected
workload. Widely available tools (similar to JMeter [1]) are

{
"event_chain": [

"login",
"role_view",
"logout"

],
"login": 1,
"logout": 1,
"role_view": 1,
"session": "9474dec4-f3f8",
"session_end": 1500000137,
"session_length": 50,
"session_start": 1500000087,
"uid": "bbicke"

}

Fig. 1. Recorded Session Data from SUO

well-established as an effective means of LT in both the
industrial and research communities. Tools in the same vein as
JMeter primarily rely upon recorded or configured scenarios to
submit a stream of statically defined stimuli to an SUT. Static
scenarios can be a powerful tool for discovering flaws in an
SUT by building up a service-side state/cache of information
necessary to repetitively test a specific condition or circum-
stance; they are typically based on behavioral traces, system
logs, or hand-crafted scripts. As artifacts, static scenarios must
be regularly pruned, updated, and maintained by QA in order
to combat the risk of diminished expected value. The bulky
nature of testing artifacts can emit costs such as: storage,
transmission, security, execution, and maintenance. Model-
based LT approaches draw from various bodies of research
(data-mining, statistics, process mining, and machine learning)
in order to reduce the operational and computational cost
associated with static scenarios. However, model-based LT
approaches can also suffer from the same costs as static sce-
narios: execution, maintenance, and modification. A Markov-
chain-based model of behavioral interaction was proposed by
Menasce et al. in [2], [3] and extended by Markov4JMeter [4]
(a free, open-source extension to JMeter) by van Hoorn et al.
[5]. Subsequent approaches such as WESSBAS by Vögele et
al. [6] have been shown to be an effective approach to LT.
However, Qusef et al. point out that JMeter was principally



designed for LT of traditional web systems [7] - a potentially
notable challenge when dealing with the prolific evolution
of modern system infrastructures and engineering patterns.
Indeed, industry has found that JMeter has performance limi-
tations when emulating a large amount of concurrent requests
[8].

The rapid propagation of cloud technology has sparked
the widespread adoption of architectural patterns such as
stateless microservices based on REST (representational state
transfer) and similar protocols. Heinrich et al. state in [9] that
LT of modern microservice architectures provides additional
challenges over classical architectures, to wit: the need for
LT to align with agile development practices such as dynamic
deployment and automation, the importance of understanding
the infrastructure in the test cases, and the need to continuously
update testing artifacts (such as models and scenarios). The
capabilities of cloud-native test systems partially address the
concerns of Heinrich et al. [9] and [7] through ready availabil-
ity, swift scale-out/scale-in, distributed computation spanning
geographic and infrastructure boundaries (similar to users of
cloud-based systems), and component-level monitoring.

To the best of our knowledge, there does not exist a
streaming cloud-based approach to LT which uses a Markov
approach (as in WESSBAS and the Markov4JMeter extension
to JMeter) and is designed to meet the accelerating modeling
and responsiveness requirements of the agile development
practices mentioned above. We proffer Lodestone: a learning,
online, distributed engine for simulation and testing based
on the operational norms of entities within a system. Our
work with Lodestone represents a novel, cloud-based approach
to ingesting system logs, modeling and simulating human-
machine behaviors, and executing realistic LT upon a human-
machine system. The following research questions inform the
direction and intent of our investigation regarding Lodestone:
RQ1: Can Lodestone extend the features provided by an

open-source tool for Markov-based LT?
RQ2: Can Lodestone provide measurable performance

benefits in certain scenarios, when compared to an open-
source tool for Markov-based LT?

The rest of this paper is structured as follows. The Back-
ground (II) contains information related to previous efforts. We
then discuss User Behavior Modeling for LT (III), in order to
provide additional context and terminology. We describe the
overall approach of the system along with the architecture of
Lodestone (IV). The Evaluation (V) describes the quantitative
and qualitative guidelines used for our study and a discussion
of our results. We conclude with a Summary (VIII) of the
work and potential future directions.

