Using Boolean Rings to Reconstruct the Hill Cipher Algorithm

Rishabh Malhotra, Girish Paliwal, S. Srinivasan and Narayanaswamy Chandramowliswaran

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Using Boolean Rings to Reconstruct the Hill Cipher Algorithm

RishabhMalhotra ${ }^{\boxtimes}$)
Amity University Rajasthan, 303002
rish.malhotra1996@gmail.com
Girish Paliwal
Amity University Rajasthan, 303002
S. Srinivasan
Periyar Govt Arts and Science College Cuddalore, 607001
N. Chandramowliswaran
Amity University Haryana, 122413

Abstract

In the age of ever-growing technology, information transfer is becoming more and more vulnerable. Cryptography the key which ensures secure communication. In this paper, an attempt to recreate the Hill Cipher encryption scheme has been made where the key structure is based on a group algebra \mathbf{G} over the boolean ring \mathbf{R}. The key idea of the proposal is to overcome the currently existing vulnerabilities in the Hill Cipher. Developed by Lester S. Hill in 1929, the Hill Cipher encryption algorithm was a key invention in the field of Cryptography in the then era. However, changing worlds and developing technologies have made it necessary to make some amendments in the currently existing algorithm. Here, we use Boolean Rings as the key matrices to make the encryption scheme stronger and more secure.

Keywords - Cyber-Security, Cryptography, Hill Cipher, Encryption, Decryption, RSA Algorithm, Substitution Cipher

1 Introduction

In 1976, Whitefield Diffie and Martin Hellman published the first practical public key cryptosystem for secure data transmission [1]. The Diffie-Hellman Algorithm was based on the discrete log problem. Since then, many public key cryptography algorithms have been created. The RSA scheme [2] discovered in 1978 by Ron Rivest, A. Shamir and Adleman was based on the factorization problem of the modulus, factorizing of $\bmod \mathrm{N}$ is an impractical task if the integer N is sufficiently large, where N is the product of two distinct large primes. Since then, many developments have been made in the field of cryptography. Elliptic Curves Cryptography, which is based on the algebraic structure of elliptic curves over finite fields, has an advantage over the non-elliptic curvecryptography with the smallerkey sizes [3][4].

The key idea of this encryption scheme is based on the pre-existing Hill Cipher [5] which is a polygraphic substitution cipher based on Linear Algebra. Here, Boolean Rings have been used to reconstruct the original message text over the group algebras.

Here, in this paper, we present some new techniques to encrypt and decrypt the messa ges. Some basic concepts of group algebra, and linear algebra have been used and applied to make a new algorithm. The RSA Algorithm [2] has been used as the basis of the cryptosystem.

2 Literature Review

In recent past many works have been done to improve the cryptosystems using the group algebra of commutative and non-commutative rings [6][7]. More than just theencryption and decryption of data, the secure transmission of the private $k e y(s)$ is a crucial part of a cryptosystem. The threshold schemes enable a group of users to share a secret by providing each user with a share [8]. It is necessary for a good cryptosystem to be practically impossible for the attacker to break [9]. A good cryptosy stem would comparatively take more time while the attacker is trying to break into it. This can either be a chieved by making a moderately longer key or by creating a more advance algorithm that would make the entire cryptosy stem reluctantto a ny damage.

Sometimes, when the userhas to upload the encrypted data at a public server, only the cipher with a public key won't be able to secure the data completely. Hence, in that case, the homomorphic encryption comes into picture. Here, encryption is performed on an already encrypted data at the server side [8].

$\boldsymbol{\operatorname { E n c }}(\ldots \boldsymbol{\operatorname { E n c }}(\boldsymbol{\operatorname { E n c }}(\boldsymbol{m})) \ldots)$, where m is the message.

But, in order to recover the original message, the decipherkey has to be applied only once to thehomomorphically encrypted data.

