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Abstract

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its
zeros only at the negative even integers and complex numbers with real part 1

2 . For every prime
number pn, we define the sequence Xn =

∏
q≤pn

q
q−1 − eγ × log θ(pn), where θ(x) is the Chebyshev

function and γ ≈ 0.57721 is the Euler-Mascheroni constant. The Nicolas criterion states that the
Riemann hypothesis is true if and only if Xn > 0 holds for all primes pn > 2. For every prime
number pk > 2, Xk > 0 is called the Nicolas inequality. We prove that the Nicolas inequality
holds for all primes pn > 2. In this way, we demonstrate that the Riemann hypothesis is true.
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1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at
the negative even integers and complex numbers with real part 1

2 [1]. The Riemann hypothesis
belongs to the David Hilbert’s list of 23 unsolved problems [1]. Besides, it is one of the Clay
Mathematics Institute’s Millennium Prize Problems [1]. In mathematics, the Chebyshev function
θ(x) is given by

θ(x) =
∑
p≤x

log p

with the sum extending over all prime numbers p that are less than or equal to x [2]. For every
prime pn, we define the sequence

Xn =
∏
q≤pn

q
q − 1

− eγ × log θ(pn).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. The
importance of this property is:

Theorem 1.1. [3], [4]. Xn > 0 holds for all primes pn > 2 if and only if the Riemann hypothesis
is true. Moreover, the Riemann hypothesis is false if and only if there are infinitely many prime
numbers qi for which Xi ≤ 0 and infinitely many other prime numbers r j for which X j > 0.
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We use the following properties of the Chebyshev function:

Theorem 1.2. [5].

lim
x→∞

θ(x)
x
= 1.

Theorem 1.3. [6]. For x ≥ 41:

θ(x) > (1 −
1

log(x)
) × x.

Besides, we use the following result:

Theorem 1.4. [6]. For x ≥ 286:∏
q≤x

q
q − 1

< eγ × (log x +
1

2 × log(x)
).

We also use the Mertens’ theorem which states:

Theorem 1.5. [7].

lim
x→∞

(
1

log x
×

∏
q≤x

q
q − 1

) = eγ.

In mathematics, a subsequence is a sequence that can be derived from another sequence
by deleting some or no elements without changing the order of the remaining elements. Let
Zi be the infinite and biggest subsequence contained in Xn such that it is strictly decreasing.
This time every index i does not correspond to a prime number pi, but for a new arrangement
of enumerating the elements in the sequence Zi. Besides, we show that limi→∞ Zi = 0 after
of applying the sandwich theorem. This implies that lim supi→∞ Zi = 0. However, under the
assumption that the Nicolas inequality fails for a prime big enough, then lim supi→∞ Zi < 0. By
contraposition, we show that the Riemann hypothesis is actually true.

2. Results

For every prime number pn > 2, we define the sequence Yn =
e

1
2×log(pn )

(1− 1
log(pn ) )

.

Theorem 2.1. For every prime number pn > 2, the sequence Yn is strictly decreasing.

Proof. For every real value x ≥ 3, we state the function

k(x) =
e

1
2×log(x)

(1 − 1
log(x) )

which is equivalent to
k(x) = g(x) × h(u)

where g(x) = e
1

2×log(x) and h(u) = u
u−1 for u = log(x). We know that g(x) decreases as x ≥ 3

increases, Moreover, we note that h(u) decreases as u > 1 increases where u = log(x) > 1 for
x ≥ 3. In conclusion, we can see that the function k(x) is monotonically decreasing for every
real value x ≥ 3 and therefore, the sequence Yn is monotonically decreasing as well. In addition,
Yn is essentially a strictly decreasing sequence, since there is not any natural number n > 1 such
that Yn = Yn+1.
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We will prove another important result:

Theorem 2.2. Let q1, q2, . . . , qm denote the first m consecutive primes such that q1 < q2 < · · · <
qm and qm > 286. Then

m∏
i=1

qi

qi − 1
< eγ × log (Ym × θ(qm)) .

Proof. From the theorem 1.3, we know that

θ(qm) > (1 −
1

log(qm)
) × qm.