II. BACKGROUND AND RELATED WORK

There are many approaches to LT of scale-conscious soft-
ware systems; for recent literature reviews of academic work,
we recommend the reader examine the work of Jiang [10]
as well as the collaboration between Jiang and Hassan [11].
In addition, we suggest a review of Leitner and Bezemer’s
work [12] for a recent overview of industrial tooling. Chen and
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Fig. 2. Aggregated User Behavior Count Graph
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Fig. 3. Markov Chain Directed Graph for User Behavior

Shang [13] perform a longitudinal study of several releases of
the same open source products to analyze regression in per-
formance quality, asserting that most performance regressions
come from bug fixes and are not noticed until after they are
deployed to production - a key reason for QA efforts such
as LT before software is deployed to production. Chen et
al. [14] discuss many open problems related to performance
and regression testing partially informing the direction of our
work. Performance is also a security concern in the form of
Distributed Denial of Service attacks, as addressed by Jiang
et al. in [15].

A. Adaptive LT

Realistic scenarios and rapidly closing the feedback re-
sponse loop are two of the most important qualities for
legitimate system testing; in addition, natural feedback is why
human testing will continue to be critical for performance
testing of production-critical systems. The ability of a testing
system to adapt to incoming data is paramount toward bridging
the gap between human efforts and rote machine script exe-
cution. Lenz et al. [16] describe a machine-learning approach
to clustering of various load and performance testing metrics
toward improving results of the quality assurance lifecycle;



however, their approach is offline and does not mention
dynamic generation of tests or test data from the learned
information. In cloud-based systems, Shariffdeen et al. [17]
describe adaptive auto-scaling strategies to meet performance
goals; similarly, Iqbal et al. [18] describe such adaptive scaling
approaches in web applications. The tendency of modeling
typically relies upon a manual process consisting of a period
of observation, followed by building or rebuilding models, and
then executing the performance testing itself. The process of
LT must remain adaptive and reactive to current data (instead
of requiring manual intervention from QA).

B. Model-based LT

Modeling system or user behavior is a powerful means of
using data from an SUO which can impact approaches toward
testing the SUT. Gao and Jiang describe an ensemble-model
based approach to performance testing and show how it can
outperform baseline models under environmental changes in
the SUT [19]. Apte et al. describe AutoPerf [20] for modeling
performance metrics of a system under test while simultane-
ously driving the performance testing process. Ramakrishnan
et al. [21] discuss metrics for tracking user interaction times.
Vögele et al. as well as van Hoorn et al. describe several means
of modeling of users and workload in session-based systems
[5], [6], [22]–[25]. Trubiani et al. in [26] discuss using opera-
tional profiles in LT in order to detect and correct performance-
based anti-patterns. Wienke et al. describe a domain specific
language approach in [27] for modeling performance testing in
robotics. In all, the modeling of user, machine, operational, and
performance characteristics of a system is a powerful means of
improving that system’s measurable quality. For better results
in a prospective automated performance testing approach,
adaptive methods should be included for improved speed in
testing feedback. We proceed to discuss the central approach
to catalyzing model-based LT through Markov modeling of
user behavior from system logs.

III. USER BEHAVIOR MODELING FOR LOAD-TESTING

We describe microservices, system logs, and behavior mod-
eling as related to LT. A data-driven model-based approach to
LT allows for a certain degree of human facility to be imposed
on the process.

