
EasyChair Preprint
№ 4194

High-Level Query Languages for Querying Big
Data Sets

Christina Kang Xiaoxi, Rhodian Lu Jing Hong,
Muhammad Ramzan Ashraf and Patrice Boursier

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 15, 2020

IEEE

High-Level Query Languagesfor Querying Big Data
Sets

Christina Kang Xiaoxi, Rhodian
Lu Jing Hong, Muhammad

Ramzan Ashraf
School of Computing & IT

Tayor’s University
Selangor, Malaysia
{kangxiaoxi, acknd,

jacjksnaca}@sd.taylors.edu.my

Patrice Boursier
School of Computing & IT

Tayor’s University
Selangor, Malaysia

 Patrice.Boursier@taylors.edu.my

s

Abstract— This paper proposes a comparison of different
approaches for querying big data sets with high-level query
languages. It also presents the HiFun functional query language.
A prototype is currently being developed that will allow to test
the usability of the HiFun language.

Keywords—big data, query languages, functional, HiFun

I. INTRODUCTION
The objective of the work presented in this paper is to

develop a system for querying big data sets, with a simple
GUI based on a high-level query language. It is based on Prof.
Nicolas Spyratos’ research on the HiFun high-level query
language (Spyratos & Sugibuchi, 2018).

With such a system, the user will no longer need to
know the database structure and any database programming
language in order to query big data sets and easily perform
some basic data analytics. The main algorithms that are being
used are SQL group-by queries and MapReduce jobs, and it is
based on the HiFun functional query language which is the
main approach. HiFun produces expressions that can be
encoded either as MapReduce jobs or as SQL group-by
queries (Spyratos & Sugibuchi, 2018).

Data analysis is a well-established research field
where it’s applicable to multiple applications available in
several domains. However, the volume of data accumulated by
modern applications increased in unprecedented rates.
Everything around our daily lives are all potential data,
especially for internet platforms such as Google and Facebook
which handle more than 2.5 petabytes of data. In order to
analyze all these data, the technology has evolved a lot for
improvements of data analytic processes.

In order to solve the big data process problem, a lot
of new languages have been proposed, such as NoSQL, and
such frameworks as the Apache Hadoop Big Data Platform.
However, all these platforms need highly-skilled professionals
who can handle and manipulate all the data. CapGemini’s
report discovered that 37% of companies have trouble in
finding skilled data analysts to make use of their data

(Vanessa Rombaut, 2016). The best bet is to form one
common data analyst team for the company, either through
retraining your current workers or recruiting new workers
specialized in big data and big data analytics. In order to solve
this, the HiFun platform is a formal framework which helps to
analyze data queries based on MapReduce jobs or as an SQL
group-by query. The database analyst will no longer need to
know the query language but will still able to analyze the
various datasets altogether. The system backend code will
auto generate the query according to the user selection.

With a traditional SQL database design, entities are
connected via relationships, and a call from one entity to
another is required in order to find the relationship, and then
only the value can be found. This requires a very intensive
database study time and if it is a big database, it makes it even
harder to implement. Now, a lot of data are unsupervised, and
a lot of new values will appear in the databases. Hence for
traditional database design, a lot of companies will encounter
data integration problems. For example, if a user wants to use
SQL to find the total quantity for a branch, he will need to
understand the relationships between all entities and use join
operations to find the correct values and do the calculations.

To solve this, HiFun is using a functional approach to
connect all attributes. Each of the attributes will have a query
function generator in the backend so that the code will auto
generate according to the user selection. Instead of linking
attributes via their relationships, the system we are developing
is linking all the attributes by using different functions. An
example is shown in Figure 1.1, extracted from (Spyratos &
Sugibuchi, 2018), where attributes are linked by functions
such as r, b, etc.

The background of the study is presented in section II. A

comparison of big data query languages is proposed in section
III. Section IV introduces the HiFun functional query
language (Spyratos & Sugibuchi, 2018). Conclusion and
future work are given in section V.

