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Abstract— This paper proposes a comparison of different 
approaches for querying big data sets with high-level query 
languages. It also presents the HiFun functional query language. 
A prototype is currently being developed that will allow to test 
the usability of the HiFun language. 
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I. INTRODUCTION  
The objective of the work presented in this paper is to 

develop a system for querying big data sets, with a simple 
GUI based on a high-level query language. It is based on Prof. 
Nicolas Spyratos’ research on the HiFun high-level query 
language (Spyratos & Sugibuchi, 2018). 

With such a system, the user will no longer need to 
know the database structure and any database programming 
language in order to query big data sets and easily perform 
some basic data analytics. The main algorithms that are being 
used are SQL group-by queries and MapReduce jobs, and it is 
based on the HiFun functional query language which is the 
main approach. HiFun produces expressions that can be 
encoded either as MapReduce jobs or as SQL group-by 
queries (Spyratos & Sugibuchi, 2018). 

Data analysis is a well-established research field 
where it’s applicable to multiple applications available in 
several domains. However, the volume of data accumulated by 
modern applications increased in unprecedented rates. 
Everything around our daily lives are all potential data, 
especially for internet platforms such as Google and Facebook 
which handle more than 2.5 petabytes of data. In order to 
analyze all these data, the technology has evolved a lot for 
improvements of data analytic processes.  

In order to solve the big data process problem, a lot 
of new languages have been proposed, such as NoSQL, and 
such frameworks as the Apache Hadoop Big Data Platform. 
However, all these platforms need highly-skilled professionals 
who can handle and manipulate all the data. CapGemini’s 
report discovered that 37% of companies have trouble in 
finding skilled data analysts to make use of their data 

(Vanessa Rombaut, 2016). The best bet is to form one 
common data analyst team for the company, either through 
retraining your current workers or recruiting new workers 
specialized in big data and big data analytics. In order to solve 
this, the HiFun platform is a formal framework which helps to 
analyze data queries based on MapReduce jobs or as an SQL 
group-by query. The database analyst will no longer need to 
know the query language but will still able to analyze the 
various datasets altogether. The system backend code will 
auto generate the query according to the user selection. 

With a traditional SQL database design, entities are 
connected via relationships, and a call from one entity to 
another is required in order to find the relationship, and then 
only the value can be found. This requires a very intensive 
database study time and if it is a big database, it makes it even 
harder to implement. Now, a lot of data are unsupervised, and 
a lot of new values will appear in the databases. Hence for 
traditional database design, a lot of companies will encounter 
data integration problems. For example, if a user wants to use 
SQL to find the total quantity for a branch, he will need to 
understand the relationships between all entities and use join 
operations to find the correct values and do the calculations. 

To solve this, HiFun is using a functional approach to 
connect all attributes. Each of the attributes will have a query 
function generator in the backend so that the code will auto 
generate according to the user selection. Instead of linking 
attributes via their relationships, the system we are developing 
is linking all the attributes by using different functions. An 
example is shown in Figure 1.1, extracted from (Spyratos & 
Sugibuchi, 2018), where attributes are linked by functions 
such as r, b, etc. 

 
The background of the study is presented in section II. A 

comparison of big data query languages is proposed in section 
III. Section IV introduces the HiFun functional query 
language (Spyratos & Sugibuchi, 2018). Conclusion and 
future work are given in section V. 

 
 



 

 
Figure 1.1: Database sample graph 
 

II. BACKGROUND 
Data transactions are around us everywhere in our 

daily life. Digital devices are producing and collecting all 
kinds of data. Since the Smart City and Smart Home ideas 
have spread around the world, more and more data have been 
collected. According to the International Data Corporation 
(IDC) who released the 2020 Digital Universe report (Gantz & 
Reinsel, 2013), it is stated that the total amount of data 
available will double every two years (Guo, Zhang, & Zhu, 
2015). The challenge for processing big data is how to bring 
big data analytics to a higher level. Big data processing cannot 
only be done by professional database administrators.  

The development of big data technology has grown 
very rapidly during the last ten years, and companies are 
tracking information related to their customers. Millions of 
sensors capture data that are kept into databases (Manyika et 
al., 2011), and Google is processing more than 24 petabytes of 
data per day (CACM Staff, 2017). 

