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Abstract—We present a bi-level co-design pipeline employed
for the optimization of a set of relevant relevant kinematic
parameters of the bi-manual robotic platform under development
for the european project RePAIR. In particular, the bottom
level consists of a monolithic co-design framework, based on
trajectory optimization, which jointly optimizes for design and
state variables. The framework employs a kinematic model of
the system and accounts for collisions, state bounds, a number
of user-defined tasks, while minimizing a suitable performance
index. The top level employs a three-step heuristic globalization
algorithm which performs several calls to the low level TO to
cope with the observed sensitivity of the TO solution w.r.t. the
choice of the initial guess.

Index Terms—co-design, trajectory optimization, clustering,
manipulability, RePAIR

I. INTRODUCTION

This work applies concurrent-design principles to the fi-
nal design refinement stage of the bi-manual robotic plat-
form which is under development for the RePAIR European
project [1]. This project lies at the intersection of robotics and
artificial intelligence and its goal is the development of inno-
vative technologies to automate the physical reconstruction of
fragmentary archaeological artefacts. The robotic platform is
made of two 7-DOF manipulators (shown in Figure 1) and has
an additional translational degree of freedom along the frontal
axis (blue arrow in Figure 1).

The objective of this work is to determine the optimal
value w.r.t. a suitable performance criteria of three relevant
kinematic mounting parameters (shown in Figure 1), whereas
the kinematic design of each arm of the platform is fixed
beforehand and hence is not subject to optimization.

We choose to tackle the problem of determining the best
mounting parameters by employing trajectory optimization
(TO). This choice allows us to solve for the design variables
while ensuring kinematic feasibility, imposing a variety of con-
straints (for example collision and task constraints) and, more
importantly, minimizing a performance index. Given the use
case of the project, we select our performance criteria to avoid
large joint excursions and velocities during tasks execution.
We will see in Section II-B3 that these specifications can be
easily translated into a suitable cost function for the TO and
that this cost can be given the interesting interpretation of a
non-local manipulability index (as opposed to the local [2]).
To make code prototyping faster, we make use of the TO
framework Horizon [3].
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Fig. 1. Design variables, for simplicity shown only for the right arm. h is
the mounting height measured from the working plane to the shoulder axis,
along the z direction; w is half of the shoulder width (symmetrical between
left and right), measured along the y axis; θr is the shoulder mounting angle,
measured w.r.t. the x direction. The light blue arrow shows the translational
degree of freedom along x axis.

The main contribution of this work is a bi-level hybrid
gradient/sample-based co-design pipeline. In particular, the
bottom level provides raw optimized data to the top level,
which was developed to cope with the observed sensitivity
of the TO solution w.r.t. to the employed initial guess. The
co-design pipeline is made of the following main components
(summarized in Figure 2):

• A low level monolithic TO for computing optimal design
(and state) variables, while accounting for joint limits,
collisions and project-specific tasks.

• A genetic-inspired heuristic globalization pipeline built
on top of the TO level to navigate the set of local minima
for the underlying TO problem.

II. FORMULATION

A. Use case and requirements

The employed formulation was developed accounting for
the most relevant characteristics associated with the use case of
the RePAIR platform. In particular, the following observations
can be made:

• The project involves manipulation of objects in the prox-
imity of the working plane; consequently, tasks must be
chosen in accordance with this characteristic.

• The project requires operation in the relatively narrow
space of the working cage. Hence, large joint excursions
should be avoided as much as possible to minimize the
risk of colliding with the working surface and the cage.



Fig. 2. Co-design pipeline description. The pipeline is made of a lower level which houses a TO (pseudo-code in red areas) and a high level heuristic
globalization algorithm (pseudo-code in light blue areas). First, several candidate solutions are retrieved by solving many instances of the low level TO for
different initial guesses. We call this procedure ‘multi-starting’ the TO. Then, a clustering step (via Mini-Batch K-Means algorithm [4]) is applied to group
‘close’ solutions and, for each cluster, only the best candidate (w.r.t. the optimal cost) is selected. The final phase consists of a cost refinement step: the value
of the true cost of each candidate is updated to the best value between the one coming from the first step and the ones obtained by multi-starting once again
the TO for each cluster candidate (design paramters are fixed to the value associated to each cluster candidate). The final design parameters are extracted
from the candidate with the lowest refined cost.

• The platform will have to grasp and reassemble archae-
ological fragments; this will involve frequent and low-
speed single arm, bi-manual and reorientation maneuvers.

• At the current stage of the project, the chosen end-effector
is the SoftHand [5], a tendon-driven anthropomorphic
robotic hand designed for grasping and soft manipulation
(shown in Figure 3). It is therefore advisable to account
for the capabilities of this end-effector in the choice of
task constraints.

B. Low level monolithic TO

1) Simplifications: Instead of employing the full kinematics
of the anthropomorphic hand, we simplify the problem by
considering a point end-effector (visible in Figure 1); the
real hand is only employed for visualization purposes. This
simplification allows for a more end-effector agnostic and
less expensive analysis; the capabilities of the hand are then
incorporated by specifying relevant and sensible tasks.

Furthermore, given the presence of the sliding degree of
freedom along the x-axis, it is sufficient to specify task
constraints on any plane parallel to the yz one.

2) Tasks: Given the scope of the project and the expected
capabilities of the hand, we devise a series of relevant tasks
which are then translated into pose constraints for the low-
level TO. Tasks are replicated along the y axis to explore the
full workspace of the platform.

We test the co-design pipeline on a couple of particularly
representative cases which, from here on, will be referenced to
as the ‘handover’ or ‘flipping’ task and the ‘bi-manual pick’
task. Specifically, the handover task is made of the following
main phases:

1) The first arm approaches a chosen pick position on the
working surface and picks the object from above.