A. Cleaning and Filtering of System Logs

Logs are a semi-structured representation of data points
recorded throughout the process of operating and maintaining
the SUO. When extracted from a SUO, such logs can be a
treasure trove of valuable information for understanding the
health of the SUO; moreover, if certain metrics and semantic
data (such as HTTP request headers, query parameters, unique
identifiers, and access tokens) are available within the SUO’s
logs, data aggregation can facilitate statistical models of ex-
pected usage behavior for the SUO. We expect a log to consist
of a sextuple (σs and σt ∈ S, τ, u, e, s), where σs and σt are
source states and target states (respectively) within a set of
possible states S in the system, τ is a time-stamp of when

{
"uid":"bbicke",
"average_session_length": 28,
"transition_counts": {

"(login,logout)": 2,
"(login,inventory_view)": 4,
"(login,role_view)": 1,
"(inventory_view,logout)": 4,
"(role_view,logout)": 1

},
"number_of_sessions": 7,
"session_lengths": [

33,33,33,33,7,7,50
],
"user_behavior_profile": {

"(login,logout)": 0.28571,
"(login,inventory_view)": 0.57143,
"(login,role_view)": 0.14286,
"(inventory_view,logout)": 1,
"(role_view,logout)": 1

}
}

Fig. 4. Aggregated User Behavior Model

{
"average_session_length": 30.35,
"number_of_users": 2,
"user_ids": ["bbicke", "thuels"],
"clustered_behavior_profile": {

"(login,logout)": 0.34286,
"(login,inventory_view)": 0.43571,
"(login,role_view)": 0.22143,
"(inventory_view,logout)": 1,
"(role_view,logout)": 1

},
"probability": 0.0253164557,
"profile_id": 5

}

Fig. 5. Clustered Profile Behavior Model

the state transition occurred, u is a unique identifier for a user
or session, e represents whether the state transition resulted
in an error, and s is any attached satellite information. (For
simplicity, we may also refer to such sextuples as logs.) The
process of discovering and modeling through log structures
is described by Menasce et al. [2] as Customer Behavior
Model Graphs (to be extended by Menasce in [3]); further, a
streaming log processing approach is discussed by Du and Li
[28]. A Markov approach to behavior modeling is based on
the observed relative activation frequency of each transition
between states (see the event_chain attribute as shown in
Figure 1). Karlin and Taylor define a Markov Process as:

“a process with the property that, given the value
of Xt, the values of Xs, s > t, do not depend on
the values of Xu, u < t; that is, the probability of
any particular future behavior of the process, when
its present state is known exactly, is not altered by



login $ inventory add inventory modify inventory view role add role modify role view
login* 0.0 0.34286 0.0 0.0 0.43571 0.0 0.0 0.22143

inventory add 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
inventory modify 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

inventory view 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
role add 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

role modify 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
role view 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 6. Sample Learned Markov4JMeter Model

additional knowledge concerning its past behavior.”
[29]

Karlin and Taylor describe a Markov Process as being a
Markov Chain (MC) if it is composed of a distinct set of
states which are countable, and finite [29]. We can visualize
the MC as a directed graph, in which nodes of the graph are
states of the chain, and edges represent the transition between
states (see Figure 2). A value or weight associated with an
edge between two nodes is representative of the probability
of transitioning between the two states. More formally, given
two states in an MC (σa, and σb), let edge < σa, σb > have
a weight of p. It stands that Pr(σb|σa) = p, or, given that
the currently observed state is σa, the probability that σb is
the next observed state is equivalent to p. The aggregation of
user sessions can be illustrated as the directed graph in Figure
2 and condensed to the MC shown in Figure 3. An example
of how these data can be stored as shown in Figure 4. If the
size of S is large (as is typical in modern web-based software
systems), it is more computationally and spatially efficient to
represent the counts and frequencies of extracted behavior
models as sparse vectors (defined by Tinney et al. [30]).
Sparse vectors can be structured from session data as rep-
resented by the transition_counts, user_behavior,
and clustered_behavior_profile attributes in Figure
4 and Figure 5. By assuming that the set of states S is
fully known, sparse vectors can be reconstructed into a non-
sparse matrix having the same dimensionality as S · S. The
Markov4JMeter software depends on a non-sparse matrix,
such as shown by Figure 6. Note that the $ symbol in the
matrix represents the final accepting state of the MC (such
as logout) and the * symbol represents the initial state of the
MC. By measuring the session length and average transition
time (or think time, as termed by Menasce [2]), we capture
a metric for the estimated proficiency of each observed user
within the SUO as well as the relative complexity involved in
the tasks being performed by the user and the SUO.

