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Abstract — Part of Speech (POS) tagging is one of the 

fundamental task in Natural Language Processing (NLP). It 

plays vital role in various NLP applications such as machines 

translation, text-to-speech conversion, question answering, 

speech recognition, word sense disambiguation and 

information retrieval. It is also referred as grammatical 

tagging or word-category disambiguation which is a process 

of labeling every word in sentences with tag based on its 

context and syntax of the language. It is challenging to 

develop promising POS tagger for morphologically rich 

language like Nepali. This paper focuses on implementing 

and comparing different deep learning based POS tagger for 

Nepali such as Simple Recurrent Neural Network (RNN), 

Long Short Term Memory (LSTM), Gated Recurrent Unit 

(GRU), and Bi-directional Long Short Term Memory (Bi-

LSTM).  These approaches were trained and tested in a 

corpus of Nepali tag set. The result shows that Bi-directional 

LSTM outperforms all other three approaches. 

Index Terms— POS, NLP, Simple RNN, LSTM, GRU, Bi-

LSTM, Nepali tag set 

I. INTRODUCTION 

Natural Language Processing is a field of computer 

science which focuses on making computer understands 

the words or sentences written in human languages. It is a 

subset of Artificial Intelligence and linguistic which has a 

start history backed in 1950s. Alan Turing introduced the 

concept of Turing test from the article titled “Machine and 

Intelligence”. SHRDLU were one of the Natural Language 

System which worked in restricted “block worlds” 

developed around 1960s. It can be classified as symbolic 

approach, statistical approach and connectionist approach. 

Symbolic approach is based on deep understanding of 

linguistic knowledge and a wide variety of rules. It 

 should also consist of knowledge representation 

schemes to represent the facts about  language 

unambiguously. Statistical approach focuses on creation of 

large text corpora which is a repository of real examples 

of linguistic phenomena. These corpora are used to 

generate approximate models to represent linguistic 

phenomena without adding linguistic rules. This approach 

has been extensively used in speech recognition, 

lexical acquisition, parsing, part-of-speech tagging, 

collocations, statistical machine translation, statistical 

grammar learning etc. Connectionist approach combines 

statistical learning with other theories of representation to 

allow transformation, inference and manipulation of logic 

formula. It focuses on creation of mesh network where 

weights are used to represent knowledge. 

POS tagging, also referred as grammatical tagging or 

word-category disambiguation is a process of labeling 

every word in sentences with tag. It can be carried out 

manually or automatically. POS commonly includes 

verbs, nouns, adjectives, adverbs, determiner, and so on 

[1].  

POS tagging is one of the fundamental task in NLP. It 

plays vital role in various NLP applications such as 

machines translation, text-to-speech conversion, question 

answering, speech recognition, word sense 

disambiguation and information retrieval [2].  

POS tagging can be carried out with various 

approaches rule-based, Stochastic and neural network. 

These taggers are based on the assumption that a word 

can be assigned a single POS tag in a given context, or at 

least one of the possible parts of speech is most likely [3].  

A. Rule Based 

It uses linguistic knowledge to formulate simple rules 

that assign POS to an ambiguous word using context 

information [4]. These rules are often known as context 

frame rules. Similarly, transformation based approaches 

can also be implemented in conjunction to pre-defined set 

of rules where new transformation rules are automatically 

induced during the training [5]. 

The rule based approach requires pre-annotated training 

corpora. However, transformation rules can be induced via 

training. It initially assigns tags to words with reference to 

the tag with the highest frequency for a particular word. 

These tags are then refined and then trained to learn new 

rules [5]. 

Brill Tagger is tagging program introduced by Eric Brill 

in 1992. The program is based on Regulation and 

transformation. Brill’s Tagger is a transformation-based 

tagger. It uses a series of rules to correct the results of an 

initial tagger. These rules are scored based on how many 

errors are in the correct minus the number of new error.  

Briefly Brill Tagger algorithm includes the initialization 

process consisting of known and unknown words, as well 

as the learning phase consisting of repeating in calculating 

the error value of each candidate rule, choosing the rule of 

the best, adding a set of rules and applied to the text, and 

repeating until no rules that have a value above a certain 
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threshold or who have granted. Brill Tagger performs 

annotation corpus provision in three ways: lexicon, lexical, 

and contextual. [5].  

