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Abstract—The image denoising is a key step in image pro-
cessing. This step can be treated by nonlinear diffusive filters
requiring solving evolving partial differential equations. In this
work we propose a nonlinear evolving partial differential equa-
tion with spatial fractional derivatives in order to improve the
denoising capability and to extend some existing results in image
denoising.
The discretization of the fractional partial differential equa-
tion of the proposed model is performed using the shifted
Grünwald-Letnikov formula useful for constructing stable nu-
merical schemes.
The comparative analysis shows that the proposed model pro-
duces better or comparable quality of enhanced image than
various well know and state of art techniques as well as several
image analysis techniques.

Index Terms—image processing, image denoising, fractional
order partial differential equation, nonlinear diffusion, fractional
derivative

I. INTRODUCTION

Noise is any undesired signal that contaminates the of
brightness or color information in images. It can be arising
from a variety of sources, including the discret nature of
radiation, variation in detector sensitivity photographic grain
effects, data tranmission errors, properties of imaging systems
such as air turbuence or water droplets and image quantization
errors.
Image denoising is an important research topic in image
processing and computer vision. The goal of this step is to
build an image from the avialable and which is as ideal as
possible after eliminating the degradations undergone during
the acquisition.
Several models for image denoising have been proposed in the
literature, see [1], [2], [7]–[9], [19], [21]. Those models are
based on linear and nonlinear diffusive filters requiring solving
linear and nonlinear evolving partial differential equations
(PDE).
Nonlinear diffusion filters are used in image processing to
smooth out noisy images and enhance sharp contrasts in
brightness simultaneously. This approach was initiated by P.
Perona and J. Malik [19] by means of the following nonlinear

PDE problem
∂v

∂t
− div(µ(|∇v|)∇v) = 0, in Q,

v(x, 0) = v0(x),∀x ∈ Ω,
∂

∂ν
v(x, t) = 0,∀x ∈ ∂Ω,∀t ∈ [0, T ],

(1)

where v0 is the grey level distribution of a given (distored)
image occupying a bounded domain Ω in Rd (with d ≤ 3 in
most applications) for which boundary is ∂Ω. Q is defined by
Q = Ω× [0, T ], for some given T > 0, and ν is the external
vector normal to the domain boundary.
Starting from the initial image v0(x) and by running (1) we
construct a family of functions (i.e images) {v(t, x)}t>0 rep-
resenting restored versions of v0(x). The diffusion coefficient
µ(|∇v|) is designed such that:
• Inside the regions where the magnitude of the gradient

of v is weak, equation (1) acts like the heat equation,
resulting in isotropic smoothing.

• Near the boundaries where the magnitude of the gradient
is large, the regularization is stopped and the edges are
preserved.

The assumptions imposed on µ are usually
µ : [0,+∞)→ [0,+∞) decreasing,
µ(0) = 1, lim

s→+∞
µ(s) = 0,

µ(s) + 2sµ
′
(s) > 0.

(2)

Typical examples for an edge stopping function µ which, in
fact, have been used by Perona and Malik, are

µ(s) = exp

(
− s

2

k2

)
(k > 0). (3)

µ(s) =
1

1 + s2/k2
(k > 0). (4)

The Parameter k is a measure for the steepness of an edge
to be preserved.
The Perona-Malik model (1) and large amount of its
modifications in the literature have demonstrated to be able to
achieve a good compromis between noise removal and edge
preservation. Unfortunately this model is ill-posed (see [15]
for a proof of this in the one-dimensional context). Apart



of this inconvenient, numerical approximations of (1) do not
exhibit significant instabilities. This numerical performance
triggered many autheurs [1]–[3], [5]–[9], [20], to replace
the Perona-Malik model by nearby versions which, on one
hand side, admit solid analysis in terms of existence and
uniqueness properties, and, on the other hand side, possess
essentially the same numerical properties as (1). Although
these models have been demonstrated to be able to achieve
a good trade-off between noise removal and edge preservation.