B. Modeling Behavior Profiles

Generating behavior profiles from users relies on machine
learning algorithms such as clustering [6]. Lodestone executes
the DBSCAN [31] clustering algorithm on aggregated user
profiles (illustrated by user_behavior_profile attribute
in Figure 4). The members of this cluster do not have iden-
tical behavior patterns, but there exists enough similarity that
there does not need to exist a replication of their individual
behavior patterns in study or in simulation. We calculate a
centroid matrix which may be used in place of the individual

elements of the cluster for storage, simulation, or additional
analysis. An example profile behavior model extracted from
the data within our SUO is shown in Figure 5. The number
of users represented by each profile model (as divided by
the total number of observed users in the test population)
is the frequency associated with that profile’s behavior mix
(as described in [6]). The clustered user profiles and behavior
mix frequency rate are the final parameters required to setup
the Markov4JMeter tool and Lodestone. We refer the reader
to the documentation for Markov4JMeter[4] for additional
details required to configure its usage. It is key to note that
both Markov4JMeter and Lodestone rely on these data pre-
processing steps, data structures, and resultant models.

IV. LODESTONE

In Figure 7, we show the architecture and dataflow of our
implementation of Lodestone in Amazon Web Services. Our
implementation consists of (1) an API Gateway serving as
the External SUO (closely mirroring (8) the External SUT).
The SUO and SUT are built as a microservice consisting of
various resources (such as login, inventory, and role)
and actions (add, modify, view). As the API is used, the
event data are collected into (2) a triggered Data Processor
Lambda which cleans, processes, and writes to (3) DynamoDB
(Knowledge Store) - capturing live and completed session
information (represented as in Figure 1). (This step serves
to replace the more traditional offline method of collecting
behavioral data for analysis and storage such as WESSBAS.)
As the session information is written, another Lambda (4)
is triggered - the User Behavior Model Builder. The User
Behavior Model Builder analyzes the session data, updates the
model of the user associated with the session and stores the
user model (represented as in Figure 4) within the Behavioral
Model Cache (implemented also in DynamoDB). As these user
models are updated, the model builder runs another processing
step (5), the Profile Behavior Model Builder, to cluster the user
models into profile models (as represented in Figure 5). Since
clustering happens as the data are processed, no additional
processing needs to be performed by QA. The LT Manager (6)
is another Lambda which can run in a scheduled manner using
CloudWatch Event scheduling (through UNIX-style CRON
triggers) or ad-hoc as part of a continuous integration or
testing process. The Behavioral Model Executor Lambda (7),
when triggered, will scale out the requisite number of Lambda
operations, representing the users to simulate (based on the
number of user models represented by a profile model). As
Lodestone is cloud-based, it is scalable to within the limits of
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Fig. 7. Lodestone Physical Architecture and Data Flow

the cloud ecosystem being used. Through API Gateway and
CloudWatch, we can determine the number of errors in the
SUT (8) in real-time, in order to evaluate the load-bearing
capability of the SUT.

V. EVALUATION

We describe a methodology used for evaluating LT systems
through their measurable run-time performance (RQ2) and
selected desirable key features (RQ1). We show the results on
Lodestone and Markov4JMeter as well as provide discussion
within the boundaries of our methodology.

A. Qualitative Methodology

We define qualitative parameters informed by the literature,
express why having these parameters affects the desirability of
an LT system, and describe what an LT system must exhibit
in order to achieve these parameters.

Behavioral: The LT system must replicate interactions be-
tween users and the SUO. An LT having this quality is desir-
able as it will be data-driven, rather than strictly configured or
programmed - reducing the cost to maintain and use the LT.

Modeled: The LT system must use models representing
behaviors of users of the SUO. An LT having this quality
is desirable as models are easier to store, maintain, and
update than massive testing artifacts - in addition, models can
morph or completely remove sensitive and private information,
catalyzing LT capabilities within restricted environments.

