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Abstract Robin’s criterion states that the Riemann hypothesis is true if and only if
the inequality σ(n)< eγ ×n× log logn holds for all natural numbers n > 5040, where
σ(n) is the sum-of-divisors function of n and γ ≈ 0.57721 is the Euler-Mascheroni
constant. In 2022, Vega stated that the possible existence of the smallest counterex-
ample n > 5040 of the Robin inequality implies that qm > e31.018189471 and (logn)β <
1.03352795481× log(Nm), where Nm = ∏

m
i=1 qi is the primorial number of order m,

qm is the largest prime divisor of n and β = ∏
m
i=1

q
ai+1
i

q
ai+1
i −1

when n must be an Hardy-

Ramanujan integer of the form ∏
m
i=1 qai

i . Based on that result, we obtain a contradic-
tion just assuming the existence of such possible smallest counterexample n > 5040
for the Robin inequality. By contraposition, we show that the Riemann hypothesis
should be true.
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1 Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta func-
tion has its zeros only at the negative even integers and complex numbers with real
part 1

2 . As usual σ(n) is the sum-of-divisors function of n:

∑
d|n

d
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where d | n means the integer d divides n and d ∤ n means the integer d does not divide
n. Define f (n) to be σ(n)

n . Say Robins(n) holds provided

f (n)< eγ × log logn.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural
logarithm. The importance of this property is:

Theorem 1.1 Robins(n) holds for all natural numbers n > 5040 if and only if the
Riemann hypothesis is true [3].

It is known that Robins(n) holds for many classes of numbers n. We recall that an
integer n is said to be square free if for every prime divisor q of n we have q2 ∤ n.

Theorem 1.2 Robins(n) holds for all natural numbers n > 5040 that are square
free [1].

Let q1 = 2,q2 = 3, . . . ,qm denote the first m consecutive primes, then an integer of the
form ∏

m
i=1 qai

i with a1 ≥ a2 ≥ ·· · ≥ am ≥ 0 is called an Hardy-Ramanujan integer [1].
Now, we are able to use this recently result:

Theorem 1.3 The possible existence of the smallest counterexample n > 5040 of the
Robin inequality implies that qm > e31.018189471 and (logn)β < 1.03352795481 ×
log(Nm), where Nm = ∏

m
i=1 qi is the primorial number of order m, qm is the largest

prime divisor of n and β =∏
m
i=1

q
ai+1
i

q
ai+1
i −1

when n must be an Hardy-Ramanujan integer

of the form ∏
m
i=1 qai

i [4].

Putting all together yields a proof for the Riemann hypothesis using the Theorem 1.3
as the principal argument.

2 Known Results

These are known results:

Lemma 2.1 For every x >−1 [2]:

log(1+ x)≥ x
x+1

.

Lemma 2.2 For every real number x [2]:

ex ≥ 1+ x.

Lemma 2.3 For every x >−1 [2]:

log(1+ x)
x

≥ 2
x+2

.
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3 A Central Lemma

The following is a key Lemma.

Lemma 3.1 If the natural number n > 5040 is an Hardy-Ramanujan integer of the

form ∏
m
i=1 qai

i , then β ≥ 1+∑
m
i=1

1
q

ai+1
i

where β = ∏
m
i=1

q
ai+1
i

q
ai+1
i −1

.

Proof If we apply the logarithm to the value of
m

∏
i=1

qai+1
i

qai+1
i −1

then we obtain that
m

∑
i=1

log(
qai+1

i

qai+1
i −1

).

For some 1 ≤ j ≤ m, we know that

q
a j+1
j

q
a j+1
j −1

= 1+
1

q
a j+1
j −1

.

We use the Lemma 2.1 to show that

log(1+
1

q
a j+1
j −1

)≥

1

q
a j+1
j −1

1

q
a j+1
j −1

+1

=
1

(q
a j+1
j −1)× ( 1

q
a j+1
j −1

+1)

=
1

1+(q
a j+1
j −1)

=
1

q
a j+1
j

.

So,
m

∑
i=1

log(
qai+1

i

qai+1
i −1

)≥
m

∑
i=1

1

qai+1
i

and thus,
m

∏
i=1

qai+1
i

qai+1
i −1

≥ e
∑

m
i=1

1

q
ai+1
i .