In this way, we can show that

log (Ym × θ(qm)) > log
(
Ym × (1 −

1
log(qm)

) × qm

)
= log qm + log

(
Ym × (1 −

1
log(qm)

)
)
.

We know that

log
(
Ym × (1 −

1
log(qm)

)
)
= log

 e
1

2×log(qm )

(1 − 1
log(qm) )

× (1 −
1

log(qm)
)


= log

(
e

1
2×log(qm)

)
=

1
2 × log(qm)

.

Consequently, we obtain that

log qm + log
(
Ym × (1 −

1
log(qm)

)
)
≥ (log qm +

1
2 × log(qm)

).

Due to the theorem 1.4, we prove that

m∏
i=1

qi

qi − 1
< eγ × (log qm +

1
2 × log(qm)

) < eγ × log (Ym × θ(qm))

when qm > 286.

Let’s define the sequences:
Vn = eγ × log Yn

and
Wn =

∏
q≤pn

q
q − 1

− eγ × log (Yn × θ(pn)) .

We obtain a key theorem:

Theorem 2.3. For all primes pn > 286, we show that the inequalities Wn < Xn < Vn are always
satisfied.
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Proof. According to the theorem 2.2, we have that for all primes pn > 286:∏
q≤pn

qi

qi − 1
< eγ × log (Yn × θ(pn))

which is equivalent to ∏
q≤pn

qi

qi − 1
− eγ × log θ(pn) < eγ × log Yn

and thus,
Xn < eγ × log Yn = Vn.

Besides, we know that
eγ × log (Yn × θ(pn)) > eγ × log θ(pn)

and therefore,
Wn =

∏
q≤pn

q
q − 1

− eγ × log (Yn × θ(pn)) < Xn.

Theorem 2.4.
lim
n→∞

Vn = 0.

Proof. We obtain that

lim
n→∞

(eγ × log Yn) = lim
n→∞

(eγ × log
e

1
2×log(pn )

(1 − 1
log(pn) )

)

= eγ × log 1
= 0

since limn→∞ Yn = 1.

Theorem 2.5.
lim
n→∞

Wn = 0.

Proof. We know by the theorem 1.5:

lim
n→∞

(
1

log pn
×

∏
q≤pn

q
q − 1

) = eγ,

and we have by the theorem 1.2:

lim
n→∞

θ(pn)
pn
= 1.

Putting all this together yields the proof:

lim
n→∞

∏
q≤pn

q
q − 1

− eγ × log (Yn × θ(pn))

 = lim
n→∞

(
eγ × log pn − eγ × log pn

)
= 0

since limn→∞ Yn = 1.
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Theorem 2.6. The Riemann hypothesis is true.

Proof. Let Zi be the infinite and biggest subsequence contained in Xn such that it is strictly
decreasing. Certainly, this infinite subsequence Zi exists, since we know that Xn < Vn and the
sequence Yn is strictly decreasing for every prime number pn > 2. This time every index i does
not correspond to a prime number pi, but for a new arrangement of enumerating the elements in
the sequence Zi. In addition, we present the following statement:

lim
i→∞

Zi = 0 (1)

due to W j < Zi < Vk and lim j→∞W j = limk→∞ Vk = 0: This is the result of applying the sandwich
theorem. We know that the Nicolas inequality holds for all primes 2 < p < 286. By definition,
the limit limi→∞ Zi exists if and only if

lim
i→∞

Zi = lim sup
i→∞

Zi = lim inf
i→∞

Zi. (2)

Suppose that p > 286 is the smallest prime number such that the Nicolas inequality is false where
we know that Z j is strictly decreasing (that is Z j > Z j+1). Under this assumption, there must exist
some index m such that

Zm ≤ 0

and thus
Zm+1 < Zm ≤ 0.

This implies
lim sup

m→∞
Zm < 0

which is a contradiction with the limit superior in (2) and the value of (1). By contraposition, the
Nicolas inequality would be satisfied for every prime p big enough. Consequently, there would
be not infinitely many prime numbers for which the Nicolas inequality is unsatisfied. In this way,
using the theorem 1.1, we can conclude that the Riemann hypothesis is true.
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