B. STOCHASTIC APPROACH 

A stochastic approach includes frequency, probability 

or statistics.  Frequency based approach are based on 

tagging the word in an unannotated text using the most 

frequently used tag for a specific word in the annotated 

text. However, it might come up with rules that do not 

agree with the standard grammatical rules of a particular 

language. Unigram is a simple statistical tagging 

algorithm. A unigram generally refers to a single token. 

Therefore, a unigram tagger only uses a single word as its 

context for determining the part of speech tag [6]. Unigram 

builds a context model from the list of tagged sentences. It 

uses to give a tag with unigram tagger prior to be trained 

on a training corpus. That corpus will be determined in 

which tags are most common for each word. Default tag 

‘none’ assign to any token is not encountered in training 

data. Unigram Tagger behaves like a search tagger unless 

there is an easier technique for setting it up, called training. 

Training Unigram Tagger by specifying sentence data is 

marked as a parameter when initializing tagger. The 

training process involves checking the dictionary tags 

stored inside the tagger [6]. 

Probabilistic approach is also known as n-gram 

approach which can be unigram, bigram and trigram. It 

determines the best tag for a word by calculating the 

probability of that it occurs with n previous tags. The most 

common model used is the Hidden Markov Model 

(HMM). HMM is a statistical Markov model with the 

system model assumed to be a Markov process with some 

hidden states. The HMM established the probabilistic 

method for Part-of-speech tagging. The mathematics 

behind the HMM was developed by L. E. Baum and 

coworkers HMM are used in many applications such as 

speech recognition, or bioinformatics. HMM taggers 

choose the tag sequence that maximizes the following 

formula: 

P(word|tag) * P (tag|previous n tag)     

The HMM approach is different from other POS 

tagging approaches in tag combinations. HMM considers 

the best combination of tags for word order, while other 

tagging methods greedily tag one word at a time, 

regardless of the optimal combination. 

Entities in Hidden Markov Models are based on 

tagging approach, {w1, w2… ww} is a set of words, {t1, t2… 

tT} is a set of POS Tags, W1, n = W1 W2 … Wn is a sentence 

of n words and T1, n = T1 T2 … Tn is a sequence of n POS 

Tags  

The probability in HMM using following formula 

can be used to find the most likely sequence of POS tags 

for a given sequence of words. 

 

Pr (t1,n ,w1,n)  ≈ Π𝑖=1
𝑛    (Pr ( ti | ti-k, i-1) X Pr(w1 | ti) 

 

Probability current tag t1 depends on previous k tags 

and probability current word depends on only current tag 

t1 [6].  

The unigram and HMM based taggers are easy to 

build, however given the nature of their probability 

models; it is hard to incorporate more complex features 

into them. The Maximum Entropy (ME) based tagger is 

introduced to provide a principled way of incorporating 

complex features into probability models. 

Given a sentence w1 …wn, an ME based tagger models the 

conditional probability of a tag sequence t1, … tn as: 

 

Pr (t1, … tn | w1, … wn )  ≈ Π𝑖=1
𝑛    P ( ti | Ci) 

 

where C1, … Cn are the corresponding contexts for each 

word appearing in the sentence. The context C of a word 

w includes the previous assigned tags before w. 

An ME based tagger introduces the concept of features 

which encode elements of a context C useful for predicting 

the tag t of a word w. Features are binary valued functions 

that represent constraints. An ME based tagger will use the 

features to compute P(ti|Ci). It will learn the weights of the 

features that can maximize the entropy of the probability 

model using the training corpus [6]. 

C. Neural Network Approach 

Apart from feed forward network, several variations of 

RNN have been implemented for POS tagging. Some of 

them are Simple RNN, GRU, LSTM and bidirectional 

RNN’s [7, 8]. 

D. Problem Statement 

POS tagger plays an important role and can critically affect 

the performance of the complex NLP systems if error 

occurs. Rule based and statistical techniques do not show 

significant results as they do not take care of context and 

sequence.  Very few implementations of deep learning 

approaches can be found in context of morphologically 

rich languages like Nepali. 