When it comes to the speed in the computation, the homomorphic encryption has a constraint. To remove the limitation, a new latin-squares based technique for encryption has been derived. In this algorithm, all the encryption is done through Symmetric Key Cryptography. This procedure hence increases the security of the data manifolds and also the computation is comparatively complex

Hill Cipher sees its applications in image encryptions as well [10]. For grayscale images, the modulus will be 256 (the number of levels is considered as the number of alphabets). In the case of colour images, the image is first decomposed (R-G-B) components. Then, each component is encrypted separately. Finally, in order to get the encrypted colour image, each encrypted component is concatenated. The image encryption technique has also been proposed combining Hill Cipher with Elliptic Curve Techniques [11]. This method removes the requirement of the key matrix in inverse henceincreasing the decryption speed. In Hill Cipher, the construction of keys plays an important part. Many methods to construct the keys have been made using both ClassicalCipher [12] and Genetic Algorithms [13]. However, it is vulnerable to known plaintext attack. Another setback is that an invertible key matrix is needed for decryption a nd it is not suitable forencrypting a plaintext consisting of zeroes. [14]

3 Proposed Algorithm

The currently existing hill cipher has several advantages in cryptography however, it encrypts plaintext blocks to identical ciphertext blocks making it difficult to properly hide the patterns of the plain text. The proposed technique adjusts the encryption key to form a different key for each block encryption. Taking into consideration the more complex computations using the boolean rings as the ba seof the structure, we certainly observe a higher work factor and the examples show that this encryption scheme prevents Single Letter Frequency Distribution.

Def 1.BooleanRing[15]

Let \boldsymbol{X} be any given finite set (non-empty). Consider $\boldsymbol{\mathcal { P }}(\boldsymbol{X})=$ \{set of ALL subsets of X\}

Define \oplus and \cdot on $\boldsymbol{\mathcal { P }}(\boldsymbol{X})$ a follows:

$$
\begin{array}{ll}
A \oplus B=(A-B) \cup(B-A) & \\
A \cdot B=A \cap B, \quad \text { where } A, B \in \mathcal{P}(X)
\end{array}
$$

Figure 1 : Boolean Ring

This ring is:
a) Commutative
$A \oplus B=B \oplus A$
$\boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{B} \cdot \boldsymbol{A}$, where $\boldsymbol{A}, \boldsymbol{B} \in \mathcal{P}(\boldsymbol{X})$
b) Associative
$A \oplus(B \oplus C)=(A \oplus B) \oplus C$
$\boldsymbol{A} \cdot(\boldsymbol{B} \cdot \boldsymbol{C})=(\boldsymbol{A} \cdot \boldsymbol{B}) \cdot \boldsymbol{C}$, where $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \in \mathcal{P}(\boldsymbol{X})$
c) Distributive
$(\boldsymbol{A} \oplus \boldsymbol{B}) \cdot \boldsymbol{C}=(\boldsymbol{A} \cdot \boldsymbol{C}) \oplus(\boldsymbol{B} \cdot \boldsymbol{C})$
$(\boldsymbol{A} \cdot \boldsymbol{B}) \oplus \boldsymbol{C}=(\boldsymbol{A} \oplus \boldsymbol{C}) \cdot(\boldsymbol{B} \oplus \boldsymbol{C})$, where $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C} \in \mathcal{P}(\boldsymbol{X})$

The empty set $(\boldsymbol{\phi})$ is the zero of the ring.
The finite set \boldsymbol{X} is the one of the ring.
Hence, $\left(\boldsymbol{P}(\boldsymbol{X}), \oplus_{;}, \boldsymbol{\phi}, \boldsymbol{X}\right)$ forms a Boolean Ring.

Def 2. Multiplication of Boolean Rings

Let $\boldsymbol{U}=\left[\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right], \boldsymbol{v}=\left[\begin{array}{ll}\boldsymbol{E} & \boldsymbol{F} \\ \boldsymbol{G} & \boldsymbol{H}\end{array}\right]$,
then the matrix multiplication is defined a follows:
$\boldsymbol{U} \cdot \boldsymbol{v}=\left[\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right] \cdot\left[\begin{array}{ll}\boldsymbol{E} & \boldsymbol{F} \\ \boldsymbol{G} & \boldsymbol{H}\end{array}\right]=\left[\begin{array}{ll}A E \oplus B G & \boldsymbol{A F} \oplus \boldsymbol{B H} \\ \boldsymbol{C E} \oplus \boldsymbol{D} \boldsymbol{G} & \boldsymbol{C F} \oplus \boldsymbol{D} \boldsymbol{H}\end{array}\right] \quad\langle A B=\boldsymbol{A} \cdot \boldsymbol{B}\rangle$
where, $A, B, C, D, E, F, G, H \in \mathcal{P}(X)$

Note: While decrypting the message, the invertibility of the latin square, formed over the boolean ring R, is a necessary condition.

