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Abstract

We show that any set of n blue and n red points on a
line admits a plane meander path, that is, a crossing-
free spanning path that passes across the line on red
and blue points in alternation. For meander cycles,
we derive tight bounds on the minimum number of
necessary crossings which depend on the coloring of
the points. Finally, we provide some relations for the
number of plane meander paths.

1 Introduction

Let S be a set of n red and n blue points on the x-
axis. We call S a bichromatic point set. A meander
path (cycle) P (C) is a spanning path (cycle) that vis-
its the red and blue points of S in alternating order
and the edges of P (C) also lie above and below the
x-axis in alternation. We assume that every edge is
a simple Jordan arc. If the edges of the path (cycle)
do not cross each other, then we call it a plane me-
ander path (cycle). See Figure 1 for examples. We
label a bichromatic point set S by p1, . . . , p2n from
left to right. Unless stated otherwise, we direct a me-
ander path to start at a blue point going upwards.
We immediately observe the following.
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Figure 1: A plane meander cycle (left) and a plane
meander path (right).

Proposition 1 A plane meander cycle on a bichro-
matic point set exists if and only if the vertices are
colored in alternating order along the x-axis.

Proof. The sufficiency of the condition is evident for
any n. To see that it is also necessary, assume w.l.o.g.
that the leftmost point is red and orient the cycle so
that it goes upwards at this point. As every cycle
C alternates in both the color of the points and the
location w.r.t. the x-axis, C goes upwards at every
red point and downwards at every blue point. More-
over, C splits the plane into two connected regions,
the interior region and the exterior region. Thus the
parts of the x-axis which lie in the interior of C are
bounded by a red point on the left and a blue point on
the right. As the x-axis is split into alternating parts
interior and exterior of C by the points, consecutive
points on the x-axis cannot have the same color. �

Several questions arise from this first observation.

1. Which colorings yield plane meander paths?

2. Can we bound the number of necessary crossings
of meandering cycles for a given coloring?

3. How many plane meander cycles / paths do exist?

For (1) we show the surprising result that any color-
ing admits a plane meander path. For (2) we present
a tight lower bound for the number of crossings in any
cycle in terms of how much the coloring differs from
an alternating coloring. We conclude with a result on
counting meander paths and some open problems.
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Related work. Meanders were already studied by
Poincaré [21]. According to Lando and Zvonkin [17],
the term “meander” was first suggested by Arnold [4],
due to the analogy of the concept with a river starting
from the north-west and meandering back and forth
across an infinite horizontal road. Plane meander
paths and cycles for uncolored point sets have been
studied in various areas of mathematics and physics,
including the map-folding problem [19], the stamp-
folding problem [9, 15], polymer chains [10], and prob-
lems in differential geometry [21] or topology [4].

A challenging problem in the combinatorics of me-
anders is to estimate Mn, the number of plane mean-
der cycles that go across a horizontal line 2n times.
A lot of work has been done to enumerate plane me-
ander cycles and paths [3, 5, 9, 11, 12, 14, 18, 22] and
some of their variants [7, 13, 20]. It is conjectured that
Mn ∼ Crnn−k, where C, r, and k are constants. The
best current bounds for r are 11.380 ≤ r ≤ 12.901,
due to Albert and Paterson [3], and it is believed

that k = 29+
√
145

12 ≈ 3.42 [11]. See also sequence
A005315 in the on-line encyclopedia of integer se-
quences (https://oeis.org/) for further references.