Distributed: The LT system must use distinct operating
instances to represent the distribution of users of the SUO.
An LT having this quality is desirable as distributed instances
may expose infrastructure flaws (such as hardware failures or

network bottlenecks) which might be otherwise invisible to
small sets of dedicated testing machines.

Compressed: The LT system must use components which
are efficiently stored and executed. An LT having this qual-
ity is desirable due to the performance cost of transmitting
and running inefficient artifacts compounding the necessary
additional fiscal cost to store and compute workload.

Streaming: The LT system must dynamically adapt to ob-
servable changes within the SUO. An LT having this quality is
desirable due to the the associated cost of maintaining rapidly-
changing modern software systems.

Scalable: The LT system must be capable of immediately
and massively scaling. An LT having this quality is desirable
due to the need to verify the expected demands on scalability
in modern software systems.

Cloud-based: The LT system must be built on cloud-based
technology stacks. An LT having this quality is desirable
due to the migration of software systems to the cloud, the
data storage and transfer synergy available on cloud-native
stacks, and the distributed networking capabilities available
for validating non-functional infrastructure requirements.

Think Time: The LT system must be capable of representing
the time it takes for an instance to transition between states
in the SUT at the profile level. An LT having this quality
is desirable due to the need to accurately replicate expected
workload on the SUT.

B. Quantitative Methodology:

We describe the approach for evaluating the measurable ca-
pability of the LT systems under analysis. For the purposes of
our experiments, we were solely concerned with the capability



of the LT system to produce sustained testing volume. To
measure and control for such, we introduce two quantitative
parameters to extend the desired qualities above, namely: user
volume and sustained requests per minute.

User Volume (UV): represents the number of users being
simulated - the primary contributing factor determining the
required amount of computational and storage resources re-
quired to operate the LT system under analysis.

Sustained Requests-Per-Minute (SRPM): represents the
workload that the LT system is able to produce while main-
taining expected operational norms. We gather data points to
measure the SRPM by providing sufficient time for the LT
system to warmup, operate, and cooldown.

We conducted four experiments, each having UV as the
primary variation in input. The first two experiments consisted
of running each LT system with UV=100 for at least five
minutes (plus sufficient warmup and cooldown time). The
second two experiments consisted of running the LT systems
with UV=1000 for at least five minutes (plus sufficient warmup
and cooldown time). As part of our steps to ensure consistency,
we used the same models to execute both LT systems; these
are the same behavioral models learned from the streaming-
behavioral training of the SUO. We trained the models based
on 4470 live requests from 79 users against the SUO API and
noted an average latency of 485ms per request while training,
with no observable non-functional errors (e.g. API responses
of 400, 404, or 500). For executing the Markov4JMeter
load tests, we used a 2018 MacBook Pro with 2.2GHz 6-
Core Intel Core i7 with 16GB 2400 MHz DDR4 RAM. For
the Lodestone testing, our instances operated on Lambdas
configured at 3008MB of RAM with a 15m timeout period.
As Markov4JMeter does not allow for profile-level think time
between steps, we used an average of the profile think-time
averages learned when configuring Markov4JMeter (30s per
step). In order to ensure the SUT properly entered a dormant
state with no cached information, we cleared all caches and
cookies before executing each experiment.

C. Results and Discussion

We compare the features between Markov4JMeter and
Lodestone, as shown in Figure 8. JMeter [1] is a well-studied
open-source tool that has classically been used for LT of
systems in research as well as industry. While it can be
deployed in the cloud in virtual servers, it is not a cloud-
native technology. We show JMeter as the base case for