E. Objective 

To implement deep learning approaches for POS tagging 

of Nepali text and to compare the results of these 

approaches 

II. LITERATURE REVIEW 

RNN has been broadly applied to NLP problems. This 

kind of neural network is designed for modeling sequential 

data and has been testified to be quite efficient in 

sequential tagging tasks. Similarly, the LSTM unit was 

initially proposed by Hochreiter and Schmidhuber. These 

units are used to propagate an important feature that came 

early in the input sequence over a long distance, which 

helps in capturing potential long distance dependencies.  

LSTM networks perform very well with respect to other 

learning algorithms when word dependencies are long. 

Although without a big improvement, POS tagging 

systems which exploit  
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LSTM as learning algorithm have been proven to reach 

state-of-the-art performances both when analyzing text at 

character level and at word level [9]. 

In [10], bidirectional LSTMs was used to read the 

character sequences that constitute each word and combine 

them into a vector representation of the word. This model 

assumed that each character type is associated with a 

vector, and the LSTM parameters encoded both 

idiosyncratic lexical and regular morphological 

knowledge.  

To evaluate the model, they used a vector based model 

for POS tagging and for language modeling and they 

carried out experiments on these tasks in several 

languages. Their results show that their model obtained 

state-of-the art performance on POS tagging including 

establishing a new best performance in English. 

In [11], bi-directional RNN with LSTM units was used 

for Chinese word segmentation, which is a crucial 

preprocess task for modeling Chinese sentences and 

articles. Classical methods focus on designing and 

combining hand-craft features from context, whereas BI-

LSTM does not need any prior knowledge or pre-

designing, and it is expert in keeping the contextual 

information in both directions. Experiment result shows 

that their approach gets state-of-the-art performance in 

word segmentation on both traditional Chinese datasets 

and simplified Chinese dataset. 

More specifically they used a bidirectional LSTM 

which allowed capturing long-range dependencies from 

both directions of a sentence by constructing bidirectional 

links in the network. 

 

In [12], a sequence to sequence approach was followed 

to model the problem with various deep learning 

algorithms such as RNN, LSTM, GRU, and their bi-

directional variants. Bi-directional versions of RNN, 

LSTM and GRU achieved the maximum performance 

scores with binary cross entropy as the loss function. The 

accuracy of the system also increased with the increase in 

the size of word embedding vector. The accuracy obtained 

by RNN was 91.68%, LSTM was 91.74%, GRU was 91.66 

and Bi-LSTM was 92.66 respectively. 

 

 

 

 

III. BACKGROUND STUDY 

A. Simple RNN 

 

In simple RNN architecture, there is simple 

multiplication of Input (xt) and Previous Output (ht-1). It 

can be seen from Figure 1. This output is passed through 

Tanh activation function to get the final output. There are 

no Gates present in the architecture.  

 

 
Figure 1: Simple RNN Architecture 

 

B. GRU 

 

 

 
Figure 2: GRU Architecture 

 

In this architecture, Update gate is introduced, to decide 

whether to pass previous output (ht-1) to next cell (as ht) or 

not. Forget gate is an additional mathematical operation 

with a new set of Weights (Wt) as shown in Figure 2. 

 

The main equations used are as follows 

 

zt = σ (Wz .[ht-1 , xt]) 

 

rt = σ (Wr .[ht-1 , xt]) 

 

ℎ̌t = tanh (W.[ rt * ht-1 , xt]) 

 

ht = (1 - zt) * ht-1 + zt * ℎ̌t 
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C. LSTM 

 

 

 
Figure 3: LSTM Architecture 

 

So overall, LSTM has introduced two math 

operations having two new sets of Weights. Its architecture 

is shown in Figure 3. 