Recentely, it has been demonstrated that many systems in
many fields can be modeled more accurately by fractional
order than integer order derivatives. It is well proved that as
a fundamental mathematic tool, fractional order derivative
shows great success in image processing [10].

In the last 40 years, fractional calculus began to shift
from pure mathematics formulations to applications in various
fields including biology, physics and mechanics amount to
replace the classical derivativation in an evolution equation
with a fractional order derivative. In particular in the image
processing field [11]–[13], [16], the nonlocal properties of
fractional differential models appear to give better results than
traditional integral models.
In [12] Cuesta et al. proposed the equation

∂α

∂tα
u(x, y, t) = ∆u(x, y, t), (5)

with
∂α

∂tα
the Riemann-Liouville fractional time derivative of

order α ∈]1, 2[. This fractional order linear integro-differential
equation interpolates a heat equation (α = 1) and a wave
equation (α = 2).

In [4] Bai and Feng proposed a fractional order anisotropic
diffusion equations, which are Euler-Lagrange equations of
a cost functional which is an increasing function of the
absolute value of the fractional derivative of the image in-
tensity function. the proposed equations. It can be seen as
generalizations of second-order and fourth-order anisotropic
diffusion equations.

In [14], the authors proposed a fully fractional anisotropic
diffusion equation which contains spatial as well as time
fractional derivatives. It is a generalization of a method
proposed by Cuesta [12] using time fractional derivatives, and
the method proposed by Bai and Feng [4], which interpolates
between the second and the fourth order anisotropic diffusion
equation by the use of spatial fractional derivatives.

In this paper we attempt to extend the Perona-Malik’s model
by involving the fractional order derivatives with respect to
the spatial variables using Grünwald-Letnikov fractional order
derivative and the p-shifted Grünwald-Letnikov formula to
implement the numerical scheme without using the discrete
Fourier transfrom (DFT) which imposes the period boundary
condition on the proposed equations.

Our algorithm is easy to implement compared to other
algorithms that use discrete Fourier trasform in which an
m × m input image is folded with respect to the lines
x = m − 1 and y = m − 1 to produce an 2m × 2m image
to obtain a symmetric and continous borders of the original
image but the size of the extended image requires additional
memory and affects the computation cost and accuracy.

II. FRACTIONAL DERIVATIVES

The most known definitions of the fractional derivative are
Grünwald-Letnikov, Riemann-Liouville, and Caputo, the first
two are the most used in the field of image processing. The
Grünwald-Letnikov definition is derived from the defintion of
partial differential on integer order, while Riemann-Liouville,
and Caputo definitions are derived from the integral order
Cauchy formula.
The left and right Grünwald-Letnikov derivatives of order
α > 0 for a given function f(x), x ∈ [a, b] are defined by

GLD
α
a,xf(x) = lim

h→0
Nh=x−a

(
1

h

)α N∑
i=0

(−1)α
(
α

i

)
f(x− ih),

(6)
and

GLD
α
x,bf(x) = lim

h→0
Nh=b−x

(
1

h

)α N∑
i=0

(−1)α
(
α

i

)
f(x+ih), (7)

respectively

The left and right Riemann-Liouville derivatives with order
α > 0 of the given function f(x), x ∈ [a, b] are defined as

RLD
α
a,xf(x) =

1

Γ(n− α)

dn

dtn

∫ x

a

1

(x− s)α+1−n f(s)ds,

and

RLD
α
x,bf(x) =

(−1)n

Γ(n− α)

dn

dtn

∫ b

x

1

(s− x)α+1−n f(s)ds,

respectively, where Γ is the Euler’s gamma function and n is
a positive integer satisfying n− 1 ≤ α ≤ n.
If f(x) is suitably smooth, i.e. f ∈ Cm[a, b] the Grünwald-
Letnikov derivative of f(x) and the Riemann-Liouville
derivative of f(x) are equivalent but in general the two
definitions are not equivalent [10].