3.1 Encryption and Decryption Algorithm

Let $\boldsymbol{\mathcal { M }}=\left[\begin{array}{l}\boldsymbol{Y}_{\mathbf{1}} \\ \boldsymbol{Y}_{\mathbf{2}} \\ \boldsymbol{Y}_{\mathbf{3}}\end{array}\right]$ be the message that we have to encrypt.
To encrypt the message, we need a key.

Let $\mathcal{K}=\left[\begin{array}{ccc}\boldsymbol{X} \oplus \boldsymbol{A} \boldsymbol{E} \oplus \boldsymbol{B} \boldsymbol{F} & \boldsymbol{A} \oplus \boldsymbol{B} \boldsymbol{G} & \boldsymbol{B} \\ \boldsymbol{E} \oplus \boldsymbol{F} & \boldsymbol{X} \oplus \boldsymbol{G} & \boldsymbol{C} \\ \boldsymbol{F} & \boldsymbol{G} & \boldsymbol{X}\end{array}\right]$ be the Encryptionkey, $\boldsymbol{D e t}(\mathcal{K})=\boldsymbol{X}$.
where, $A, B, C, E, F, G \in \mathcal{P}(X)$

Define $\boldsymbol{E n c}(\boldsymbol{\mathcal { M }})=\boldsymbol{\mathcal { K }} \cdot \boldsymbol{\mathcal { M }}$
$=\left[\begin{array}{ccc}X \oplus A E \oplus B F & A \oplus B G & B \\ E \oplus C F & X \oplus C G & C \\ \boldsymbol{F} & \boldsymbol{G} & \boldsymbol{X}\end{array}\right] \cdot\left[\begin{array}{l}\boldsymbol{Y}_{1} \\ \boldsymbol{Y}_{2} \\ \boldsymbol{Y}_{3}\end{array}\right]=\left[\begin{array}{l}\boldsymbol{Y}_{1}^{\prime} \\ \boldsymbol{Y}_{2}^{\prime} \\ \boldsymbol{Y}_{3}^{\prime}\end{array}\right]$ (say)
$=\left[\begin{array}{c}Y_{1} \oplus B F Y_{1} \oplus A Y_{2} \oplus B G Y_{2} \oplus B Y_{3} \\ E Y_{1} \oplus C F Y_{1} \oplus Y_{2} \oplus C G Y_{2} \oplus C Y_{3} \\ F Y_{1} \oplus G Y_{2} \oplus Y_{3}\end{array}\right]=\left[\begin{array}{l}Y_{1}^{\prime} \\ Y_{2}^{\prime} \\ Y_{3}^{\prime}\end{array}\right]$

Here,
$Y_{1}^{\prime}=Y_{1} \oplus B F Y_{1} \oplus A Y_{2} \oplus B G Y_{2} \oplus B Y_{3}$
$Y_{2}^{\prime}=E Y_{1} \oplus C F Y_{1} \oplus Y_{2} \oplus C G Y_{2} \oplus C Y_{3}$
$\boldsymbol{Y}_{3}^{\prime}=\boldsymbol{F} Y_{1} \oplus G Y_{2} \oplus Y_{3}$

To decrypt this message,
$D_{n}(\mathcal{M})=\mathcal{K}^{-1}$
$=\frac{1}{X}\left[\begin{array}{ccc}X & A & A C \oplus B \\ E & X \oplus A E & C \oplus C A E \oplus B E \\ F & G \oplus G A E \oplus A F & X \oplus B F \oplus C G \oplus E B G \oplus C G A E\end{array}\right]$
$=\left[\begin{array}{ccc}X & A & A C \oplus B \\ E & X \oplus A E & C \oplus C A E \oplus B E \\ F & G \oplus G A E \oplus A F & X \oplus B F \oplus C G \oplus E B G \oplus C G A E\end{array}\right]$

Here, as mentioned, that in a Boolean Ring, the one (1) of thering is the finite set \boldsymbol{X}. In order to maintain the invertibility of the matrix, it is important that such a matrix is constructed with determinant $=\boldsymbol{X}$. This determinant being equalto theone of the finite ring ensures the invertibility and hence the decryption is possible without the loss of data.