Using the Lemma 2.2, we have that

e
∑

m
i=1

1

q
ai+1
i ≥ 1+

m

∑
i=1

1

qai+1
i

and therefore,

β ≥ 1+
m

∑
i=1

1

qai+1
i

.
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4 Main Insight

This is the main insight.

Lemma 4.1 Suppose that n > 5040 is an Hardy-Ramanujan integer of the form

∏
m
i=1 qai

i and qm > e31.018189471. Then (logn)
∑

m
i=1

1

q
ai+1
i ≥ 1.03352795481.

Proof If we apply the logarithm to the both sides of the inequality, then

(
m

∑
i=1

1

qai+1
i

)
× log logn ≥ log(1.03352795481).

Let’s multiply the both sides of the inequality by eγ ,

(
m

∑
i=1

1

qai+1
i

)
× eγ × log logn ≥ eγ × log(1.03352795481).

From the Theorem 1.2, we know that

eγ × log logn ≥ eγ × log logNm

> f (Nm)

=
m

∏
i=1

(1+
1
qi
)

since n > 5040 is an Hardy-Ramanujan integer, Nm = ∏
m
i=1 qi is the primorial number

of order m and thus, n ≥ Nm and Nm is square free. Hence, we would have that

(
m

∑
i=1

1

qai+1
i

)
×

m

∏
i=1

(1+
1
qi
)≥ eγ × log(1.03352795481).

If we apply the logarithm to the both sides again, then

log

(
m

∑
i=1

1

qai+1
i

)
+

m

∑
i=1

log(1+
1
qi
)≥ log(eγ × log(1.03352795481)).
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We use the Lemma 2.3 to show that

log

(
m

∑
i=1

1

qai+1
i

)
= log

(
1+(−1+

m

∑
i=1

1

qai+1
i

)

)

≥
2× (−1+∑

m
i=1

1
q

ai+1
i

)

(−1+∑
m
i=1

1
q

ai+1
i

)+2

=

2× (−1+∑
m
i=1

1
q

ai+1
i

)

1+∑
m
i=1

1
q

ai+1
i

> 2× (−1+
m

∑
i=1

1

qai+1
i

)

=−2+2×

(
m

∑
i=1

1

qai+1
i

)

since

−1+
m

∑
i=1

1

qai+1
i

>−1.

For some 1 ≤ j ≤ m, we know that

log(1+
1
q j

)≥
1
q j

1
q j
+1

=
1

q j × ( 1
q j
+1)

=
1

1+q j

according to the Lemma 2.1. However, we note that

−2+2×

(
m

∑
i=1

1

qai+1
i

)
+

m

∑
i=1

1
1+qi

≫ 0

when qm > e31.018189471, where the symbol ≫ means “much greater than” [1]. In
addition, we have that

0 > log(eγ × log(1.03352795481))

and finally, the proof is complete.
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5 Main Theorem

We conclude with the following statement:

Theorem 5.1 The Riemann hypothesis is true.

Proof Suppose that n > 5040 is the possible smallest number such that Robins(n)
does not hold. By the Theorem 1.3, we know that qm > e31.018189471 and (logn)β <
1.03352795481× log(Nm), where Nm = ∏

m
i=1 qi is the primorial number of order m,

qm is the largest prime divisor of n and β = ∏
m
i=1

q
ai+1
i

q
ai+1
i −1

when n must be an Hardy-

Ramanujan integer of the form ∏
m
i=1 qai

i . From the Lemma 3.1, we know that

(logn)β ≥ (logn)

(
1+∑

m
i=1

1

q
ai+1
i

)

and therefore, we would have that

(logn)

(
1+∑

m
i=1

1

q
ai+1
i

)
< 1.03352795481× log(Nm)

when n > 5040 is the possible smallest number such that Robins(n) does not hold.
Thus, we would obtain that

(logn)
∑

m
i=1

1

q
ai+1
i < 1.03352795481

since n must be an Hardy-Ramanujan integer and so, logn ≥ logNm. However, we
know the previous inequality cannot be satisfied because of the Lemma 4.1. By con-
traposition, we show that the Riemann hypothesis is true, since we obtain a contra-
diction just assuming the possible smallest counterexample for the Robin inequality
greater than 5040. Certainly, this is a direct consequence of the Theorem 1.1.
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