
EasyChair Preprint
№ 2073

Nepali POS Tagging using Deep Learning
Approaches

Sarbin Sayami, Tej Bahadur Shahi and Subarna Shakya

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 1, 2019

1

Nepali POS Tagging Using Deep Learning

Approaches

Abstract — Part of Speech (POS) tagging is one of the

fundamental task in Natural Language Processing (NLP). It

plays vital role in various NLP applications such as machines

translation, text-to-speech conversion, question answering,

speech recognition, word sense disambiguation and

information retrieval. It is also referred as grammatical

tagging or word-category disambiguation which is a process

of labeling every word in sentences with tag based on its

context and syntax of the language. It is challenging to

develop promising POS tagger for morphologically rich

language like Nepali. This paper focuses on implementing

and comparing different deep learning based POS tagger for

Nepali such as Simple Recurrent Neural Network (RNN),

Long Short Term Memory (LSTM), Gated Recurrent Unit

(GRU), and Bi-directional Long Short Term Memory (Bi-

LSTM). These approaches were trained and tested in a

corpus of Nepali tag set. The result shows that Bi-directional

LSTM outperforms all other three approaches.

Index Terms— POS, NLP, Simple RNN, LSTM, GRU, Bi-

LSTM, Nepali tag set

I. INTRODUCTION

Natural Language Processing is a field of computer

science which focuses on making computer understands

the words or sentences written in human languages. It is a

subset of Artificial Intelligence and linguistic which has a

start history backed in 1950s. Alan Turing introduced the

concept of Turing test from the article titled “Machine and

Intelligence”. SHRDLU were one of the Natural Language

System which worked in restricted “block worlds”

developed around 1960s. It can be classified as symbolic

approach, statistical approach and connectionist approach.

Symbolic approach is based on deep understanding of

linguistic knowledge and a wide variety of rules. It

 should also consist of knowledge representation

schemes to represent the facts about language

unambiguously. Statistical approach focuses on creation of

large text corpora which is a repository of real examples

of linguistic phenomena. These corpora are used to

generate approximate models to represent linguistic

phenomena without adding linguistic rules. This approach

has been extensively used in speech recognition,

lexical acquisition, parsing, part-of-speech tagging,

collocations, statistical machine translation, statistical

grammar learning etc. Connectionist approach combines

statistical learning with other theories of representation to

allow transformation, inference and manipulation of logic

formula. It focuses on creation of mesh network where

weights are used to represent knowledge.

POS tagging, also referred as grammatical tagging or

word-category disambiguation is a process of labeling

every word in sentences with tag. It can be carried out

manually or automatically. POS commonly includes

verbs, nouns, adjectives, adverbs, determiner, and so on

[1].

POS tagging is one of the fundamental task in NLP. It

plays vital role in various NLP applications such as

machines translation, text-to-speech conversion, question

answering, speech recognition, word sense

disambiguation and information retrieval [2].

POS tagging can be carried out with various

approaches rule-based, Stochastic and neural network.

These taggers are based on the assumption that a word

can be assigned a single POS tag in a given context, or at

least one of the possible parts of speech is most likely [3].

A. Rule Based

It uses linguistic knowledge to formulate simple rules

that assign POS to an ambiguous word using context

information [4]. These rules are often known as context

frame rules. Similarly, transformation based approaches

can also be implemented in conjunction to pre-defined set

of rules where new transformation rules are automatically

induced during the training [5].

The rule based approach requires pre-annotated training

corpora. However, transformation rules can be induced via

training. It initially assigns tags to words with reference to

the tag with the highest frequency for a particular word.

These tags are then refined and then trained to learn new

rules [5].

Brill Tagger is tagging program introduced by Eric Brill

in 1992. The program is based on Regulation and

transformation. Brill’s Tagger is a transformation-based

tagger. It uses a series of rules to correct the results of an

initial tagger. These rules are scored based on how many

errors are in the correct minus the number of new error.

Briefly Brill Tagger algorithm includes the initialization

process consisting of known and unknown words, as well

as the learning phase consisting of repeating in calculating

the error value of each candidate rule, choosing the rule of

the best, adding a set of rules and applied to the text, and

repeating until no rules that have a value above a certain

2

threshold or who have granted. Brill Tagger performs

annotation corpus provision in three ways: lexicon, lexical,

and contextual. [5].