Some of the methods to construct such matrices have been discussed below.

3.2 To Construct a square matrix with determinant $=\mathbf{X}$ using triangular matrices

Let X be any given finite set (non-empty)
Consider $\mathcal{P}(X)=\{$ set of ALL subsets of $X\}$
Define \oplus and \cdot on $\mathcal{P}(X)$ as follows:

$$
A \oplus B=(A-B) \cup(B-A)=B \oplus A
$$

$$
A \cdot B=A \cap B=B \cdot A, \quad \text { where } A, B \in \mathcal{P}(X)
$$

Define two square matrices \boldsymbol{U} and \boldsymbol{V}

```
\(\boldsymbol{u}=\left[\begin{array}{lll}X & A & B \\ \phi & X & C \\ \phi & \phi & X\end{array}\right] ; \boldsymbol{v}=\left[\begin{array}{ccc}X & \phi & \phi \\ E & X & \phi \\ F & G & X\end{array}\right]\) where \(A, B, C, E, F, G \in \mathcal{P}(X)\)
    \(\boldsymbol{u} \cdot \boldsymbol{v}=\left[\begin{array}{ccc}X \oplus A E \oplus B F & \phi \oplus A X \oplus B G & \phi \oplus B X \\ \phi \oplus E \oplus C F & \phi \oplus X \oplus C G & \phi \oplus \phi \oplus C \\ \phi \oplus X F & \phi \oplus G & X\end{array}\right]\)
    \(\boldsymbol{u} \cdot \boldsymbol{v}=\left[\begin{array}{ccc}X \oplus A E \oplus B F & A \oplus B G & B \\ E \oplus C F & X \oplus C G & C \\ F & G & X\end{array}\right]\)
                                    \(\rightarrow(K)\)
\(\operatorname{det}(\boldsymbol{U} \cdot \boldsymbol{V})\)
\(=[(X \oplus A E \oplus B F)(X \oplus C G \oplus C G)] \oplus[(A \oplus B G)(E \oplus C F \oplus C F)] \oplus[B(E G \oplus C F G \oplus F \oplus C G F)]\)
    \(=X \oplus A E \oplus B F \oplus A E \oplus B G E \oplus B E G \oplus B F\)
    \(=X\)
```

Example:
Assume $X=\{1,2,3,4,5\}$ and $\mathcal{P}(X)$ be the power set of X
$\boldsymbol{u}=\left[\begin{array}{ccc}X & \{1,2\} & \{2,3\} \\ \phi & X & \{1,2,3\} \\ \phi & \phi & X\end{array}\right] ; \boldsymbol{v}=\left[\begin{array}{ccc}X & \phi & \phi \\ \{1,3\} & X & \phi \\ \{1,2\} & \{3,4\} & X\end{array}\right]$
$\boldsymbol{u} \cdot \boldsymbol{v}=\left[\begin{array}{ccc}\{3,4,5\} & \{1,2,3\} & \{2,3\} \\ \{2,3\} & \{1,2,4,5\} & \{1,2,3\} \\ \{1,2\} & \{3,4\} & X\end{array}\right]$
here, $\operatorname{det}(\boldsymbol{u} \cdot \boldsymbol{v})=X$
Similarly, using different finite non-empty sets " X " and taking different elements from their power set, we ca n obtain infinite number of square matrices of a ny order.
Similarly, we can create a 4 -square matrix by multiplying
$\boldsymbol{u}=\left[\begin{array}{llll}X & A & B & C \\ \phi & X & D & E \\ \phi & \phi & X & F \\ \phi & \phi & \phi & X\end{array}\right]$ and $\boldsymbol{v}=\left[\begin{array}{cccc}X & \phi & \phi & \phi \\ G & X & \phi & \phi \\ H & I & X & \phi \\ J & K & L & X\end{array}\right]$ in order to get a 4-sqaure
matrix $\mathcal{D}=\boldsymbol{U} \cdot \boldsymbol{V}$ whose determinant $=X$.
$\boldsymbol{D}=\boldsymbol{u} \cdot \boldsymbol{v}=\left[\begin{array}{cccc}X \oplus A G \oplus B H \oplus C J & A \oplus B I \oplus C K & B \oplus C L & C \\ G \oplus D H \oplus E J & X \oplus D I \oplus E K & D \oplus E L & E \\ H \oplus F J & I \oplus F K & X \oplus F L & F \\ J & K & L & X\end{array}\right]$
$A, B, C, D, E, F, G, H, I, J, K, L \in \mathcal{P}(X)$.
3.3 To construct a square matrix with determinant $=X$ using square tridiagonalmatrices