III. NONLINEAR FRACTIONAL ORDER MODEL

Our approach consists to extend the Perona-Malik (1) model
by introducing the fractional order derivatives with respect to
the spatial variables as follows,

∂u

∂t
− divα(µ(|∇αu|)∇αu) = 0, in Q,

u(x, 0) = u0(x),∀x ∈ Ω,
∂u

∂ν
(x, t) = 0,∀x ∈ ∂Ω,∀t ∈ [0, T ],

(8)



where the operators divα =
∂α

∂xα
+

∂αu

∂yα
and ∇α =(

∂α

∂xα
,
∂α

∂yα

)
.

For numerical approximation of spatial fractional order deriva-
tives we can use the formula derived from the Grünmald-
Letnikov definition given by

(
GLD

α
0,xf(x)

)
x=xk

≈
(

1

h

)α k∑
i=0

ω
(α)
i f(xk − ih)

where ω
(α)
i = (−1)i

(
α

i

)
is the polynomial coefficients of

(1 − z)α, and can be calculate by the following recurrence
formula

 ω
(α)
0 = 1,

∀i ∈ {1, 2, ..., N}, ω(α)
i =

(
1− α+ 1

i

)
ω
(α)
i−1.

(9)

The above approximatoin is convergent of order 1 for any
α > 0 [10].
This standard Grünwald-Letnikov formula may lead to un-
stable numerical schemes in solving fractional differential
equations [10] for 1 < α < 2. To avoid this inconvinient the p-
shifted Grünwald-Letnikov formula is useful for constructing
stable numerical schemes.
The right shifted Grünwald-Letnikov formula is defined by

(
GLD

α
a,xf(x)

)
x=xk

≈
(

1

h

)α k+p∑
i=0

ω
(α)
i f(x− ih+ p) (10)

This shifted Grünwald-Letnikov formula gives a first order
accuracy; the best performance comes from minimizing
|p − α/2| [17], [18]. If 1 < α ≤ 2, the optimal choice is
p = 1. The case of α = 2 reduces to the second order central
difference method for the second order classical derivative.

To solve numerically the proposed model we begin with the
fractional order gradient.
Let u be an image with (n+ 1)× (m+ 1) pixels. According
to (10), the discrete fractional-order derivatives at the point
(i, j) with the order α along the horizontal and the vertical
direction, are respectively

GLD
α
xu(i, j) =

(
1

h

)α k+p∑
k=0

ω
(α)
i u(k, j)∀j ∈ {0, 1, 2, ...,m}.

(11)
And

GLD
α
y u(i, j) =

(
1

h

)α k+p∑
k=0

ω
(α)
i u(i, k)∀i ∈ {0, 1, 2, ..., n}.

(12)
Using the above formulas and by adobting the matrix form,

the discretization of the fractional order gradient vector with
α order is given, respectively for j = 0, 1, 2, ...,m and for
i = 0, 1, 2, ..., n by



∂α

∂xαu0,j
∂α

∂xαu1,j
∂α

∂xαu2,j
...

∂α

∂xαun−2,j
∂α

∂xαun−1,j
∂α

∂xαun,j


=

(
1

h

)α
B(α)
n



u0,j
u1,j
u2,j
u3,j

...
un−1,j
un,j


(13)



∂α

∂yαui,0
∂α

∂yαui,1
∂α

∂yαui,2
...

∂α

∂yαui,m−2
∂α

∂yαui,m−1
∂α

∂yαui,m


=

(
1

h

)α
Bαm



ui,0
ui,1
ui,2
ui,3

...
ui,m−1
ui,m


(14)

where ui,j = u(i, j) for (i, j) ∈ {0, 1, 2, ..., n} ×
{0, 1, 2, ...,m},

B(α)
n =



ωα1 ωα0 0 0 0 · · · 0
ωα2 ωα1 ωα0 0 0 · · · 0
ωα3 ωα2 ωα1 ωα0 0 · · · 0
...

. . . . . . . . . . . . . . .
...

ωαn−2 ωαn−3 · · · ωα2 ωα1 ωα0 0
ωαn−1 ωαn−2 ωαn−3 · · · ωα2 ωα1 ωα0
ωαn ωαn−1 ωαn−2 ωαn−3 · · · ωα2 ωα1


and

B(α)
m =



ωα1 ωα0 0 0 0 · · · 0
ωα2 ωα1 ωα0 0 0 · · · 0
ωα3 ωα2 ωα1 ωα0 0 · · · 0
...