Figure 1.1: Database sample graph

II. BACKGROUND
Data transactions are around us everywhere in our

daily life. Digital devices are producing and collecting all
kinds of data. Since the Smart City and Smart Home ideas
have spread around the world, more and more data have been
collected. According to the International Data Corporation
(IDC) who released the 2020 Digital Universe report (Gantz &
Reinsel, 2013), it is stated that the total amount of data
available will double every two years (Guo, Zhang, & Zhu,
2015). The challenge for processing big data is how to bring
big data analytics to a higher level. Big data processing cannot
only be done by professional database administrators.

The development of big data technology has grown
very rapidly during the last ten years, and companies are
tracking information related to their customers. Millions of
sensors capture data that are kept into databases (Manyika et
al., 2011), and Google is processing more than 24 petabytes of
data per day (CACM Staff, 2017).

Data that are being collected can be divided into
different categories. From figure 2.1 we can see that the
volume of unstructured data such as video or rich media is
quite high and the volume of structured or semi-structured
data such as social media feeds will be lower.

Figure 2.1: Semi-structured vs. unstructured data

Organizations and companies are willing to collect

and process big data in order to improve their business profit.
However, there are still some challenges when the company
wants to go for Big Data. There are indeed a lot of
requirements in order to become a professional data analyst.
The other challenge comes from the fact that multiple
databases need to be merged while staying accessible to the

user. From one platform to another, how data can be processed
together is another challenge faced by most organizations
nowadays.

There are plenty of tools and algorithms that are
available for big data processing, the most common ones
being Apache Hadoop, Spark, Tableau, etc. Technologies are
able to support data sets that come from different systems
(Spyratos & Sugibuchi, 2018), especially the Apache Hadoop
big data platform, which is based on the MapReduce
framework and is very commonly used by many organizations
nowadays.

However, there is a need for highly skilled
professionals who will be able to handle and make use of the
tools for the organization. They should be able to understand
the different dimensions of big data modeling, architecture
and especially data integration (Wani & Jabin, 2018).
According to (Manyika et al., 2011), US might need 140,000
to 190,000 skilled professionals for data analysis as well as
more than one million managers and analysts with advanced
analytical knowledge and skills to make correct and accurate
decisions.

As we can see, there is a very high demand from any
organization who has engaged in big data analytics and
frameworks. But every organization needs data scientists in
order to make more profit from the data that has been
collected from their system (Wani & Jabin, 2018), (Kim,
Trimi, & Chung, 2014), (Manyika et al., 2011). The demand
for professional data analytics is one of the challenges that big
data is facing nowadays.

The efficiency and “interactiveness” of big data
processing systems, which will allow the user to access
different types of databases, will be some of the main
challenges for big data processing (Che, Safran, & Peng,
2013). Interactiveness is one of the critical challenges for
system designers and data scientists (Wani & Jabin, 2018),
and the lack of interactiveness will drop down the
performance of the data processing result.

III. BIG DATA QUERY LANGUAGES
Most data that are stored in a database are processed

via a database management system (DBMS) (Schweikardt,
Schwentick, & Segoufin, 2010). There are different types of
database systems that are usually used with different kinds of
query languages depending on the types of data and the size of
the database. This section will focus on query languages and
their limitations.

The main purpose of a database management system
is to be able to query data. In general, a query is a mapping
which takes a database instance D and maps it into a relation
of fixed entity. The query language is what will allow users to
pose queries in a semantically unambiguous way. SQL and
NoSQL are common query languages that are used with
relational and non-relational databases, respectively. SQL
databases handle structured data and have a predefined

schema whereas NoSQL databases handle unstructured data
and have a dynamic schema.

The limitations of traditional query languages are
related to the complexity and the integration from one
language to another. For example, SQL can be in some cases a
very complex language (Schweikardt et al., 2010). Join
operations can also be very costly, and it will not be very
suitable for querying large data sets.

In addition, all these query languages are low-level,
and they require professionals with database programming
skills in order to process and query the data.