B. STOCHASTIC APPROACH

A stochastic approach includes frequency, probability

or statistics. Frequency based approach are based on

tagging the word in an unannotated text using the most

frequently used tag for a specific word in the annotated

text. However, it might come up with rules that do not

agree with the standard grammatical rules of a particular

language. Unigram is a simple statistical tagging

algorithm. A unigram generally refers to a single token.

Therefore, a unigram tagger only uses a single word as its

context for determining the part of speech tag [6]. Unigram

builds a context model from the list of tagged sentences. It

uses to give a tag with unigram tagger prior to be trained

on a training corpus. That corpus will be determined in

which tags are most common for each word. Default tag

‘none’ assign to any token is not encountered in training

data. Unigram Tagger behaves like a search tagger unless

there is an easier technique for setting it up, called training.

Training Unigram Tagger by specifying sentence data is

marked as a parameter when initializing tagger. The

training process involves checking the dictionary tags

stored inside the tagger [6].

Probabilistic approach is also known as n-gram

approach which can be unigram, bigram and trigram. It

determines the best tag for a word by calculating the

probability of that it occurs with n previous tags. The most

common model used is the Hidden Markov Model

(HMM). HMM is a statistical Markov model with the

system model assumed to be a Markov process with some

hidden states. The HMM established the probabilistic

method for Part-of-speech tagging. The mathematics

behind the HMM was developed by L. E. Baum and

coworkers HMM are used in many applications such as

speech recognition, or bioinformatics. HMM taggers

choose the tag sequence that maximizes the following

formula:

P(word|tag) * P (tag|previous n tag)

The HMM approach is different from other POS

tagging approaches in tag combinations. HMM considers

the best combination of tags for word order, while other

tagging methods greedily tag one word at a time,

regardless of the optimal combination.

Entities in Hidden Markov Models are based on

tagging approach, {w1, w2… ww} is a set of words, {t1, t2…

tT} is a set of POS Tags, W1, n = W1 W2 … Wn is a sentence

of n words and T1, n = T1 T2 … Tn is a sequence of n POS

Tags

The probability in HMM using following formula

can be used to find the most likely sequence of POS tags

for a given sequence of words.

Pr (t1,n ,w1,n) ≈ Π𝑖=1
𝑛 (Pr (ti | ti-k, i-1) X Pr(w1 | ti)

Probability current tag t1 depends on previous k tags

and probability current word depends on only current tag

t1 [6].

The unigram and HMM based taggers are easy to

build, however given the nature of their probability

models; it is hard to incorporate more complex features

into them. The Maximum Entropy (ME) based tagger is

introduced to provide a principled way of incorporating

complex features into probability models.

Given a sentence w1 …wn, an ME based tagger models the

conditional probability of a tag sequence t1, … tn as:

Pr (t1, … tn | w1, … wn) ≈ Π𝑖=1
𝑛 P (ti | Ci)

where C1, … Cn are the corresponding contexts for each

word appearing in the sentence. The context C of a word

w includes the previous assigned tags before w.

An ME based tagger introduces the concept of features

which encode elements of a context C useful for predicting

the tag t of a word w. Features are binary valued functions

that represent constraints. An ME based tagger will use the

features to compute P(ti|Ci). It will learn the weights of the

features that can maximize the entropy of the probability

model using the training corpus [6].

C. Neural Network Approach

Apart from feed forward network, several variations of

RNN have been implemented for POS tagging. Some of

them are Simple RNN, GRU, LSTM and bidirectional

RNN’s [7, 8].

D. Problem Statement

POS tagger plays an important role and can critically affect

the performance of the complex NLP systems if error

occurs. Rule based and statistical techniques do not show

significant results as they do not take care of context and

sequence. Very few implementations of deep learning

approaches can be found in context of morphologically

rich languages like Nepali.

E. Objective

To implement deep learning approaches for POS tagging

of Nepali text and to compare the results of these

approaches

II. LITERATURE REVIEW

RNN has been broadly applied to NLP problems. This

kind of neural network is designed for modeling sequential

data and has been testified to be quite efficient in

sequential tagging tasks. Similarly, the LSTM unit was

initially proposed by Hochreiter and Schmidhuber. These

units are used to propagate an important feature that came

early in the input sequence over a long distance, which

helps in capturing potential long distance dependencies.

LSTM networks perform very well with respect to other

learning algorithms when word dependencies are long.

Although without a big improvement, POS tagging

systems which exploit

3

LSTM as learning algorithm have been proven to reach

state-of-the-art performances both when analyzing text at

character level and at word level [9].