Data that are being collected can be divided into 
different categories. From figure 2.1 we can see that the 
volume of unstructured data such as video or rich media is 
quite high and the volume of structured or semi-structured 
data such as social media feeds will be lower. 

 
Figure 2.1: Semi-structured vs. unstructured data 

 
Organizations and companies are willing to collect 

and process big data in order to improve their business profit. 
However, there are still some challenges when the company 
wants to go for Big Data. There are indeed a lot of 
requirements in order to become a professional data analyst. 
The other challenge comes from the fact that multiple 
databases need to be merged while staying accessible to the 

user. From one platform to another, how data can be processed 
together is another challenge faced by most organizations 
nowadays.  

There are plenty of tools and algorithms that are 
available for big data processing, the most common ones 
being Apache Hadoop, Spark, Tableau, etc. Technologies are 
able to support data sets that come from different systems 
(Spyratos & Sugibuchi, 2018), especially the Apache Hadoop 
big data platform, which is based on the MapReduce 
framework and is very commonly used by many organizations 
nowadays. 

However, there is a need for highly skilled 
professionals who will be able to handle and make use of the 
tools for the organization. They should be able to understand 
the different dimensions of big data modeling, architecture 
and especially data integration (Wani & Jabin, 2018). 
According to (Manyika et al., 2011), US might need 140,000 
to 190,000 skilled professionals for data analysis as well as 
more than one million managers and analysts with advanced 
analytical knowledge and skills to make correct and accurate 
decisions. 

As we can see, there is a very high demand from any 
organization who has engaged in big data analytics and 
frameworks. But every organization needs data scientists in 
order to make more profit from the data that has been 
collected from their system (Wani & Jabin, 2018), (Kim, 
Trimi, & Chung, 2014), (Manyika et al., 2011). The demand 
for professional data analytics is one of the challenges that big 
data is facing nowadays. 

The efficiency and “interactiveness” of big data 
processing systems, which will allow the user to access 
different types of databases, will be some of the main 
challenges for big data processing (Che, Safran, & Peng, 
2013). Interactiveness is one of the critical challenges for 
system designers and data scientists (Wani & Jabin, 2018), 
and the lack of interactiveness will drop down the 
performance of the data processing result. 

III. BIG DATA QUERY LANGUAGES 
Most data that are stored in a database are processed 

via a database management system (DBMS) (Schweikardt, 
Schwentick, & Segoufin, 2010). There are different types of 
database systems that are usually used with different kinds of 
query languages depending on the types of data and the size of 
the database. This section will focus on query languages and 
their limitations. 

The main purpose of a database management system 
is to be able to query data. In general, a query is a mapping 
which takes a database instance D and maps it into a relation 
of fixed entity. The query language is what will allow users to 
pose queries in a semantically unambiguous way. SQL and 
NoSQL are common query languages that are used with 
relational and non-relational databases, respectively. SQL 
databases handle structured data and have a predefined 



schema whereas NoSQL databases handle unstructured data 
and have a dynamic schema. 

The limitations of traditional query languages are 
related to the complexity and the integration from one 
language to another. For example, SQL can be in some cases a 
very complex language (Schweikardt et al., 2010). Join 
operations can also be very costly, and it will not be very 
suitable for querying large data sets. 

In addition, all these query languages are low-level, 
and they require professionals with database programming 
skills in order to process and query the data. 
 
High Level Query Languages 

Several high-level query languages have been built 
on top of Hadoop, for example Pig, Hive or JAQL. The 
relationships between high-level query languages and Hadoop 
are shown in Figure 3.1 (Stewart et al., 2011). High-level 
query languages are able to be compiled into a sequence of 
MapReduce jobs and also executed in different environments. 

 
Figure 3.1: High Level Query Language Implementation Stack  

 
Figure 3.2 illustrates how high-level query languages 

can help increasing computational power. 

 
Figure 3.2: Computational Power Comparison (Stewart et al., 2011) 
 

Relational completeness is a mathematical notation 
which defines the relationship which the operators and 
functions are required for the relationship between each of the 
entities. The SQL language is relationally complete, and it is 
able to provide for all operations through the relational 
algebra. Some additional aggregate functions can also be done 
by SQL such as average, count and sum.  