2) The object is passed to the other arm using a maneuver
we refer to as ‘handover’. This maneuver was designed
to comply with the expected manipulation capabilities
of [5].

3) The second arm performs a flipping maneuver and pro-
ceeds to place the object back at the original pick position.

Differently, the bi-manual pick is structured in the following
way:

1) Both arms approach a chosen pick position and lift the
object keeping a bi-manual configuration which is chosen
to comply with the manipulation capabilities of [5].

2) The object is lifted up to a reference height while keeping
the bi-manual configuration.

Examples of the aforementioned tasks performed by the plat-
form are shown in the accompanying video.

3) TO formulation: The problem is formulated as the
following continuous optimization program:

min
q,p

J(q, p) =
∫ T

0
∥q̇∥2 dt

s.t. q̇ = u

task constraints
state bounds
collision constraints

(1)

where q is the state vector of the system and p is the vector
of design parameters. We neglect any dynamic effects (given
the expected slow motions of the use case) and employ a
kinematic model (q̇ = u) instead of the full-fledged rigid-body
dynamics. This simplification makes the optimization lighter
and avoids unnecessary complexity. Moreover, we employ
the simple running cost ∥q̇∥2 on the basis of the following
considerations:

• Manipulation of fragile archaeological artifacts requires
low joint velocities.

• Minimizing joint velocities corresponds to avoiding large
joint excursions, which is one of the requirements stated
in Section II-A.

• From a purely mathematical point of view, such a cost
works as an input-regularization term.

The continuous TO (1) is then discretized using a uniform
time grid of N nodes. Constraints (tasks, collisions and state
bounds) and costs are distributed over the defined nodes
with the criteria explained in Figure 4. Collision constraints



are enforced using the simplified collision model shown in
Figure 3.

Interestingly, the cost J can be given a suggestive interpre-
tation. Let us define the following performance index:

ηp =
1√

∑
N−1
i=0 q̇2

i

N

(2)

where q̇i is the value of q̇ assumed at node i. This index
is inversely proportional to the square root of the average
running cost of the discretized TO. The higher (2), the lower
are the average joint velocities needed to perform the tasks.
On this line of thought, (2) can be interpreted as a non-
local or distributed manipulability measure (as opposed to
classical manipulability measures [2], which are intrinsically
local) indicating how easily, in terms of joint velocities (or,
equivalently, joint excursions between TO nodes) an end-
effector trajectory can be performed by the platform.

Fig. 3. Simplified collision model employed for the collision constraint: each
link is modeled with a sphere.

Fig. 4. Problem formulation: the TO is discretized using a uniform time grid
of N nodes, shown by the vertical blue lines in the picture. A black horizontal
arrow indicates the time axis. Multiple tasks (of the same or different kind) are
distributed among the nodes of the problem. Tasks are enforced using suitable
pose constraints at specific nodes, which we refer to as ‘task base nodes’
(indicated in the picture by the integer numbers on the time axis). Aside from
task base nodes, a number of filling nodes (thin vertical blue lines) are added
to the problem to be able to solve for collision-free trajectories. Furthermore,
the cost is relaxed in between the final and initial base node of two successive
tasks, so that the transition between them and their ordering in time do not
influence the optimization.

C. Top level heuristic globalization algorithm

We observed a high sensitivity of the optimal solution of (1)
w.r.t. the employed initial guess; as a consequence, inspired by
genetic algorithms, we devised a globalization pipeline (briefly
described in Figure 2) built on top of the low level TO.

The pipeline is made of the following main phases:

1) Samples generation step: The first step consists of
finding several candidate solutions by solving many instances
of the low level TO for different initial guesses; these guesses
are generated randomly, starting from a given seed. From
now on, we will refer to this kind of approach as ‘multi-
starting’ the low level TO. The resulting locally optimal design
parameters, costs and trajectories are then stored and passed
to the following step.

2) Clustering step: We observe that solutions resulting
from the first step span almost the whole design space, but
they are not evenly distributed across it. Instead, they tend to
form agglomerates. For this reason, we employ a clustering
algorithm, specifically Mini-Batch K-Means [4], to group
‘close’ solutions. We then select the best candidate for each
cluster and feed these promising solutions to the last step of
the pipeline.

3) Cost refinement step/true fitness evaluation: The last
step of the pipeline is similar to the first and consists of
multi-starting the low level TO for each cluster candidate,
with the design variables fixed to their optimal value. This
allows to explore several locally optimal joint trajectories and
better characterize each candidate solution. The fitness of each
cluster candidate (i.e. their optimal cost) is updated to the
lowest value between the original cost and the new ones
coming from the multi-start procedure. We refer to this value
as the ‘refined’ cost of the cluster candidate.

4) Final solution selection: The final optimal solution is
chosen among the set of cluster candidates by picking the one
attaining the lowest refined cost.

III. CONCLUSIONS AND OPEN CHALLENGES

In this work we presented a bi-level co-design pipeline
developed to address the final design refinement stage of
the RePAIR project [1]. In particular, we provided a concise
description of the main components of both pipeline levels
and outlined the driving reasons behind their development.

Future work will include a more in depth analysis of the
top level globalization algorithm and improvements in the
selection of the final solution by combining more complex
and robust selection criteria (e.g. computing a confidence
index indicating how much a cluster candidate refined cost
can be trusted). Other possible improvements include, but are
not limited to, the use of a more accurate collision models,
the inclusion of the full end-effector kinematics in the low
level TO and the testing of additional representative tasks.
Moreover, the formal relationship between the proposed non-
local manipulability index (2) and the classical [2], if any,
deserves investigation. Finally, it would also be interesting to
test and adapt the proposed pipeline to different and more
complex problems with larger design space and, possibly,
discrete variables.
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