. . . . . . . . . . . . . . .
...

ωαm−2 ωαm−3 · · · ωα2 ωα1 ωα0 0
ωαm−1 ωαm−2 ωαm−3 · · · ωα2 ωα1 ωα0
ωαm ωαm−1 ωαm−2 ωαm−3 · · · ωα2 ωα1


.

We use a semi-discretizations in scale of the problem given
by (1). We discretize the scaling interval [0, T ]. Choosing N ∈
N we obtain the length of uniform discrete scale step ∆t = T

N
. The nonlinear terms of the equation are treated from the
previous scale step while the linear terms are considered on
the current scale level.
For every k = 1, ...N , we look for a function uk, a solution
of the equation

uk − uk−1

∆t
− divα(µ(

∣∣∇αuk−1∣∣)∇αuk−1) = 0. (15)

IV. NUMERICAL EXPERIMENTS AND INTERPRETATION

In this section, the performance of the proposed model will
be compared with the classical Perona-Malik model [19] and
the method proposed by Bai and al. [4], the selected RGB
(truecolor) images includes ’toysflash’ with size (650× 420),
’peppers’ with size (384× 512).The Gaussian noise is added



to images with different variances values (0.001, 0.005, and
0.01). This noise is the most studied in the literature it occurs
in practical situation.
The discret scaling step is selected to be ∆t = 1.E − 2
for boths models. We set the nonlinear diffusion coefficient
µ(s) = 1/

√
1 + s2. The values of the fractional order are

taken with the range α ∈]1, 2].
All testing problems were implemented using Matlab 2018a

on Intel(R) Core(TM) i5 at 1.8GHz, 6GB memory, systeme
type 64-bit and Windws 10 .
Four perfrmance metrics are considered here to evaluate the
performance of restored image; peak signal to noise ratio
(PSNR), signal to noise ratio (SNR), mean-squared error
(MSE) and structural similarity index measure (SSIM).
The mean-squared error (MSE) between two images I1 and
I2 is:

MSE =
1

n×m
∑
n,m

(I1(n,m)− I2(n,m))
2 (16)

n and m are the number of rows and columns in the input
images, respectively.

SNR = 10× log10

∑
n,m I

2
2∑

n,m (I1 − I2)
2 , (17)

I1 restored image and I2 original image.

PSNR = 10× log10
R2

MSE
. (18)

R is the maximum fluctuation in the input image data type.
For example, if the input image has a double-precision
floating-point data type, then R is 1. If it has an 8-bit
unsigned integer data type, R is 255, etc.

The Structural Similarity (SSIM) Index quality assessment
index is used for measuring the similarity between two images.

SSIM =
2µxµy + C1

µ2
x + µ2

y + C1
× 2σxy + C2

σ2
x + σ2

y + C2
, (19)

where µx, µy , σx, σy , and σxy are the means, standard
deviations, and cross-covariance for images x, y. C1 and C2
denote constants used to maintain stability.

Figures 1 and 2 respectively show the comparison results
of denoising images between the proposed model and the
previously mentioned baseline methods.

The interpretation of the numerical simulations allows us
to notice that our model has a good performance in visual
quality, a lower mean square error (MSE), a higher value of
peak signal-to-noise (PSNR) as well as for the rate of the
signal-to-noise (SNR), and a better measure of the structural
similarity index measure (SSIM) compared to those obtained
by the previously mentioned baseline methods.

(a) (b)

(c) (d)

(e)

Fig. 1. Results corresponding to the toysflash image. (a) Clean image
(650× 420). (b) Noisy image affected by a Gaussian white noise with mean
m = 0 and variance of 0.005, PSNR=23.83, SNR=14.63, MSE=268.72,
SSIM=0.8. (c) Processed by the proposed model with α = 1.8, PSNR=29.43,
SNR=20.24, MSE=74.14, SSIM=0.924. (d) processed by the Perona-Malik
model (α = 1), PSNR=28.41, SNR=19.20, MSE=93.20, SSIM=0.909. (e)
Processed by Bai and Feng model, PSNR=29.03, SNR=19.44, MSE=81.13,
SSIM=0.913.