In [10], bidirectional LSTMs was used to read the

character sequences that constitute each word and combine

them into a vector representation of the word. This model

assumed that each character type is associated with a

vector, and the LSTM parameters encoded both

idiosyncratic lexical and regular morphological

knowledge.

To evaluate the model, they used a vector based model

for POS tagging and for language modeling and they

carried out experiments on these tasks in several

languages. Their results show that their model obtained

state-of-the art performance on POS tagging including

establishing a new best performance in English.

In [11], bi-directional RNN with LSTM units was used

for Chinese word segmentation, which is a crucial

preprocess task for modeling Chinese sentences and

articles. Classical methods focus on designing and

combining hand-craft features from context, whereas BI-

LSTM does not need any prior knowledge or pre-

designing, and it is expert in keeping the contextual

information in both directions. Experiment result shows

that their approach gets state-of-the-art performance in

word segmentation on both traditional Chinese datasets

and simplified Chinese dataset.

More specifically they used a bidirectional LSTM

which allowed capturing long-range dependencies from

both directions of a sentence by constructing bidirectional

links in the network.

In [12], a sequence to sequence approach was followed

to model the problem with various deep learning

algorithms such as RNN, LSTM, GRU, and their bi-

directional variants. Bi-directional versions of RNN,

LSTM and GRU achieved the maximum performance

scores with binary cross entropy as the loss function. The

accuracy of the system also increased with the increase in

the size of word embedding vector. The accuracy obtained

by RNN was 91.68%, LSTM was 91.74%, GRU was 91.66

and Bi-LSTM was 92.66 respectively.

III. BACKGROUND STUDY

A. Simple RNN

In simple RNN architecture, there is simple

multiplication of Input (xt) and Previous Output (ht-1). It

can be seen from Figure 1. This output is passed through

Tanh activation function to get the final output. There are

no Gates present in the architecture.

Figure 1: Simple RNN Architecture

B. GRU

Figure 2: GRU Architecture

In this architecture, Update gate is introduced, to decide

whether to pass previous output (ht-1) to next cell (as ht) or

not. Forget gate is an additional mathematical operation

with a new set of Weights (Wt) as shown in Figure 2.

The main equations used are as follows

zt = σ (Wz .[ht-1 , xt])

rt = σ (Wr .[ht-1 , xt])

ℎ̌t = tanh (W.[rt * ht-1 , xt])

ht = (1 - zt) * ht-1 + zt * ℎ̌t

4

C. LSTM

Figure 3: LSTM Architecture

So overall, LSTM has introduced two math

operations having two new sets of Weights. Its architecture

is shown in Figure 3.

The main equations used are as follows

ft = σ (Wf .[ht-1 , xt] + bf)

it = σ (Wi .[ht-1 , xt] + bi)

�̌�t = tanh (Wc .[ht-1 , xt] + bc)

Ct = ft * Ct-1 + it * �̌�t

ot = σ (Wo .[ht-1 , xt] + bo)

ht = ot * tanh (Ct)

D. Bidirectional Neural Network

Bi-LSTM neural network is similar to LSTM network in

structure because both of them are constructed with LSTM

units. The special unit of this network is capable of

learning long-term dependencies without keeping

redundant context information. They work tremendously

well on sequential modeling problems, and are now widely

used in NLP tasks.

Bi-LSTM network is designed to capture

information of sequential dataset and maintain contextual

features from past and future. Different from LSTM

network, Bi-LSTM network has two parallel layers

propagating in two directions, the forward and backward

pass of each layer are carried out in similar way of regular

neural networks, these two layers memorize the

information of sentences from both directions.

IV. RESEARCH METHODOLOGY

A. Data Collection

Data were collected from Madan Puraskar Pustakalaya. It

consists of Nepali English parallel corpus annotated with

43 POS tag developed and contains nearly 88000 words.

The design of this Nepali POS Tag-set was inspired by the

PENN Treebank POS Tag-set. Hence, whenever possible,

the same naming convention has been used as in the case

of the Penn Treebank Tag-set. The sample of POS tagged

Corpus is as shown in Figure 4.

हामी<PP> कसै<DUM>ले<PLE> अस्बेस्टस<NNP>मा<POP>

आपत्तिजनक<JJ> गुण<NN> रहेको<VBKO> सुन्नु<VBI>भन्दा<VBO>

अगात्ति<RBO> वर्ष ौँ<NN> अत्ति<POP>को<PKO> बारेमा<POP> कुरा<NN>

गरररहेका<VBKO> छ ौँ<VBX> ।<YF>

Figure 4: Sample of Nepali POS tagged corpus

B. Data Preparation

Parallel corpus was developed where first consisted of

plane Nepali text and other consisted of only tags as shown

in Figure 5.