Turning Completeness defines a language that has 
conditional constructs which can define the recursion for each 
iteration, memory architecture and emulate an infinite memory 
model which is suitable for unsupervised data. 

User Defined Functions means that the programs are 
customized for the users with data formats and bespoke 
functions. Users are able to define functions that provide them 
with a higher level of data processing. 

 
Figure 3.3: Comparison of performance/productivity trade-off for 
different approaches 
 

Figure 3.3 shows a comparison between types of 
queries and processing methods. A DBMS with a high level 
language gives the highest performance (Shaikhha et al., 
2016). The DMBS will produce high performance and the 
developers will be more efficient at the high-level of 
abstraction without being affected by the negative 
performance impact. In addition, a high-level query language 
can also quickly define the system modules. The system will 
have more flexibility and enable the user to choose and 
experience with a number of possibilities when building the 
query engines. 
 Below are given examples of high-level query 
languages for querying big data sets. 
 
Pig – A high level data flow interface for Hadoop (Stewart et 
al., 2011). 

Pig is a high-level dataflow system that aims to 
combine SQL and MapReduce by having high-level data 
manipulation constructs which can be assembled in an explicit 
dataflow which interleaves SQL queries with MapReduce 
functions. Pig programs will first parse for syntactic and 
instance checking then produce the logical plan and arrange it 
in a directed acyclic graph. The logical plan is to be compiled 
in the logical plan compiler and then optimized once more by 
the MapReduce optimizer by using the map-reduce combiner 
function. The MapReduce program will be executed in the 
Hadoop application.  
 
Pig provides simple data types such as int and double but also 
non-normalized data models. Various data types are supported 
by Pig collections such as cover maps, tuples and bags. A 
sample of Pig word count query is given is Figure 3.4.  
 



 
Figure 3.4: Pig Word Count Benchmark 
 
Hive – A data warehouse infrastructure for Hadoop (Stewart 
et al., 2011). 

Hive is a query language which provides entry points 
for data analysts, minimizing the pain to migrate to the 
Hadoop infrastructure for distributed data storage and parallel 
query processing. Hive also supports SQL and declarative 
HiveQL and combines MapReduce jobs such as Hadoop 
HLQLs. Hive also includes SQL features such as join, group-
by, aggregations and create table as select all, which make 
HiveQL very much SQL-like.  

Data structures in Hive are like tables, columns, rows 
and partitions which are easily understood database concepts. 
Hive supports all primitive types of data such as integers, 
floats, doubles and strings and as well as maps, lists and struct. 
Hive also has a system catalogue which is a meta store that 
contains schemas and statistics which are very useful in data 
exploration, query optimization and query compilation. Like 
mentioned before for Pig, Hive also includes a query compiler 
that compiles a Hive query into as acyclic graph of 
MapReduce tasks. A sample Hive word count query is shown 
in Figure 3.5.  

 
Figure 3.5: Hive Word Count Query 
 
JAQL – A JSON Interface to MapReduce 

JAQL is a functional big data query language which 
is built upon the JavaScript Object Notation Language 
(Stewart et al., 2011). JAQL is a dataflow language that 
combines structured and non-structured database information 
and transfer it into JSON values. The framework of JAQL is 
able to read and write data in custom formats and provides 
support for common input/output formats. In a similar way as 
Pig and Hive, JAQL is also able to operate filtering, 
transformations, sort, group-by, aggregation and join. 

JSON operates with different data types such as 
numbers, strings, arrays etc. For the mismatch of different data 
models, JSON is able to provide easy migration of data from 
one to another. A sample query is shown in Figure 3.6.  

 

 
Figure 3.6: JAQL Word Count Benchmark $input 

 

Lego Base Lightweight Modular Staging Compiler 
(Shaikhha et al., 2016). 

The Lego Base system modular architecture is shown 
in Figure 3.7 which is the system architecture. Programmers 
will be able to write queries as high-level Scala programs that 
will generate and process the query.  