For bichromatic point sets, the study of the exis-
tence of plane meander cycles and paths is related to
the following classical problem in computational ge-
ometry (cf. [2] and see also [16]): What is the largest
number s(n) such that, for every set of n red and
n blue points on a circle, there exists a noncross-
ing straight-line alternating path consisting of s(n)
points? It has been shown that there exist configu-
rations of red and blue points on the circle such that
s(n) ≤ 4

3n + o(n) [1, 16], and it is conjectured that
|s(n)− 4

3n| = o(n) for any bichromatic point set.
If straight-line segments are replaced by simple Jor-

dan arcs, and the arcs alternate inside and outside the
circle, then the previous problem transforms into de-
termining the largest number s′(n) such that every set
of n red and n blue points on a line (one can think of
a line as a circle of infinite radius) admits a plane me-
ander path on s′(n) of the points. In contrast to the
result for noncrossing straight-line alternating paths,
we show the surprising result that s′(n) = 2n, that is,
any valid coloring admits a plane meander path.

When crossings are allowed, we present a tight
lower bound for the number of crossings in any mean-
der cycle in terms of of how much the coloring differs
from the alternating coloring on the line. A similar re-
sult was obtained in [6], where a tight lower bound was
given for the number of crossings in any straight-line
Hamiltonian alternating cycle for bichromatic point
sets on the circle.

2 Plane paths and crossing-minimal cycles

To show that for any valid coloring of S there exists
a plane meander path we developed an incremental

approach (see the full version). An alternative ver-
sion is used in this section, where we construct plane
meander paths based on a tree structure determined
by the coloring of the point set. It turns out that
the depth of such a tree gives a tight lower bound
on the number of crossings in any meander cycle on
the set. We denote the set of consecutive points on
the x-axis from pi to pj by [i, j]. Let rS(i, j) and
bS(i, j) be the number of red points and the number of
blue points of S in the interval [i, j], respectively. Let
dS(i, j) = rS(i, j)−bS(i, j), and let ∆(S) be the max-
imum of the absolute values of these differences over
all intervals [i, j], that is, ∆(S) = max[i,j] |dS(i, j)|.
The next observation allows us to cyclically shift the
point configuration.

Observation 2 For any bichomratic point set S and
any plane meander path P (cycle C) on S, P (C) is
also a plane meander path (cycle) of any point set
S′ that is obtained by successively moving the first i
points of S after the last point of S.

Theorem 3 On every bichromatic point set, there
exists a plane meander path and a meander cycle with
∆(S)− 1 crossings.

Proof. By Observation 2, we can assume that
dS(1, j) = ∆(S) for some 1 ≤ j ≤ n and hence
r(1, j) > b(1, j) (see Figure 2a). We assign a left
bracket to every red point and a right bracket to ev-
ery blue point, as shown in Figure 2b. The number
of left brackets in an interval [1, i] is always at least
the number of right brackets. (Otherwise, if this num-
ber is less than the number of right brackets in [1, i],
then ∆(S) < rS(i + 1, j) − bS(i + 1, j) when i < j
and ∆(S) < bS(j + 1, i) − rS(j + 1, i) when i > j, a
contradiction).

We now connect the brackets with arcs. If a right
bracket directly follows a left bracket, we connect then
with an arc drawn above the x-axis. We then remove
these two brackets and repeat the process of connect-
ing two consecutive brackets (the first to the left and
the second to the right) until all brackets have been
connected with arcs (see Figure 2c).

Observe that this set of arcs form a tree. Each arc
can be seen as a vertex of the tree and two vertices are
connected if their corresponding arcs see each other.
We also add an extra vertex on the top part as the
root of the tree (see Figure 2d). Also observe that the
depth of the tree is precisely ∆(S).

We say that all vertices (arcs) that are at distance k
from the root form the k-th level. Next, we connect all
arcs with the same level k to form a plane path Pk. To
that end, assume that the arcs a1, a2, . . . , aj of level
k are ordered from left to right. For 1 ≤ i ≤ j − 1,
we connect the second endpoint of arc ai to the first
endpoint of arc ai+1 using an arc below the x-axis
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Figure 2: Building a noncrossing meander path.

(see Figure 2e). Repeating this process for all levels,
we obtain ∆(S) paths whose union is crossing-free
and covers all points in S. (The paths may also be
completed to ∆(S) disjoint plane meander cycles.)