The main equations used are as follows 

  

ft = σ (Wf .[ht-1 , xt] + bf) 

 

it = σ (Wi .[ht-1 , xt] + bi) 

 

�̌�t = tanh (Wc .[ht-1 , xt] + bc) 

 

Ct = ft * Ct-1 + it * �̌�t 

 

ot = σ (Wo .[ht-1 , xt] + bo) 

 

ht = ot * tanh (Ct) 

 

D. Bidirectional Neural Network 

Bi-LSTM neural network is similar to LSTM network in 

structure because both of them are constructed with LSTM 

units. The special unit of this network is capable of 

learning long-term dependencies without keeping 

redundant context information. They work tremendously 

well on sequential modeling problems, and are now widely 

used in NLP tasks. 

Bi-LSTM network is designed to capture 

information of sequential dataset and maintain contextual 

features from past and future. Different from LSTM 

network, Bi-LSTM network has two parallel layers 

propagating in two directions, the forward and backward 

pass of each layer are carried out in similar way of regular 

neural networks, these two layers memorize the 

information of sentences from both directions. 

 

IV. RESEARCH METHODOLOGY  

 

A. Data Collection 

Data were collected from Madan Puraskar Pustakalaya. It 

consists of Nepali English parallel corpus annotated with 

43 POS tag developed and contains nearly 88000 words. 

The design of this Nepali POS Tag-set was inspired by the 

PENN Treebank POS Tag-set. Hence, whenever possible, 

the same naming convention has been used as in the case 

of the Penn Treebank Tag-set. The sample of POS tagged 

Corpus is as shown in Figure 4. 

 
हामी<PP> कसै<DUM>ले<PLE> अस्बेस्टस<NNP>मा<POP> 

आपत्तिजनक<JJ> गुण<NN> रहेको<VBKO> सुन्नु<VBI>भन्दा<VBO> 

अगात्ति<RBO> वर्ष ौँ<NN> अत्ति<POP>को<PKO> बारेमा<POP> कुरा<NN> 

गरररहेका<VBKO> छ ौँ<VBX> ।<YF> 

 
Figure 4: Sample of Nepali POS tagged corpus 

 

B. Data Preparation 

 

Parallel corpus was developed where first consisted of 

plane Nepali text and other consisted of only tags as shown 

in Figure 5. 

 
हामी  कसै ले अस्बेस्टस मा  आपत्तिजनक गुण रहेको  सुन्नु भन्दा अगात्ति वर्ष ौँ अत्ति को बारेमा 

कुरा गरररहेका छ ौँ। 

 

 

 
<PP> DUM> <PLE> <NNP> <POP> <JJ> <NN> <VBKO> 

<VBI> <VBO> <RBO> <NN> <POP> <PKO> <POP> <NN> 

<VBKO> <VBX> <YF> 

 
Figure 5: Sample of plane and its corresponding tags 

 

C. Training 

 

The training was carried out using RNN 

architecture as shown in Figure 6. 

RNN were used for training as it does not require 

input data to be fixed and their future input information is 

reachable from the current state. Simple RNN, LSTM, and 

GRU were implemented. However, Bi-LSTM was also 

implemented to demonstrate its ability to outperform all 

the former three architectures. 

It connects two hidden layers of opposite directions 

to the same output. BI-LSTM are able to understand 

context better due to its ability to approach a unit from both 

the directions. 
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Figure 6: Bi-LSTM architecture for Training 

 

D. Testing 

 

To implement deep learning approaches for POS tagging 

of Nepali text and to compare the results of these 

approaches 

 

The model was tested using the testing set. The data 

set was divided into three parts i.e. training, development 

and testing. 

E. Architecture 

 

To implement deep learning approaches for POS tagging 

of Nepali text and to compare the results of these 

approaches 
 

Table 1: Architecture of RNN 

 

Layer (type)       Output Shape 

Embedding  100, 25 
Simple RNN/ LSTM/ BI-LSTM/ 
GRU 

100, 50           

TimeDist None, 100, 40            

TimeDist None, 100, 40 

 

As shown in Table 1, the architecture consists of 4 

layers. The first one is the embedding layer, followed by 

variants of RNN’s and finally there are two distributed 

layers. The final output layer consists of 40 units as there 

are 40 tags defined and output has to be one of them. 

 

 

 

F. Vocabulary Size 

 

The vocabulary size set was 10000 with a maximum 

sequence length of 100. The untokenized word was set to 

‘_unk_’ as shown in Figure 7. 