High Level Query Languages

Several high-level query languages have been built
on top of Hadoop, for example Pig, Hive or JAQL. The
relationships between high-level query languages and Hadoop
are shown in Figure 3.1 (Stewart et al., 2011). High-level
query languages are able to be compiled into a sequence of
MapReduce jobs and also executed in different environments.

Figure 3.1: High Level Query Language Implementation Stack

Figure 3.2 illustrates how high-level query languages

can help increasing computational power.

Figure 3.2: Computational Power Comparison (Stewart et al., 2011)

Relational completeness is a mathematical notation
which defines the relationship which the operators and
functions are required for the relationship between each of the
entities. The SQL language is relationally complete, and it is
able to provide for all operations through the relational
algebra. Some additional aggregate functions can also be done
by SQL such as average, count and sum.

Turning Completeness defines a language that has
conditional constructs which can define the recursion for each
iteration, memory architecture and emulate an infinite memory
model which is suitable for unsupervised data.

User Defined Functions means that the programs are
customized for the users with data formats and bespoke
functions. Users are able to define functions that provide them
with a higher level of data processing.

Figure 3.3: Comparison of performance/productivity trade-off for
different approaches

Figure 3.3 shows a comparison between types of
queries and processing methods. A DBMS with a high level
language gives the highest performance (Shaikhha et al.,
2016). The DMBS will produce high performance and the
developers will be more efficient at the high-level of
abstraction without being affected by the negative
performance impact. In addition, a high-level query language
can also quickly define the system modules. The system will
have more flexibility and enable the user to choose and
experience with a number of possibilities when building the
query engines.
 Below are given examples of high-level query
languages for querying big data sets.

Pig – A high level data flow interface for Hadoop (Stewart et
al., 2011).

Pig is a high-level dataflow system that aims to
combine SQL and MapReduce by having high-level data
manipulation constructs which can be assembled in an explicit
dataflow which interleaves SQL queries with MapReduce
functions. Pig programs will first parse for syntactic and
instance checking then produce the logical plan and arrange it
in a directed acyclic graph. The logical plan is to be compiled
in the logical plan compiler and then optimized once more by
the MapReduce optimizer by using the map-reduce combiner
function. The MapReduce program will be executed in the
Hadoop application.

Pig provides simple data types such as int and double but also
non-normalized data models. Various data types are supported
by Pig collections such as cover maps, tuples and bags. A
sample of Pig word count query is given is Figure 3.4.

Figure 3.4: Pig Word Count Benchmark

Hive – A data warehouse infrastructure for Hadoop (Stewart
et al., 2011).

Hive is a query language which provides entry points
for data analysts, minimizing the pain to migrate to the
Hadoop infrastructure for distributed data storage and parallel
query processing. Hive also supports SQL and declarative
HiveQL and combines MapReduce jobs such as Hadoop
HLQLs. Hive also includes SQL features such as join, group-
by, aggregations and create table as select all, which make
HiveQL very much SQL-like.

Data structures in Hive are like tables, columns, rows
and partitions which are easily understood database concepts.
Hive supports all primitive types of data such as integers,
floats, doubles and strings and as well as maps, lists and struct.
Hive also has a system catalogue which is a meta store that
contains schemas and statistics which are very useful in data
exploration, query optimization and query compilation. Like
mentioned before for Pig, Hive also includes a query compiler
that compiles a Hive query into as acyclic graph of
MapReduce tasks. A sample Hive word count query is shown
in Figure 3.5.

Figure 3.5: Hive Word Count Query

JAQL – A JSON Interface to MapReduce

JAQL is a functional big data query language which
is built upon the JavaScript Object Notation Language
(Stewart et al., 2011). JAQL is a dataflow language that
combines structured and non-structured database information
and transfer it into JSON values. The framework of JAQL is
able to read and write data in custom formats and provides
support for common input/output formats. In a similar way as
Pig and Hive, JAQL is also able to operate filtering,
transformations, sort, group-by, aggregation and join.