JMeter[1] Markov4JMeter[4], [6] Lodestone
Behavioral 3 3 3

Modeled 7 3 3
Distributed 7 7 3

Compressed 7 7 3
Streaming 7 7 3

Scalable 7 7 3
Cloud-based 7 7 3
Time-variant 7 7 3

Fig. 8. Feature Matrix of Select Load-testing Tools

comparison, it does not support model-based LT by default,
it is client-based instead of being distributed; however, it can
be based on user behavior if explicitly configured from static
artifacts. Markov4JMeter extends JMeter with the capability to
configure user-behavior Markov models within the LT system
[4]. However, Markov4JMeter does not continuously capture
or model user behavior; thus, it not built for online distributed
systems or cloud-native operations. WESSBAS, an extension
to Markov4JMeter [6], relies on batch-based learning instead
of online learning. Lodestone provides a cloud-native means to
learn, store, and execute user behavior models from streaming
data in the form of Markov models. As Lodestone is based on
the serverless compute model, our approach is both distributed
and scalable. In addition, Lodestone provides analysis of think-
time per user as well as per profile, where Markov4JMeter’s
documentation [4] shows a standard Gaussian think-time per
behavior test iteration.

For the first set of tests, we used UV=100 users on both
LT engines. In Figure 9, we observed the SUT warming up
to around 200 sustained concurrent requests per minute while
running Markov4JMeter with 100 users; by comparison, in
Figure 9, we observed the SUT warming up to 1000 sus-
tained concurrent requests per minute while running Lodestone
with 100 simulated users. For the second set of tests, we
used UV=1000 users on both LT engines observing 2000
sustained concurrent requests per minute in Figure 10 for
Markov4JMeter; for Lodestone, we observed around 9500
sustained concurrent requests per minute (see Figure 10).
With our second test, we were able to hit the throttling
limit of the SUT, an operational upper bound in the SUT).
The SRPM of Lodestone was an order of magnitude higher
than Markov4JMeter when generating workload on the same
models for UV=100 and UV=1000. In addition, our results
show that Lodestone was able to elicit an operational limitation
that Markov4JMeter was not capable of detecting with the
hardware and configurations available to our machine. Any
additionally perceived slowdown in Markov4JMeter is a well
known limitation of the product (see [8] for more details)
due to the underlying product (JMeter) being primarily single-
client based. We control for this factor through the use of a
lower order of magnitude UV in addition to the higher UV
to account for low throughput scenarios. Other factors for
us to consider are the variations in run-time and unknown
environmental factors between our experiments; however, we
controlled for these factors by running multiple iterations
of our experiments and waiting a sufficient time between
iterations to allow for such variations to clear. Throughout the
multiple iterations of the experiment detailed above, the SRPM
of Lodestone remained an order of magnitude higher than the
SRPM of Markov4JMeter. Our results show that Lodestone
extends features provided by classic MC-based approach to
LT (RQ1) while providing performance benefits (RQ2).

VI. SUMMARY

We have described the processes and architecture used to
implement Lodestone - a real-time approach to ingest event
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Fig. 9. Test Per Minute Volume (UV=100)
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Fig. 10. Test Per Minute Volume (UV=1000)

logs, model user behavior, and simulate scalable workload on
software systems. Lodestone is capable of real-time behavior
modeling in systems where richly-populated event logs are
readily available from an SUO and a representative SUT is
available for evaluating software before it is released to users.
We compared the features and operational measurements of
Lodestone with an extension to a well-researched open-source
product JMeter - Markov4JMeter. Based on the boundaries
established in our evaluation, we have shown Lodestone to
perform favorably when using the same learned models as
Markov4JMeter; moreover, Lodestone extends the features
provided by Markov4JMeter to scale to cloud-scale workload
requirements. Our approach also has potential for future exten-
sion toward dynamic execution of massive simulations, agile
requirements mining (through examination of the behavior
models), automated regression testing, and adaptive security
testing. Additional work can be done to extend our results by
varying the configuration parameters of our experimentation
and providing additional metrics for comparing the two LT
systems. This real-time approach to LT uses streaming log
data to generate and dynamically update user behavior models,
cluster them into similar behavior profiles, and instantiate
distributed workload of software systems.
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