 
VOCAB_SIZE = 6850 

 
MAX_SEQUENCE_LENGTH = 100 

 

UNK_TOKEN = '__unk__' 
 

 
Figure 7: Setting of vocabulary size and maximum sequence 

 

G. POS Tags 

 

A total of 38 POS tags were used and were given integer 

numbers as shown in Table 2. 
 

Table 2: POS Tags and their corresponding integer values 

 

 
POS_TAG={ 

    'NOTAG': 0, 

    'CD': 1,  
    'JJ': 2,  

    'NNP':3, 

    'POP': 4, 
    'NN': 5, 

    'PKO': 6, 
    'VBX': 7, 

    'YF': 8, 

    'FB': 9, 
    'VBF': 10, 

    'PLAI': 11, 

    'DUM': 12, 
    'VBKO': 13, 

    'RBO': 14, 

    'VBI': 15, 
    'VBO': 16, 

    'HRU': 17, 

    'JJD': 18, 
    'YM': 19, 

    'PLE': 20, 

     
   

    'JJM': 21, 

    'RP': 22, 
    'VBNE': 23, 

    'CS': 24, 

    'YQ': 25, 
    'CL': 26, 

    'PP': 27, 
    'PP$': 28, 

    'CC': 29, 

    'SYM': 30, 
    'PPR': 31, 

    'DM': 32, 

    'OD': 33, 
    'QW': 34, 

    'UNW': 35, 

    'RBM': 36, 
    'FW': 37, 

    'YB': 38, 

    'ALPH': 39, 
    } 

 

 

H. Preparation of Text and Labels in List  

The data was loaded and was preprocessed as shown in 

Figure 8. 

 

 
[(['\ufeff६१', ' वर्षीय', ' पियरे', ' पिन्केन', ' नोिेम्बर', ' २९', ' बाट', ' सल्लाहकार', 'को', ' 

रूि', ' मा', ' सञ्चालक', ' सपमपि', 'मा', ' आउनहुनुेछ', ' ।'], [1, 2, 3, 3, 3, 1, 4, 5, 6, 5, 

4, 5, 5, 4, 7, 8])] 

 

 
Figure 8: Text Preparation 

 

As shown in Figure 10, the first half represents the 

tokens and the second half represents their POS with their 

respective integer values as described in section 5.2. 
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I. Preparation of train and test data 

 

The data were divided for training, development 

and testing respectively as shown in Figure 9. 

 

 
Train Instances: 1341 

 
Dev Instances: 191 

 

Test Instances: 383 

 

 
Figure 9: Division of data 

 

J. Preparation of vocabulary  

 

The vocabulary was prepared based on the occurrences 

of tokens. It is based on most frequent tokens, least 

frequent tokens and unknown tokens. It can be seen from 

Figure 10. 

 

 
Most frequent tokens 

 को: 1548 

  ।: 1272 

 मा: 1128 

 ले: 1127 

 हरू: 948 

  ,: 659 

 लाई: 573 

 का: 530 

  र: 464 

  छ: 265 

Least frequent tokens 

  पित्र्याएको: 1 

  िड्पकला: 1 

  क्लव: 1 

 मात्र: 1 

  बेिली: 1 

  बपनिलर: 1 

 ओपलिर: 1 

  अनपिन्िी: 1 

  घसु्न: 1 

  महानिररय: 1 

 

 
Figure 10: Sample of most frequent and least frequent tokens 

 

 

The unknown tokens are then filtered out to reduce the 

memory consumption. The total numbers of unknown 

tokens are listed out in Figure 11. 

 

 
Train: 0/34082 

 

Dev: 558/4642 
 

Test: 1321/10226 

 
Figure 11: Total number of unknown tokens filtered 

 

K. Simple RNN POS tagger 

 

The summary of the model is as shown in Table 3. 