JSON operates with different data types such as
numbers, strings, arrays etc. For the mismatch of different data
models, JSON is able to provide easy migration of data from
one to another. A sample query is shown in Figure 3.6.

Figure 3.6: JAQL Word Count Benchmark $input

Lego Base Lightweight Modular Staging Compiler
(Shaikhha et al., 2016).

The Lego Base system modular architecture is shown
in Figure 3.7 which is the system architecture. Programmers
will be able to write queries as high-level Scala programs that
will generate and process the query.

Figure 3.7: Overall Lego Base system architecture

The Lego Base system offers user-friendly concepts
by providing database specification and optimization as a
library and by generating the query engine. LMS (Lightweight
modular staging) will perform all possible user-defined
queries and generate a closer and final code for queries. Lego
Base can compile expressions at runtime.

LMS provides programmers with many optimizing
functions such as code elimination, constant propagation, loop
fusion, deforestation and code motion.

According to (Stewart et al., 2011), there are some
common features shared by Pig, Hive and JAQL, and because
of this they are not only limited to their own core functionality
but also have increased their power according to the user
definition.

IV. THE HIFUN APPROACH
HiFun is a high-level functional query language

which is used for defining analytic queries for big data sets
analytics (Spyratos & Sugibuchi, 2018). As defined in the
previous section, a high query language is more flexible and
easier to use for data analytics.

HiFun is based on well-formed functional queries,
and it is very similar to relational queries (Spyratos &
Sugibuchi, 2018). HiFun expressions can include SQL group-
by queries but they can also include MapReduce jobs.

HiFun can also include group-by queries for NoSQL.
It is able to independently evaluate lower level mechanisms
for the higher-level query.

In the following, we will explain the HiFun approach and the
advantages and concerns of using HiFun for big data analytics.

The most import concepts proposed by HiFun are

Grouping, Measuring and Reduction. A HiFun expression can
be shown as: Q = (g, m, op)
Where g stands for Grouping, m stands for Measuring and op
stands for operations.

Let’s take an example to see how expressions work.
Suppose D is the set of invoices in a supermarket over a year.
An invoice has information about the delivery date, branch,

product name and quantity of the product. Figure 4.1 shows a
sample dataset.

Figure 4.1: Sample dataset for HiFun

Suppose we want to know the total quantity for each

branch. HiFun will use grouping, measuring and op in order to
get the result.

As shown in Figure 4.2, the HiFun query will be
viewed as a set of four functions which we name d, b, p, and
q. D is the set of the invoice. From Branch, we find the
invoice and find the quantity and do the operation of sum in
order to find each quantity for that branch.

Figure 4.2: A HiFun analytic query and its answer

Grouping. The first step that a HiFun expression will do is
Grouping. In the above example, the operation is b. This step
will group all the invoices for that branch. Invoices will first
be grouped as branches. In the example, the invoice will be
grouped from branch1, branch2 and branch 3. The result of
this expression will be like:

- Branch 1: 1, 2
- Branch 2: 3, 4
- Branch 3: 5, 6, 7

Measuring. The second step consists in finding the values. In
our case, we want to find the quantities. The result will be
like:

- Branch 1: 200,100
- Branch 2: 200,400
- Branch 3: 100,400,100

Reduction. The reduction in the expression is done through
operators. In our example, the user wants to see the total
quantity for each branch, then the operator will be sum. Then,
the result will be like:

- Branch 1: 200 +100 = 300
- Branch 2: 200+400 = 600

- Branch 3: 100+400+100 = 600
After these 3 steps, we are able to get the desired result. The
HiFun expression will be: Q = (b, q, sum)

Figure 4.3 illustrates the execution of a HiFun query.

Figure 4.3: A query Q and its answer, ansQ

As said earlier, a HiFun query Q can combine SQL
and MapReduce. No matter for what kind of database is used
there are two steps needed for a HiFun query. The first step is
the mapping step, which means we need to find the key-value
pairs. The second step is the reduction step which means the
operator that we need to apply to the key-value pairs that have
been found in the first step.