हामी कसै ले अस्बेस्टस मा आपत्तिजनक गुण रहेको सुन्नु भन्दा अगात्ति वर्ष ौँ अत्ति को बारेमा

कुरा गरररहेका छ ौँ।

<PP> DUM> <PLE> <NNP> <POP> <JJ> <NN> <VBKO>

<VBI> <VBO> <RBO> <NN> <POP> <PKO> <POP> <NN>

<VBKO> <VBX> <YF>

Figure 5: Sample of plane and its corresponding tags

C. Training

The training was carried out using RNN

architecture as shown in Figure 6.

RNN were used for training as it does not require

input data to be fixed and their future input information is

reachable from the current state. Simple RNN, LSTM, and

GRU were implemented. However, Bi-LSTM was also

implemented to demonstrate its ability to outperform all

the former three architectures.

It connects two hidden layers of opposite directions

to the same output. BI-LSTM are able to understand

context better due to its ability to approach a unit from both

the directions.

5

Figure 6: Bi-LSTM architecture for Training

D. Testing

To implement deep learning approaches for POS tagging

of Nepali text and to compare the results of these

approaches

The model was tested using the testing set. The data

set was divided into three parts i.e. training, development

and testing.

E. Architecture

To implement deep learning approaches for POS tagging

of Nepali text and to compare the results of these

approaches

Table 1: Architecture of RNN

Layer (type) Output Shape

Embedding 100, 25
Simple RNN/ LSTM/ BI-LSTM/
GRU

100, 50

TimeDist None, 100, 40

TimeDist None, 100, 40

As shown in Table 1, the architecture consists of 4

layers. The first one is the embedding layer, followed by

variants of RNN’s and finally there are two distributed

layers. The final output layer consists of 40 units as there

are 40 tags defined and output has to be one of them.

F. Vocabulary Size

The vocabulary size set was 10000 with a maximum

sequence length of 100. The untokenized word was set to

‘_unk_’ as shown in Figure 7.

VOCAB_SIZE = 6850

MAX_SEQUENCE_LENGTH = 100

UNK_TOKEN = '__unk__'

Figure 7: Setting of vocabulary size and maximum sequence

G. POS Tags

A total of 38 POS tags were used and were given integer

numbers as shown in Table 2.

Table 2: POS Tags and their corresponding integer values

POS_TAG={

 'NOTAG': 0,

 'CD': 1,
 'JJ': 2,

 'NNP':3,

 'POP': 4,
 'NN': 5,

 'PKO': 6,
 'VBX': 7,

 'YF': 8,

 'FB': 9,
 'VBF': 10,

 'PLAI': 11,

 'DUM': 12,
 'VBKO': 13,

 'RBO': 14,

 'VBI': 15,
 'VBO': 16,

 'HRU': 17,

 'JJD': 18,
 'YM': 19,

 'PLE': 20,

 'JJM': 21,

 'RP': 22,
 'VBNE': 23,

 'CS': 24,

 'YQ': 25,
 'CL': 26,

 'PP': 27,
 'PP$': 28,

 'CC': 29,

 'SYM': 30,
 'PPR': 31,

 'DM': 32,

 'OD': 33,
 'QW': 34,

 'UNW': 35,

 'RBM': 36,
 'FW': 37,

 'YB': 38,

 'ALPH': 39,
 }

H. Preparation of Text and Labels in List

The data was loaded and was preprocessed as shown in

Figure 8.

[(['\ufeff६१', ' वर्षीय', ' पियरे', ' पिन्केन', ' नोिेम्बर', ' २९', ' बाट', ' सल्लाहकार', 'को', '

रूि', ' मा', ' सञ्चालक', ' सपमपि', 'मा', ' आउनहुनुेछ', ' ।'], [1, 2, 3, 3, 3, 1, 4, 5, 6, 5,

4, 5, 5, 4, 7, 8])]

Figure 8: Text Preparation

As shown in Figure 10, the first half represents the

tokens and the second half represents their POS with their

respective integer values as described in section 5.2.

6

I. Preparation of train and test data

The data were divided for training, development

and testing respectively as shown in Figure 9.