From this set of paths, we obtain a plane meander
path on S as follows. Note that, from left to right,
the first endpoints of these paths are all red and the
last endpoints are all blue. Thus, these paths can be
connected in a spiraling way by ∆(S) − 1 edges (be-
tween the red/blue endpoint of each path Pk and the
blue/red endpoint of the next path Pk+1) to a plane
meander path P on S (see Figure 2f). Finally, observe
that by connecting the two endpoints of P , we obtain
a meander cycle with exactly ∆(S)− 1 crossings. �

In the above proof we actually have two options
for the order in which we connect the paths of the
different levels, yielding two different meander paths
or (crossing) meander cycles. We note that the con-
struction can be done in linear time, by first finding
the interval giving ∆(S) (as described in [8]), and then
building the tree using a stack.

It turns out that a meander cycle constructed in
the described way is actually crossing-minimal, i.e.,
the number of crossings of a meander cycle C on S
is at least ∆(S)− 1. To prove the bound, we use the
following trivial observation.

Observation 4 Let C1 and C2 be two meander cy-
cles on two bicolored point sets S1 and S2, with
S1 ∩ S2 = ∅. Suppose that edge uv ∈ C1 crosses
edge u′v′ ∈ C2, with u and u′ being red and v and
v′ being blue. Then, replacing edges uv and u′v′ by
edges uv′ and u′v as shown in Figure 3, we obtain a
meander cycle on S1 ∪ S2.

Theorem 5 Given a bicolored point set S and a me-
ander cycle C on S, the number of crossings of C is
at least ∆(S)− 1.

u vu′ v′ u vu′ v′

Figure 3: Obtaining a meander cycle on S1 ∪ S2 by
combining two meander cycles on S1 and S2.

Proof. The proof is by induction on the number of
points. The base of the induction is the bicolored
point set S consisting of one red point and one blue
point, and the cycle consisting of the duplicated edge
connecting these two points, one of the edges drawn
above the x-axis and the other below the x-axis.

Let C be a meander cycle on a bicolored point set
S with 2n points. If C does not have any crossing,
then the points of S alternate along the x-axis. Hence,
∆(S) is trivially 1 and the theorem follows.

Assume then that C has crossings and take one of
them, the crossing defined by edges uv and u′v′, being
u and u′ red and v and v′ being blue. We replace these
two edges by edges uv′ and u′v as shown in Figure 4
(note that there are two ways of drawing uv′ and u′v,
depending on the relative positions of u, u′, v and v′).
In this way, we obtain either a new meander cycle C ′

on S (with one fewer crossings) or two meander cy-
cles C1 and C2 on two disjoint bicolored points sets S1

and S2. By Observation 4, if these two cycles cross,
then we can obtain a new meander cycle on S (with
two fewer crossings). By iterating this process on the
crossings of C, we obtain either a noncrossing mean-
der cycle on S, or two meander cycles C1 and C2 on
two disjoint bicolored points sets S1 and S2 such that
C1 and C2 do not cross.

In the first case, the points of S must alternate
along the x-axis, so ∆(S) = 1 and the theorem obvi-
ously holds. In the second case, we apply induction
on C1 and C2. As C1 and C2 do not cross, the number
of crossings of C is at least ∆(S1)−1 + ∆(S2)−1 + t,
where t is the number of crossings of C removed to
obtain C1 and C2. Observe now that, if [i, j] is the
interval such that dS(i, j) = ∆(S), then dS(i, j) =
rS(i, j) − bS(i, j) = (rS(i, j) ∩ S1) + (rS(i, j) ∩ S2) −
(bS(i, j) ∩ S1) − (bS(i, j) ∩ S2) ≤ ∆(S1) + ∆(S2).
As t ≥ 1, the number of crossings of C is at least
∆(S1)−1+∆(S2)−1+ t ≥ ∆(S)−1, as required. �

3 Final remarks

Our construction of plane meander paths shows that
every bichromatic point set admits at least two me-
ander paths. In our attempt of bounding the number
of paths, we showed that for some point configura-
tions the number of paths is determined by the num-
ber of the number of blocks, i.e., maximal consecutive
monochromatic subsets.
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u vu′ v′ u vu′ v′

u vv′ u′ u vv′ u′

Figure 4: Replacing edges uv and u′v′ by edges uv′

and u′v.