V. CONCLUSION

We propose, in this work, a fractional order nonlinear model
for image denoising in which the spatial integer derivative in
the classical Perona-Malik model is replaced with the spatial
fractional order derivative. This new version can enhance
the denoising capability. The interpretation of the numerical
simulations allows us to notice that our model has a good
performance in visual quality, a lower mean square error
(MSE), a higher value of peak signal-to-noise (PSNR) as well
as for the rate of the signal-to-noise (SNR), and a better
measure of the structural similarity index measure (SSIM)
compared to those obtained by other models.



Gaussian noise m = 0 and σ = 0.005
α PSNR SNR MSE SSIM
1.2 27.93 17.97 128.85 0.803
1.4 28.86 18.63 97.42 0.875
1.6 29.01 19.78 81.13 0.913
1.8 29.43 20.24 74.14 0.924
2 28.97 19.71 97.51 0.907
Gaussian noise m = 0 and σ = 0.01
α PSNR SNR MSE SSIM
1.2 25.21 18.20 112.59 0.873
1.4 26.45 19.02 98.90 0.896
1.6 27.12 19.51 97.85 0.901
1.8 27.45 19.68 94.53 0.912
2 26.89 19.45 98.87 0.896

TABLE I
PSNR, SNR, MSE AND SSIM FOR TOYSFLASH IMAGE WITH GAUSSIAN

NOISE.

Gaussian noise m = 0 and σ = 0.001
α PSNR SNR MSE SSIM
1.2 30.93 23.54 32.74 0.816
1.4 33.79 25.94 26.18 0.945
1.6 34.02 26.12 24.03 0.975
1.8 34.41 26.43 23.52 0.980
2 33.97 26.07 25.38 0.971
Gaussian noise m = 0 and σ = 0.01
α PSNR SNR MSE SSIM
1.2 26.96 18.13 124.67 0.887
1.4 27.11 18.85 119.53 0.901
1.6 27.34 19.23 112.13 0.937
1.8 27.71 19.74 109.93 0.940
2 27.07 19.12 114.42 0.913

TABLE II
PSNR, SNR, MSE AND SSIM FOR PEPPERS IMAGE WITH GAUSSIAN

NOISE.
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linéaire pour le débruitage de l’image“, C.R. Acad. Sci. Paris. Ser. I,
vol. 345, pp. 425–429, 2007.

[3] L. Alvarez, P. L. Lions, and J. M. Morel, “Image selective smoothing
and edge detection by nonlinear diffusion“, SIAM J. Numer. Anal., vol.
29, no. 3, pp. 845–866, 1992.

[4] J. Bai and X. Feng, “Fractional-Order Anisotropic Diffusion for Image
Denoising“, IEEE Transactions on Image Processing, vol. 16, no. 10,
pp. 2492–2502, 2007.

[5] S. Boujena, E. EL Guarmah, O. Guasnouane, and J. Pousin, “An
Improved Nonlinear Model for Image Restoration“, Pure and Applied
Functional , vol. 2, no. 4, pp. 599–623, 2017.

[6] S. Boujena, E. EL Guarmah, O. Guasnouane, and J. Pousin, “On
a derived non linear model in image restoration“, Proceedings of
2013 International Conference on Industrial Engineering and Systems
Management (IESM), pp. 1–3, 2013.

[7] S. Boujena, K. Bellaj, O. Gouasnouane, and E. El Guarmah, “An
improved nonlinear model for image inpainting“, Applied Mathematical
Sciences, vol. 9, no. 124, pp. 6189–6205, 2015.

[8] S. Boujena, K. Bellaj, O. Gouasnouane, and E. El Guarmah, “One
approach for image denoising based on finite element method and
domain decomposition technique“, International Journal of Applied
Physics and Mathematics (IJAPM), vol. 7, no. 2, pp. 141–147, 2017.
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