 
Figure 3.7: Overall Lego Base system architecture 
 

The Lego Base system offers user-friendly concepts 
by providing database specification and optimization as a 
library and by generating the query engine. LMS (Lightweight 
modular staging) will perform all possible user-defined 
queries and generate a closer and final code for queries. Lego 
Base can compile expressions at runtime.  

LMS provides programmers with many optimizing 
functions such as code elimination, constant propagation, loop 
fusion, deforestation and code motion. 

According to (Stewart et al., 2011), there are some 
common features shared by Pig, Hive and JAQL, and because 
of this they are not only limited to their own core functionality 
but also have increased their power according to the user 
definition.  

 

IV. THE HIFUN APPROACH 
HiFun is a high-level functional query language 

which is used for defining analytic queries for big data sets 
analytics (Spyratos & Sugibuchi, 2018). As defined in the 
previous section, a high query language is more flexible and 
easier to use for data analytics. 

HiFun is based on well-formed functional queries, 
and it is very similar to relational queries (Spyratos & 
Sugibuchi, 2018). HiFun expressions can include SQL group-
by queries but they can also include MapReduce jobs.  

HiFun can also include group-by queries for NoSQL. 
It is able to independently evaluate lower level mechanisms 
for the higher-level query.  
 
In the following, we will explain the HiFun approach and the 
advantages and concerns of using HiFun for big data analytics. 

 
The most import concepts proposed by HiFun are 

Grouping, Measuring and Reduction. A HiFun expression can 
be shown as: Q = (g, m, op) 
Where g stands for Grouping, m stands for Measuring and op 
stands for operations. 

Let’s take an example to see how expressions work. 
Suppose D is the set of invoices in a supermarket over a year. 
An invoice has information about the delivery date, branch, 



product name and quantity of the product. Figure 4.1 shows a 
sample dataset.  

 
Figure 4.1: Sample dataset for HiFun 

 
Suppose we want to know the total quantity for each 

branch. HiFun will use grouping, measuring and op in order to 
get the result. 

As shown in Figure 4.2, the HiFun query will be 
viewed as a set of four functions which we name d, b, p, and 
q. D is the set of the invoice. From Branch, we find the 
invoice and find the quantity and do the operation of sum in 
order to find each quantity for that branch.  

 
Figure 4.2: A HiFun analytic query and its answer 

 
Grouping. The first step that a HiFun expression will do is 
Grouping. In the above example, the operation is b. This step 
will group all the invoices for that branch. Invoices will first 
be grouped as branches. In the example, the invoice will be 
grouped from branch1, branch2 and branch 3. The result of 
this expression will be like:  

- Branch 1: 1, 2  
- Branch 2: 3, 4  
- Branch 3: 5, 6, 7 

 
Measuring. The second step consists in finding the values. In 
our case, we want to find the quantities. The result will be 
like:  

- Branch 1: 200,100 
- Branch 2: 200,400 
- Branch 3: 100,400,100 

 
Reduction. The reduction in the expression is done through 
operators. In our example, the user wants to see the total 
quantity for each branch, then the operator will be sum. Then, 
the result will be like:  

- Branch 1: 200 +100 = 300 
- Branch 2: 200+400 = 600 

- Branch 3: 100+400+100 = 600  
After these 3 steps, we are able to get the desired result. The 
HiFun expression will be: Q = (b, q, sum)  
 

Figure 4.3 illustrates the execution of a HiFun query. 

 
Figure 4.3: A query Q and its answer, ansQ 
 

As said earlier, a HiFun query Q can combine SQL 
and MapReduce. No matter for what kind of database is used 
there are two steps needed for a HiFun query. The first step is 
the mapping step, which means we need to find the key-value 
pairs. The second step is the reduction step which means the 
operator that we need to apply to the key-value pairs that have 
been found in the first step.   

A HiFun query Q can be represented as Q = (e, e’, 
op). Figure 4.4 shows a running example for a Hadoop query.  