A HiFun query Q can be represented as Q = (e, e’,
op). Figure 4.4 shows a running example for a Hadoop query.

Figure 4.4: Evaluating the query of our running example in Hadoop

We can see ((k(i), vi)) as an example for the key-
value pairs from the mapping step for all items (i) in the set D.
In this case, there are 2 functions: k: D-> K and v: D-> V. The
K and V are domain values. Then op will be the operator for
the Reduce job and the query for this expression will be Q =
(k, v, op). If the data set is a relational database, we can use
SQL to generate the HiFun query Q as well:
 Select target(e), op(target(e’)) As Result

From T
Group by target(e)

In the example shown above, we can encode the HiFun
expression Q in either MapReduce job for a non-relational
database but also for a relational database.

HiFun is considered as a powerful language because
of the rewrite ability in the SQL and NoSQL or MapReduce
by the query writing. The basic writing rule for the language
is:

(g ◦ f,m,op) = (g, (f,m,op), op)

Figure 4.5 illustrates the evaluation process for a
HiFun expression. The first is unfolding the query of each
expression. The Q expression will be then divided into Q1 and
Q0. Then, based on the query, we generate the answer for Q.
In this example, Q1 has already had its answer stored in the

expression. On the right-hand side appears the recursion of the
giving example. The base of the recursion is 1! and since we
have three values in the expression then the recursion of the
giving expression will be 3!

Figure 4.5: Recursive evaluation of the analytic query “totals by
region”

Advantages of the HiFun approach

HiFun as a high-level query language for expressing
analytic queries over big data sets that are easy to evaluate
into group by or MapReduce queries It has a clear separation
of the conceptual level and formal rewriting approach which
directly access group by and MapReduce jobs.

HiFun uses functional algebra approaches for each of
the attributes in the data set and generates query expressions
for the attributes. It is able to evaluate user requirements into
the query to determine if it is a MapReduce job or a SQL
group-by query. The system is able to determine the dataset
attributes and generate the query according to the nature of the
data attributes.

It is high-level query language in the sense that it is
conceptual level. The data set will be shown in the graph no
matter if it processes relational or non-relational data
attributes. Users no longer need to understand the
relationships between all the attributes, they only need to
know the number of attributes in the given dataset. The
requirements of the user having to understand and have
database knowledge is much lower compared to another query
language.

HiFun has the ability to rewrite the query language in
order to get the result. The data attributes may be stored in
different types of databases. In order to get the result, we need
to retrieve values in the HiFun language and write the query in
order to be able to access different databases.

Concerns of HiFun

There are two concerns that were bought up in
(Spyratos & Sugibuchi, 2018) about the HiFun language. The
first concern is related to the changing of the dataset D and
another concern will be the extension of the functional
algebra.

Throughout the research about the HiFun language,
the data set that has been implemented is very static. However,
for different application running environments, the data set
may also change frequently. Due to the change of the data set,
the query has to be updated frequently in order to get more
accurate results. For example, the dataset that we have used is
all about invoices, and the functional queries only target

attributes of invoices. However, if the invoices dataset is
changed, some of the function queries also need to adapt to the
changes. In order to solve this concern, HiFun will propose
incremental algorithms in order to generate incremental
queries as well.

Another concern that has been discussed in the HiFun
research relates to the extension of functional expressions
(Spyratos & Sugibuchi, 2018). It is very important that HiFun
be able to unify the expressions in SQL and MapReduce in the
formal framework. Currently there is no formal common
framework for SQL and MapReduce in the HiFun language.
In order to solve this, HiFun could include a formal
framework for all select, group by and MapReduce jobs. The
data will be unified under the data management platform. The
formal data management platform will be able to unify all the
expressions in SQL and NoSQL. Queries will be generated in
a unified system, which in that case will be more standardized.

