The Nicolas Criterion for the Riemann Hypothesis

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

The Nicolas criterion for the Riemann Hypothesis

Frank Vega

CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France

Abstract

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$. For every prime number p_{n}, we define the sequence $X_{n}=\prod_{q \leq p_{n}} \frac{q}{q-1}-e^{\gamma} \times \log \theta\left(p_{n}\right)$, where $\theta(x)$ is the Chebyshev function and $\gamma \approx 0.57721$ is the Euler-Mascheroni constant. The Nicolas criterion states that the Riemann hypothesis is true if and only if $X_{n}>0$ holds for all primes $p_{n}>2$. For every prime number $p_{k}>2, X_{k}>0$ is called the Nicolas inequality. We prove that the Nicolas inequality holds for all primes $p_{n}>2$. In this way, we demonstrate that the Riemann hypothesis is true.

Keywords: Riemann hypothesis, Nicolas inequality, prime numbers, Chebyshev function, Monotonicity
2000 MSC: 11M26, 11A41, 11A25

1. Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part $\frac{1}{2}$ [1]. The Riemann hypothesis belongs to the David Hilbert's list of 23 unsolved problems [1]. Besides, it is one of the Clay Mathematics Institute's Millennium Prize Problems [1]. In mathematics, the Chebyshev function $\theta(x)$ is given by

$$
\theta(x)=\sum_{p \leq x} \log p
$$

with the sum extending over all prime numbers p that are less than or equal to x [2]. For every prime p_{n}, we define the sequence

$$
X_{n}=\prod_{q \leq p_{n}} \frac{q}{q-1}-e^{\gamma} \times \log \theta\left(p_{n}\right) .
$$

The constant $\gamma \approx 0.57721$ is the Euler-Mascheroni constant and \log is the natural logarithm. The importance of this property is:

Theorem 1.1. [3], [4]. $X_{n}>0$ holds for all primes $p_{n}>2$ if and only if the Riemann hypothesis is true. Moreover, the Riemann hypothesis is false if and only if there are infinitely many prime numbers q_{i} for which $X_{i} \leq 0$ and infinitely many other prime numbers r_{j} for which $X_{j}>0$.

[^0]We use the following properties of the Chebyshev function:
Theorem 1.2. [5].

$$
\lim _{x \rightarrow \infty} \frac{\theta(x)}{x}=1
$$

Theorem 1.3. [6]. For $x \geq 41$:

$$
\theta(x)>\left(1-\frac{1}{\log (x)}\right) \times x .
$$

Besides, we use the following result:
Theorem 1.4. [6]. For $x \geq 286$:

$$
\prod_{q \leq x} \frac{q}{q-1}<e^{\gamma} \times\left(\log x+\frac{1}{2 \times \log (x)}\right) .
$$

We also use the Mertens' theorem which states:
Theorem 1.5. [7].

$$
\lim _{x \rightarrow \infty}\left(\frac{1}{\log x} \times \prod_{q \leq x} \frac{q}{q-1}\right)=e^{\gamma} .
$$

In mathematics, a subsequence is a sequence that can be derived from another sequence by deleting some or no elements without changing the order of the remaining elements. Let Z_{i} be the infinite and biggest subsequence contained in X_{n} such that it is strictly decreasing. This time every index i does not correspond to a prime number p_{i}, but for a new arrangement of enumerating the elements in the sequence Z_{i}. Besides, we show that $\lim _{i \rightarrow \infty} Z_{i}=0$ after of applying the sandwich theorem. This implies that $\lim \sup _{i \rightarrow \infty} Z_{i}=0$. However, under the assumption that the Nicolas inequality fails for a prime big enough, then $\lim \sup _{i \rightarrow \infty} Z_{i}<0$. By contraposition, we show that the Riemann hypothesis is actually true.

2. Results

For every prime number $p_{n}>2$, we define the sequence $Y_{n}=\frac{e^{\frac{1}{x \log (p n)}}}{\left(1-\frac{1}{\log \left(p_{n}\right)}\right)}$.
Theorem 2.1. For every prime number $p_{n}>2$, the sequence Y_{n} is strictly decreasing.
Proof. For every real value $x \geq 3$, we state the function

$$
k(x)=\frac{e^{\frac{1}{2 \log (x)}}}{\left(1-\frac{1}{\log (x)}\right)}
$$

which is equivalent to

$$
k(x)=g(x) \times h(u)
$$

where $g(x)=e^{\frac{1}{2 \times \log (x)}}$ and $h(u)=\frac{u}{u-1}$ for $u=\log (x)$. We know that $g(x)$ decreases as $x \geq 3$ increases, Moreover, we note that $h(u)$ decreases as $u>1$ increases where $u=\log (x)>1$ for $x \geq 3$. In conclusion, we can see that the function $k(x)$ is monotonically decreasing for every real value $x \geq 3$ and therefore, the sequence Y_{n} is monotonically decreasing as well. In addition, Y_{n} is essentially a strictly decreasing sequence, since there is not any natural number $n>1$ such that $Y_{n}=Y_{n+1}$.