Theorem 6 Let S and S′ be two bichromatic point
sets such that all the blocks have size s ≥ 2 and s′ ≥ 2,
respectively, and both sets have the same number k
of blocks (i.e., |S| = k · s and |S′| = k · s′). Then S
and S′ have the same number of meander paths.

To prove this theorem, we show several structural
properties for meander paths on S: The vertices of
a block occur along the path from left to right or
from right to left; in the top matching induced by the
path, every block is completely matched to some other
block; and in the bottom matching, every block shares
at least s− 1 edges with some other block. The proof
is deferred to the full version of this work.

We conclude with some open problems.

• The lower bound on the minimal number of me-
ander paths in terms of the number of vertices
is constant, due to the example with two blocks.
Can we get a lower bound in terms of the number
of blocks?

• What is the number of meander paths for bichro-
matic point sets with uniform block size s and k
blocks? For s ≥ 2, it only depends on k.

• What about three colors? It is not always possi-
ble to have a meander path (take three different
blocks of the same size). What would be the
length of a maximal, not necessarily spanning,
properly colored path whose edges are alternat-
ingly above and below the x-axis? What is the
complexity of deciding whether there is a span-
ning path, or a path of length k?

• Can we find a reasonable flip operation between
meander paths of a given bichromatic point set?
What would be the properties of the resulting flip
graph?

• How fast can we count the number of meander
paths for a given bichromatic point set?
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ometŕıa Computacional, pages 7–12. In Spanish.

[2] J. Akiyama and J. Urrutia. Simple alternating path
problem. Discrete Math., 84(1):101–103, 1990.

[3] M. H. Albert and M. S. Paterson. Bounds for the
growth rate of meander numbers. J. Comb. Theory,
Ser. A, 112(2):250–262, 2005.

[4] V. Arnold. The branched covering of cp2 → s4, hy-
perbolicity and projective topology. Sib. Math. J.,
29:717–726, 1988.

[5] B. A. Bobier and J. Sawada. A fast algorithm to
generate open meandric systems and meanders. ACM
Trans. Algorithms, 6(2):42:1–42:12, 2010.

[6] M. Claverol, A. G. Olaverri, D. Garijo, C. Seara,
and J. Tejel. On Hamiltonian alternating cycles and
paths. Comput. Geom., 68:146–166, 2018.

[7] V. Delecroix, E. Goujard, P. Zograf, and A. Zorich.
Enumeration of meanders and Masur-Veech volumes.
arXiv e-print arXiv:1705.05190v2, 2019.

[8] D. P. Dobkin, D. Gunopulos, and W. Maass. Com-
puting the maximum bichromatic discrepancy with
applications to computer graphics and machine learn-
ing. J. Comput. Syst. Sci., 52(3):453–470, 1996.

[9] P. Francesco, O. Golinelli, and E. Guitter. Mean-
ders: A direct enumeration approach. Nuc. Phys. B,
482:497–535, 1996.

[10] P. Francesco, O. Golinelli, and E. Guitter. Meander,
folding, and arch statistics. Mathl. Comput. Model.,
26:97–147, 1997.

[11] P. Francesco, O. Golinelli, and E. Guitter. Meanders:
exact asymptotics. Nucl. Phys., 570:699–712, 2000.

[12] R. Franz and B. Earnshaw. A constructive enumera-
tion of meanders. Ann. Combinatorics, 6:7–17, 2002.

[13] M. Fukuda and I. Nechita. Enumerating mean-
dric systems with large number of loops. Ann.
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