 
Table 3: Simple RNN Summary 

 

Layer (type)       Output Shape Param # 

Embedding (None, 100, 25) 171300 

Simple RNN (None, 100, 50)            1275 

TimeDist  (None, 100, 40)            1040 

TimeDist (None, 100, 40) 0 

 

=========================================

================== 

Total params: 173,615 

Trainable params: 173,615 

Non-trainable params: 0 

 

 

The accuracy obtained after training is 85.04% with 

a loss function of 0.5662. The test accuracy obtained for 

simple RNN was 96.84%. 

 

 

 

 

L. Unidirectional LSTM based POS tagger  

 

The summary of the model is as shown in Table 4. 

 
Table 4: Unidirectional LSTM Summary 

 

Layer (type)       Output Shape Param # 

Embedding (None, 100, 25) 171300 

LSTM (None, 100, 50)            5100 

TimeDist  (None, 100, 40)               1040 

TimeDist (None, 100, 40) 0 

 

 

=========================================

================== 

Total params: 177,440 

Trainable params: 177,440 

Non-trainable params: 0 

______________________________________________

___________________ 

The accuracy obtained after training is 98.97% with 

a loss function of 0.0612. The test accuracy obtained for 

unidirectional LSTM was 96.48%. 

M. Bidirectional  LSTM based POS tagger Neural 

Network 

 

The summary of the model is as shown in Table 5. 

 
Table 5: bidirectional LSTM Summary 

 

Layer (type)       Output Shape Param # 

Embedding (None, 100, 25) 250050 
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Bidirection (None, 100, 50)            10200 

TimeDist (None, 100, 40)            2040 

TimeDist (None, 100, 40) 0 

 

=========================================

================== 

Total params: 183,540 

Trainable params: 183,540 

Non-trainable params: 0 

______________________________________________

___________________ 

The accuracy obtained after training is 99.62% with a 

loss function of 0.0190. The test accuracy obtained for 

bidirectional LSTM was 97.27%. 

 

N. GRU based POS tagger  

 

The summary of the model is as shown in Table 6. 
 

Table 6: GRU Summary 

 

Layer (type)       Output Shape Param # 

Embedding (None, 100, 25) 171300 

GRU (None, 100, 50)            3825 

TimeDist (None, 100, 40)            1040 

TimeDist (None, 100, 40) 0 

=========================================

================== 

Total params: 176,165 

Trainable params: 176,165 

Non-trainable params: 0 

______________________________________________

___________________ 

The accuracy obtained after training is 99.60% with a 

loss function of 0.0195. The test accuracy obtained for 

GRU was 96.86%. 

O. Results of Nepali POS tagging 

 

Simple RNN, LSTM, and GRU were implemented. 

However, Bi-LSTM was also implemented to demonstrate 

its ability to outperform all the former three architectures. It 

connects two hidden layers of opposite directions to the 

same output. Bi-LSTM are able to understand context better 

due to its ability to approach a unit from both the directions. 

The data were divided for training, development and 

testing. The total sentences in the corpus were divided into 

1341 as training instances, 191 as development instances 

and 383 as testing instances respectively. Three deep 

learning based model were trained and tested namely: 

Simple RNN, LSTM, Bi-LSTM and GRU. 

 
Table 7:  Accuracy and Loss value of RNN variants 

 

Model Accuracy % Loss value 

Simple RNN 96.84 0.0221 

Unidirectional LSTM 96.48 0.0612 

Bidirectional LSTM 97.27 0.0190 

GRU 96.86 0.0195 
 

 

The results of Nepali POS tagging comprising of loss 

value calculated using cross-entropy and accuracy with 

simple RNN, unidirectional LSTM, and bidirectional 

LSTM is shown in 7. 

 

V. CONCLUSION AND FUTURE WORK 

POS tagging of Nepali Text was carried out using simple 

RNN, LSTM, GRU and Bi-directional LSTM in a Nepali 

tagged corpus of tag size 40. The data set was divided into 

three sections i.e. training, development and testing. The 

accuracy obtained for simple RNN, LSTM, GRU and Bi-

directional LSTM was 96.84%, 96.48%, 96.86% and 

97.27% respectively. Therefore, Bi-directional LSTM 

outperformed all other three variants of RNN. In future, the 

vocabulary size and tag set can be increased to increase the 

efficiency. Similarly, reinforcement learning can be added 

for efficient training. 
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