We will prove another important result:
Theorem 2.2. Let $q_{1}, q_{2}, \ldots, q_{m}$ denote the first m consecutive primes such that $q_{1}<q_{2}<\cdots<$ q_{m} and $q_{m}>286$. Then

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}<e^{\gamma} \times \log \left(Y_{m} \times \theta\left(q_{m}\right)\right)
$$

Proof. From the theorem 1.3, we know that

$$
\theta\left(q_{m}\right)>\left(1-\frac{1}{\log \left(q_{m}\right)}\right) \times q_{m} .
$$

In this way, we can show that

$$
\begin{aligned}
\log \left(Y_{m} \times \theta\left(q_{m}\right)\right) & >\log \left(Y_{m} \times\left(1-\frac{1}{\log \left(q_{m}\right)}\right) \times q_{m}\right) \\
& =\log q_{m}+\log \left(Y_{m} \times\left(1-\frac{1}{\log \left(q_{m}\right)}\right)\right) .
\end{aligned}
$$

We know that

$$
\begin{aligned}
\log \left(Y_{m} \times\left(1-\frac{1}{\log \left(q_{m}\right)}\right)\right) & =\log \left(\frac{e^{\frac{1}{2 \times \log \left(q_{m}\right)}}}{\left(1-\frac{1}{\log \left(q_{m}\right)}\right)} \times\left(1-\frac{1}{\log \left(q_{m}\right)}\right)\right) \\
& =\log \left(e^{\frac{1}{2 \times \log \left(q_{m)}\right)}}\right) \\
& =\frac{1}{2 \times \log \left(q_{m}\right)} .
\end{aligned}
$$

Consequently, we obtain that

$$
\log q_{m}+\log \left(Y_{m} \times\left(1-\frac{1}{\log \left(q_{m}\right)}\right)\right) \geq\left(\log q_{m}+\frac{1}{2 \times \log \left(q_{m}\right)}\right)
$$

Due to the theorem 1.4, we prove that

$$
\prod_{i=1}^{m} \frac{q_{i}}{q_{i}-1}<e^{\gamma} \times\left(\log q_{m}+\frac{1}{2 \times \log \left(q_{m}\right)}\right)<e^{\gamma} \times \log \left(Y_{m} \times \theta\left(q_{m}\right)\right)
$$

when $q_{m}>286$.
Let's define the sequences:

$$
V_{n}=e^{\gamma} \times \log Y_{n}
$$

and

$$
W_{n}=\prod_{q \leq p_{n}} \frac{q}{q-1}-e^{\gamma} \times \log \left(Y_{n} \times \theta\left(p_{n}\right)\right) .
$$

We obtain a key theorem:
Theorem 2.3. For all primes $p_{n}>286$, we show that the inequalities $W_{n}<X_{n}<V_{n}$ are always satisfied.

Proof. According to the theorem 2.2, we have that for all primes $p_{n}>286$:

$$
\prod_{q \leq p_{n}} \frac{q_{i}}{q_{i}-1}<e^{\gamma} \times \log \left(Y_{n} \times \theta\left(p_{n}\right)\right)
$$

which is equivalent to

$$
\prod_{q \leq p_{n}} \frac{q_{i}}{q_{i}-1}-e^{\gamma} \times \log \theta\left(p_{n}\right)<e^{\gamma} \times \log Y_{n}
$$

and thus,

$$
X_{n}<e^{\gamma} \times \log Y_{n}=V_{n}
$$

Besides, we know that

$$
e^{\gamma} \times \log \left(Y_{n} \times \theta\left(p_{n}\right)\right)>e^{\gamma} \times \log \theta\left(p_{n}\right)
$$

and therefore,

$$
W_{n}=\prod_{q \leq p_{n}} \frac{q}{q-1}-e^{\gamma} \times \log \left(Y_{n} \times \theta\left(p_{n}\right)\right)<X_{n} .
$$

Theorem 2.4.

$$
\lim _{n \rightarrow \infty} V_{n}=0 .
$$

Proof. We obtain that

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(e^{\gamma} \times \log Y_{n}\right) & =\lim _{n \rightarrow \infty}\left(e^{\gamma} \times \log \frac{e^{\frac{1}{2 \times \log \left(p_{n}\right)}}}{\left(1-\frac{1}{\log \left(p_{n}\right)}\right)}\right) \\
& =e^{\gamma} \times \log 1 \\
& =0
\end{aligned}
$$

since $\lim _{n \rightarrow \infty} Y_{n}=1$.