Train Instances: 1341

Dev Instances: 191

Test Instances: 383

Figure 9: Division of data

J. Preparation of vocabulary

The vocabulary was prepared based on the occurrences

of tokens. It is based on most frequent tokens, least

frequent tokens and unknown tokens. It can be seen from

Figure 10.

Most frequent tokens

 को: 1548

 ।: 1272

 मा: 1128

 ले: 1127

 हरू: 948

 ,: 659

 लाई: 573

 का: 530

 र: 464

 छ: 265

Least frequent tokens

 पित्र्याएको: 1

 िड्पकला: 1

 क्लव: 1

 मात्र: 1

 बेिली: 1

 बपनिलर: 1

 ओपलिर: 1

 अनपिन्िी: 1

 घसु्न: 1

 महानिररय: 1

Figure 10: Sample of most frequent and least frequent tokens

The unknown tokens are then filtered out to reduce the

memory consumption. The total numbers of unknown

tokens are listed out in Figure 11.

Train: 0/34082

Dev: 558/4642

Test: 1321/10226

Figure 11: Total number of unknown tokens filtered

K. Simple RNN POS tagger

The summary of the model is as shown in Table 3.

Table 3: Simple RNN Summary

Layer (type) Output Shape Param #

Embedding (None, 100, 25) 171300

Simple RNN (None, 100, 50) 1275

TimeDist (None, 100, 40) 1040

TimeDist (None, 100, 40) 0

===

==================

Total params: 173,615

Trainable params: 173,615

Non-trainable params: 0

The accuracy obtained after training is 85.04% with

a loss function of 0.5662. The test accuracy obtained for

simple RNN was 96.84%.

L. Unidirectional LSTM based POS tagger

The summary of the model is as shown in Table 4.

Table 4: Unidirectional LSTM Summary

Layer (type) Output Shape Param #

Embedding (None, 100, 25) 171300

LSTM (None, 100, 50) 5100

TimeDist (None, 100, 40) 1040

TimeDist (None, 100, 40) 0

===

==================

Total params: 177,440

Trainable params: 177,440

Non-trainable params: 0

__

The accuracy obtained after training is 98.97% with

a loss function of 0.0612. The test accuracy obtained for

unidirectional LSTM was 96.48%.

M. Bidirectional LSTM based POS tagger Neural

Network

The summary of the model is as shown in Table 5.

Table 5: bidirectional LSTM Summary

Layer (type) Output Shape Param #

Embedding (None, 100, 25) 250050

7

Bidirection (None, 100, 50) 10200

TimeDist (None, 100, 40) 2040

TimeDist (None, 100, 40) 0

===

==================

Total params: 183,540

Trainable params: 183,540

Non-trainable params: 0

__

The accuracy obtained after training is 99.62% with a

loss function of 0.0190. The test accuracy obtained for

bidirectional LSTM was 97.27%.

N. GRU based POS tagger

The summary of the model is as shown in Table 6.

Table 6: GRU Summary

Layer (type) Output Shape Param #

Embedding (None, 100, 25) 171300

GRU (None, 100, 50) 3825

TimeDist (None, 100, 40) 1040

TimeDist (None, 100, 40) 0

===

==================

Total params: 176,165

Trainable params: 176,165

Non-trainable params: 0

__

The accuracy obtained after training is 99.60% with a

loss function of 0.0195. The test accuracy obtained for

GRU was 96.86%.

O. Results of Nepali POS tagging

Simple RNN, LSTM, and GRU were implemented.

However, Bi-LSTM was also implemented to demonstrate

its ability to outperform all the former three architectures. It

connects two hidden layers of opposite directions to the

same output. Bi-LSTM are able to understand context better

due to its ability to approach a unit from both the directions.

The data were divided for training, development and

testing. The total sentences in the corpus were divided into

1341 as training instances, 191 as development instances

and 383 as testing instances respectively. Three deep

learning based model were trained and tested namely:

Simple RNN, LSTM, Bi-LSTM and GRU.

Table 7: Accuracy and Loss value of RNN variants

Model Accuracy % Loss value

Simple RNN 96.84 0.0221

Unidirectional LSTM 96.48 0.0612

Bidirectional LSTM 97.27 0.0190

GRU 96.86 0.0195

The results of Nepali POS tagging comprising of loss

value calculated using cross-entropy and accuracy with

simple RNN, unidirectional LSTM, and bidirectional

LSTM is shown in 7.