V. CONLUSION AND FUTURE WORK
In this paper, we have compared different approaches

for high-level query languages for querying big data sets.
We have also presented the HiFun query language

that has been proposed by (Spyratos & Sugibuchi, 2018).
We are currently implementing a prototype that will

allow to test the usability of the HiFun language. It includes (i)
a graphical user interface that will allow the user to prepare
the query and (ii) a backend system that will process the
graphical query and generate access to the data sets, and
finally send back the results to the user.

REFERENCES
[1] Bry, F., & Eckert, M. (2006). A high-level query language for events.

Proceedings - SCW 2006: IEEE Services Computing Workshops, 31–38.
https://doi.org/10.1109/SCW.2006.2

[2] CACM Staff. (2017). Big data. Communications of the ACM, 60(6), 24–
25. https://doi.org/10.1145/3079064

[3] Che, D., Safran, M., & Peng, Z. (2013). From Big Data to Big Data
Mining: Challenges, Issues, and Opportunities. In Database Systems for
Advanced Applications (pp. 1–15). https://doi.org/10.1007/978-3-642-
40270-8_1

[4] Gantz, J., & Reinsel, D. (2013). The Digital Universe IN 2020: Big
Data, Bigger Digital Shadows, and Biggest Growth in the Far East.
Retrieved from http://www.emc.com/leadership/digital-
universe/iview/index.htm.

[5] Guo, H.-D., Zhang, L., & Zhu, L.-W. (2015). Earth observation big data
for climate change research. Advances in Climate Change Research,
6(2), 108–117. https://doi.org/10.1016/J.ACCRE.2015.09.007

[6] Kim, G.-H., Trimi, S., & Chung, J.-H. (2014). Big-data applications in
the government sector. Communications of the ACM, 57(3), 78–85.
https://doi.org/10.1145/2500873

[7] Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C.,
& Byers, A. H. (2011). Big data: The next frontier for innovation,
competition, and productivity. McKinsey Global Institute The McKinsey
Global Institute. Retrieved from
https://bigdatawg.nist.gov/pdf/MGI_big_data_full_report.pdf

[8] Schweikardt, N., Schwentick, T., & Segoufin, L. (2010). Database
theory: Query languages. Algorithms and theory of computation
handbook. CRC Press LLC. Retrieved from
http://www.lsv.fr/~segoufin/Papers/Mypapers/DB-chapter.pdf

[9] Shaikhha, A., Klonatos, Y., & Koch, C. (2016). Building Efficient
Query Engines in a High-Level Language, 853–864.
https://doi.org/10.14778/2732951.2732959

[10] Spyratos, N., & Sugibuchi, T. (2018). HIFUN - a high level functional
query language for big data analytics. Journal of Intelligent Information
Systems. https://doi.org/10.1007/s10844-018-0495-6

[11] Stewart, R. J., Trinder, P. W., & Loidl, H. W. (2011). Comparing high
level MapReduce query languages. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 6965 LNCS(Section 6), 58–72.
https://doi.org/10.1007/978-3-642-24151-2_5

[12] Strauch, C., & Kriha, W. (n.d.). NoSQL Databases Lecture Selected
Topics on Software-Technology Ultra-Large Scale Sites. Retrieved from
http://www.christof-strauch.de/nosqldbs

[13] Vanessa Rombaut. (2016). Top 5 Problems with Big Data (and how to
solve them). Retrieved May 13, 2018, from
https://www.business2community.com/big-data/top-5-problems-big-
data-solve-01597918

[14] Wani, M. A., & Jabin, S. (2018). Big Data: Issues, Challenges, and
Techniques in Business Intelligence, (October 2016), 613–628.
https://doi.org/10.1007/978-981-10-6620-7_59

[15] Zhang, R., Snodgrass, R. T., & Debray, S. (n.d.). Application of Micro-
Specialization to Query Evaluation Operators. Retrieved from
https://www2.cs.arizona.edu/~rts/pubs/zhang_smdb2012.pdf