Let X be any given finite set (non-empty).
Consider $\mathcal{P}(X)=\{$ set of ALL subsets of $X\}$
Let $\boldsymbol{U}=\left[\begin{array}{lll}X & A & \phi \\ B & X & A \\ \phi & B & X\end{array}\right]$ and $\boldsymbol{v}=\left[\begin{array}{lll}X & C & \phi \\ D & X & C \\ \phi & D & X\end{array}\right]$, we have $\operatorname{Det}(\boldsymbol{U})=\operatorname{Det}(\boldsymbol{v})=X$.
Here, $A, B, C, D \in \mathcal{P}(X)$
$\boldsymbol{u} \cdot \boldsymbol{v}=\left[\begin{array}{ccc}X \oplus A D & C \oplus A & C A \\ B \oplus D & X \oplus B C \oplus A D & C \oplus A \\ B D & B \oplus D & X \oplus B C\end{array}\right]$,
$\operatorname{Det}(\boldsymbol{U} \cdot \boldsymbol{v})=\operatorname{Det}(\boldsymbol{u}) \cdot \operatorname{Det}(\boldsymbol{v})=X \cdot X=X$
3.4 To construct a square matrix with determinant $=X$ using partitions of a set

Let " X " be a non-empty finiteset,

$$
X=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}
$$

Define $A_{1}, A_{2}, A_{3}, \ldots, A_{n}$ as the partitions of the set X.

$$
X=\bigcup_{i=1}^{n} A_{i} ; A_{i} \cap A_{j}=\phi \forall i \neq j .
$$

Create a matrix " \boldsymbol{U} " using the $A_{i} s$ a latin square.

$$
\operatorname{Det}(\boldsymbol{U})=A_{1} \oplus A_{2} \oplus A_{3} \oplus \ldots \oplus A_{n}=X
$$

4 Analysis

Let $M=A B C$ be the plain text. Themessage corresponds to $\{0,1,2\}$.
Considering $K=\left[\begin{array}{ccc}3 & 10 & 20 \\ 20 & 9 & 17 \\ 9 & 4 & 17\end{array}\right]$ as the secret key and encrypting the message with Hill Cipher we get $\mathrm{M}^{\prime}=$ YRM as the encrypted text. The same text when encrypted with the developed Hill Cipher using
$K=\left[\begin{array}{ccc}\phi & \{1,2,3\} & \phi \\ \phi & \{4,5\} & \{1,2,3\} \\ \{1,3\} & \{1,2,3,4\} & \{4,5\}\end{array}\right]$ as the secret key gives $M^{\prime}=\mathrm{BCB}$ as the encrypted text.

The above example is evident to the fact that the proposed algorithm overcomes the single letter frequency distribution problem making the encryption more strong a nd secure

5 Conclusion

The Hill cipher is the first polygraph cipher which has some advantages in symmetric data encryption. However, many studies and experiments show that Hill Cipher is vulnerable to known plaintext attack. The known-plaintext attack (KPA) is an attack model for cryptanaly sis where the a ttacker has access to both the plaintext, and the corresponding encrypted version through which other encrypted texts can be decoded. The reason for such a drawback is the linear ca lculations which the algorithm uses. Applying a brute force attack on any hillcipher encrypted text would lead to the plain text in fewer number of permutations. Less work factor on brute force attacks is a nother vulnerability observed in Hill Cipher Algorithm.
The algorithm to use Boolean Rings solves the above-mentioned problems in the Hill Cipher. The non-linear key calculations increase the complexity in key formation. Hence, now more work factor would be required while applying Brute force attack. And, it is not just the complexity in key formations, but this algorithm also removes the single letterf requency attack which increases the number of permutations while performing the brute force attack.
Anotherkey feature of this proposed algorithm lies in what we call the 'Discrete Matrix Problem' derived from the term 'Discrete Log Problem'. Let G be a finite group and g be an element of G. Given $a \in G$ find an integer x such that $g x=a$. This corresponds to the loga rithm problem for the positive reals, that is the same problem but with x a real number. The finiteness of the group and the typeof solution sought account for the discrete in the name. Similarly, in the proposed algorithm; it is not possible to trace back the key from the given decrypted text. Hence, preventing the known-plaintext attack.