V. CONCLUSION AND FUTURE WORK

POS tagging of Nepali Text was carried out using simple

RNN, LSTM, GRU and Bi-directional LSTM in a Nepali

tagged corpus of tag size 40. The data set was divided into

three sections i.e. training, development and testing. The

accuracy obtained for simple RNN, LSTM, GRU and Bi-

directional LSTM was 96.84%, 96.48%, 96.86% and

97.27% respectively. Therefore, Bi-directional LSTM

outperformed all other three variants of RNN. In future, the

vocabulary size and tag set can be increased to increase the

efficiency. Similarly, reinforcement learning can be added

for efficient training.

REFERENCES

[1] A. Z. Ahmad, H. Rudy , and I. W. Mustika, “A Comparison

of Different Part-of-Speech Tagging Technique for

Text in Bahasa Indonesia” in 7th International Annual

 Engineering Seminar (InAES), Yogyakarta, Indonesia,

2017.

[2] F. Rana , S. Mehrnoush, and M. Pouyan, “An Efficient

Meta Heuristic Algorithm for POS-Tagging” in

International Conference on Computing in the Global

Information Technology (ICCGI), IEEE, 2010.

[3] J.A. Perez-Ortiz , M.L. Forcada, “Part-of-speech tagging

with recurrent neural networks” in International Joint

Conference on Neural Networks Proceedings, IEEE, 2001.

[4] P. J. Antony, K.P. Soman, “Kernel Based Part Of Speech

Tagger For Kannada” in International

Conference on Machine Learning and Cybernetics, IEEE,

2010.

[5] H. M. Fahim, “Comparison Of Different Pos Tagging

Techniques For Some South Asian Languages” ,

A Thesis Submitted to the Department of Computer Science

and Engineering of BRAC University, 2006.

[6] T. Yuan, L. David, “A Comparative Study on the

Effectiveness of Part-of-Speech Tagging Techniques on

Bug Reports” in SANER 2015, Montréal, Canada, IEEE,

2015.

[7] A. Firoj, A.C Shammur, “Bidirectional LSTMs - CRFs

Networks for Bangla POS Tagging” in 19th

International Conference on Computer and Information

Technology, North South University, Dhaka,

Bangladesh, IEEE, 2016.

[8] Y. Archit, “ANN Based POS Tagging For Nepali Text” in

International Journal on Natural Language

Computing (IJNLC) Vol.7, No.3, 2018.

https://ieeexplore.ieee.org/author/38272319300
https://ieeexplore.ieee.org/author/37431938300
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7474
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7474
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5570011
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5570011

8

[9] T. L. Wang, L. Tiago, L. Marujo, A. F. Ram´on, A. Silvio ,

D. Chris, B. W. Alan and T. Isabel, “Finding

Function in Form: Compositional Character Models for

Open VocabularyWord Representation” in

Proceedings of the 2015 Conference on Empirical

 Methods in Natural Language Processing, pages

1520–1530,Lisbon, Portugal, 17-21 September

2015. c 2015 Association for Computational Linguistics,

ACL, 2015.

[10] W. Peilu, Q. Yao, S.K. Frank, H. Lei and Z. Hai, “Part-of-

Speech Tagging with Bidirectional Long Short-Term

Memory Recurrent Neural Network” in

 arXiv:1510.06168v1 [cs.CL] , 2015.

[11] Y. Yushi, H. Zheng, “Bi-directional LSTM Recurrent

Neural Network for Chinese Word

 Segmentation” in Neural Information Processing:

23rd International Conference, ICONIP 2016, Kyoto,

Japan, October 16–21, 2016, Proceedings, Part IV (pp.345-

 353), 2016.

[12] P. Greeshma, P.V. Jyothsna, K.K. Shahina, B. Premjith, and

K.P. Soman, “A Deep Learning Approach for Part-of-

Speech Tagging in Nepali Language” in International

 Conference on Advances in Computing,

Communications and Informatics, IEEE, 2018.

https://www.researchgate.net/publication/321540992_Neural_Information_Processing_23rd_International_Conference_ICONIP_2016_Kyoto_Japan_October_16-21_2016_Proceedings_Part_IV
https://www.researchgate.net/publication/321540992_Neural_Information_Processing_23rd_International_Conference_ICONIP_2016_Kyoto_Japan_October_16-21_2016_Proceedings_Part_IV
https://www.researchgate.net/publication/321540992_Neural_Information_Processing_23rd_International_Conference_ICONIP_2016_Kyoto_Japan_October_16-21_2016_Proceedings_Part_IV