 
Figure 4.4: Evaluating the query of our running example in Hadoop 
 

We can see ((k(i), vi)) as an example for the key-
value pairs from the mapping step for all items (i) in the set D. 
In this case, there are 2 functions: k: D-> K and v: D-> V. The 
K and V are domain values. Then op will be the operator for 
the Reduce job and the query for this expression will be Q = 
(k, v, op). If the data set is a relational database, we can use 
SQL to generate the HiFun query Q as well:  
  Select target(e), op(target(e’)) As Result 

From T  
Group by target(e)  

In the example shown above, we can encode the HiFun 
expression Q in either MapReduce job for a non-relational 
database but also for a relational database.  
 

HiFun is considered as a powerful language because 
of the rewrite ability in the SQL and NoSQL or MapReduce 
by the query writing. The basic writing rule for the language 
is:  

(g ◦ f,m,op) = (g, (f,m,op), op)  
 

Figure 4.5 illustrates the evaluation process for a 
HiFun expression. The first is unfolding the query of each 
expression. The Q expression will be then divided into Q1 and 
Q0. Then, based on the query, we generate the answer for Q. 
In this example, Q1 has already had its answer stored in the 



expression. On the right-hand side appears the recursion of the 
giving example. The base of the recursion is 1! and since we 
have three values in the expression then the recursion of the 
giving expression will be 3! 

 
Figure 4.5: Recursive evaluation of the analytic query “totals by 
region” 
 
Advantages of the HiFun approach 

HiFun as a high-level query language for expressing 
analytic queries over big data sets that are easy to evaluate 
into group by or MapReduce queries It has a clear separation 
of the conceptual level and formal rewriting approach which 
directly access group by and MapReduce jobs.  

HiFun uses functional algebra approaches for each of 
the attributes in the data set and generates query expressions 
for the attributes. It is able to evaluate user requirements into 
the query to determine if it is a MapReduce job or a SQL 
group-by query. The system is able to determine the dataset 
attributes and generate the query according to the nature of the 
data attributes.  

It is high-level query language in the sense that it is 
conceptual level. The data set will be shown in the graph no 
matter if it processes relational or non-relational data 
attributes. Users no longer need to understand the 
relationships between all the attributes, they only need to 
know the number of attributes in the given dataset. The 
requirements of the user having to understand and have 
database knowledge is much lower compared to another query 
language. 

HiFun has the ability to rewrite the query language in 
order to get the result. The data attributes may be stored in 
different types of databases. In order to get the result, we need 
to retrieve values in the HiFun language and write the query in 
order to be able to access different databases.  
 
Concerns of HiFun  

There are two concerns that were bought up in 
(Spyratos & Sugibuchi, 2018) about the HiFun language. The 
first concern is related to the changing of the dataset D and 
another concern will be the extension of the functional 
algebra.  

Throughout the research about the HiFun language, 
the data set that has been implemented is very static. However, 
for different application running environments, the data set 
may also change frequently. Due to the change of the data set, 
the query has to be updated frequently in order to get more 
accurate results. For example, the dataset that we have used is 
all about invoices, and the functional queries only target 

attributes of invoices. However, if the invoices dataset is 
changed, some of the function queries also need to adapt to the 
changes. In order to solve this concern, HiFun will propose 
incremental algorithms in order to generate incremental 
queries as well. 

Another concern that has been discussed in the HiFun 
research relates to the extension of functional expressions 
(Spyratos & Sugibuchi, 2018). It is very important that HiFun 
be able to unify the expressions in SQL and MapReduce in the 
formal framework. Currently there is no formal common 
framework for SQL and MapReduce in the HiFun language.  
In order to solve this, HiFun could include a formal 
framework for all select, group by and MapReduce jobs. The 
data will be unified under the data management platform. The 
formal data management platform will be able to unify all the 
expressions in SQL and NoSQL. Queries will be generated in 
a unified system, which in that case will be more standardized. 
 

V. CONLUSION AND FUTURE WORK 
In this paper, we have compared different approaches 

for high-level query languages for querying big data sets. 
We have also presented the HiFun query language 

that has been proposed by (Spyratos & Sugibuchi, 2018). 
We are currently implementing a prototype that will 

allow to test the usability of the HiFun language. It includes (i) 
a graphical user interface that will allow the user to prepare 
the query and (ii) a backend system that will process the 
graphical query and generate access to the data sets, and 
finally send back the results to the user. 
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