References

[1] W. Diffie and M.E. Hellman, New directions in cryptography, IEEE Transactions on Information Theory 22 (1976), 644-654.
[2] R.L. Rivest, A. Shamir a nd L. Adleman, A method for obtaining digital signa tures and public key cryptosystems, Communications of the ACM 21 (1978), pp. 120126.
[3] K. Komaya, U.Maurer, T. Okamoto andS. Vanston, Newpublic-key schemes bases on elliptic curves over the ring Zn, In J. Feigenbaum (Ed.): Crypto'91, LNCS 576, Springer-Verlag (1992), pp. 252-266.
[4] Koblitz,N. (1987). "Elliptic curve cryptosystems". Mathematics of Computation. 48 (177): 203-209. doi:10.2307/2007884
[5] Lester S. Hill (1929); Cryptography in An Algebraic Alphabet, The AmericanMathematical Monthly, 36:6, 306-312
[6] N. Chandramowliswaran, P. Muralikrishna and S. Sriniva san, Key Exchange and Encryption Schemes Based on commutative rings
[7] Zhenfu Cao, Xia olei Dong and Licheng Wang, (2007) New Public Key Cryptosystems Using Poly nomials overNon-commutative Rings, International Association for Cryptologic Research (009)
[8] N. Chandramowliswaran, S. Sriniva san \& P. Mura likrishna (2015) Authenticated key distribution using given set of primes for secret sharing, Sy stems Science \& Control Engineering, 3:1, 106-112, DOI: 10.1080/21642583.2014.985803
[9] Christof Paar, Jan Pelzl, Understanding Cryptography, Springer (2010)
[10] Ismail, I. A., Mohammed Amin, and Hossam Diab. "How to repair the Hill cipher." Journal of Zhejiang University-Science A 7.12 (2006): 2022-2030.
[11] Dawa hdeh, Ziad E., Shahrul N. Yaakob, a nd Rozmie Razif bin Othman. "A new image encryption technique combining Elliptic Curve Cryptosys-tem with Hill Cipher." Journal of King Saud UniversityComputer and Information Sciences 30.3 (2018): 349-355.
[12] Ma hendran, R., and K. Mani. "Generation of key matrix for hill cipher encryption using cla ssical cipher." 2017 World Congress on Computing and Communication Technologies (WCCCT). IEEE, 2017.
[13] Putera, Andysah, UtamaSiahaan, and Robbi Rahim. "Dynamic Key Ma-trix of Hill Cipher Using Genetic Algorithm." Int. J. Secur. Its Appl 10.8 (2016): 173-180.
[14] Rahman, M. Nordin A., et al. "Cryptography: A new a pproach of cla ssicalHill cipher." International Journal of Security and Its Applications 7.2 (2013): 179-190.
[15] Herstein, I.N. (1975), Topics In Algebra (2nded.), John Wiley \& Sons

7 Authors

1. Rishabh Malhotra is a student of Cyber Security at Amity University Rajasthan. He has completed his gra duation in Mathematics.
2. Dr. Girish Paliwal is an Assistant Professor at Amity Institute of Information Technology at Amity University Rajasthan. His previous works include various studies on Wireless Networking, Computer Networking and Security.(gpaliwal@jpr.amity.edu)
3. Dr. S Srinivasan is an AssistantProfessor of Mathematics at Periyar Govt Arts and Science College Cuddalore. (smrail@ gmail.com)
4. Dr. N. Chandramowliswaran is a Professor of Mathematics at Amity University Haryana. He earned his PhDfrom IIT Delhi in 1995. His previous works include various research on Discrete Mathematics, Mathematical Aspects of Cryptography a nd Linear Algebra. (ncmowli@hotmail.com)