Theorem 2.5.

$$
\lim _{n \rightarrow \infty} W_{n}=0
$$

Proof. We know by the theorem 1.5:

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{\log p_{n}} \times \prod_{q \leq p_{n}} \frac{q}{q-1}\right)=e^{\gamma},
$$

and we have by the theorem 1.2:

$$
\lim _{n \rightarrow \infty} \frac{\theta\left(p_{n}\right)}{p_{n}}=1
$$

Putting all this together yields the proof:

$$
\lim _{n \rightarrow \infty}\left(\prod_{q \leq p_{n}} \frac{q}{q-1}-e^{\gamma} \times \log \left(Y_{n} \times \theta\left(p_{n}\right)\right)\right)=\lim _{n \rightarrow \infty}\left(e^{\gamma} \times \log p_{n}-e^{\gamma} \times \log p_{n}\right)=0
$$

since $\lim _{n \rightarrow \infty} Y_{n}=1$.

Theorem 2.6. The Riemann hypothesis is true.
Proof. Let Z_{i} be the infinite and biggest subsequence contained in X_{n} such that it is strictly decreasing. Certainly, this infinite subsequence Z_{i} exists, since we know that $X_{n}<V_{n}$ and the sequence Y_{n} is strictly decreasing for every prime number $p_{n}>2$. This time every index i does not correspond to a prime number p_{i}, but for a new arrangement of enumerating the elements in the sequence Z_{i}. In addition, we present the following statement:

$$
\begin{equation*}
\lim _{i \rightarrow \infty} Z_{i}=0 \tag{1}
\end{equation*}
$$

due to $W_{j}<Z_{i}<V_{k}$ and $\lim _{j \rightarrow \infty} W_{j}=\lim _{k \rightarrow \infty} V_{k}=0$: This is the result of applying the sandwich theorem. We know that the Nicolas inequality holds for all primes $2<p<286$. By definition, the limit $\lim _{i \rightarrow \infty} Z_{i}$ exists if and only if

$$
\begin{equation*}
\lim _{i \rightarrow \infty} Z_{i}=\limsup _{i \rightarrow \infty} Z_{i}=\liminf _{i \rightarrow \infty} Z_{i} . \tag{2}
\end{equation*}
$$

Suppose that $p>286$ is the smallest prime number such that the Nicolas inequality is false where we know that Z_{j} is strictly decreasing (that is $Z_{j}>Z_{j+1}$). Under this assumption, there must exist some index m such that

$$
Z_{m} \leq 0
$$

and thus

$$
Z_{m+1}<Z_{m} \leq 0
$$

This implies

$$
\limsup _{m \rightarrow \infty} Z_{m}<0
$$

which is a contradiction with the limit superior in (2) and the value of (1). By contraposition, the Nicolas inequality would be satisfied for every prime p big enough. Consequently, there would be not infinitely many prime numbers for which the Nicolas inequality is unsatisfied. In this way, using the theorem 1.1, we can conclude that the Riemann hypothesis is true.

References

[1] P. B. Borwein, S. Choi, B. Rooney, A. Weirathmueller, The Riemann Hypothesis: A Resource for the Afficionado and Virtuoso Alike, Vol. 27, Springer Science \& Business Media, 2008.
[2] D. J. Platt, T. S. Trudgian, On the first sign change of $\theta(x)-x$, Math. Comput. 85 (299) (2016) 1539-1547. doi:10.1090/mcom/3021.
[3] J.-L. Nicolas, Petites valeurs de la fonction d'Euler et hypothese de Riemann, Séminaire de Théorie des nombres DPP, Paris 82 (1981) 207-218.
[4] J.-L. Nicolas, Petites valeurs de la fonction d'Euler, Journal of number theory 17 (3) (1983) 375-388. doi:10.1016/0022-314X(83)90055-0.
[5] T. H. Grönwall, Some asymptotic expressions in the theory of numbers, Transactions of the American Mathematical Society 14 (1) (1913) 113-122. doi:10.2307/1988773.
[6] J. B. Rosser, L. Schoenfeld, Approximate Formulas for Some Functions of Prime Numbers, Illinois Journal of Mathematics 6 (1) (1962) 64-94. doi:doi:10.1215/ijm/1255631807.
[7] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie., J. reine angew. Math. 1874 (78) (1874) 46-62. doi:10.1515/crll.1874.78.46. URL https://doi.org/10.1515/crll.1874.78.46

[^0]: Email address: vega.frank@gmail.com (Frank Vega)

