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Abstract—The first step in automatic log analysis is log parsing.
The number of logs exploded with the increase in system size.
Manual analysis of logs has become a difficult problem. To
solve this problem, we proposed logNG, an online log parsing
method based on N-gram that can efficiently parse logs in a
streaming manner without the requirement for historical data
training. When log messages are input in a stream, we first
divide log messages of different lengths into different log groups.
We’ll use an intuitive and simple assumption: If continuous
multiple different tokens appear between log messages, these log
messages belong to different log template. For each log group,
we will use N-gram for template matching to further group
log messages within our assumption. We evaluate and compare
logNG with other log parsers on public data sets. The results
of the experiments reveal that logNG can achieve the highest
accuracy and efficiency.

Index Terms—Log parsing, Online algorithm, N-gram

I. INTRODUCTION

Logs play an important role in modern software systems,
but mining its value is still a huge challenge [1], [2], [3], [4].
Log parsing is the first step in automatic log analysis. The
quality of log parsing greatly affects the downstream tasks
of automatic log analysis [5], [6], [7]. The definition of log
parsing is to convert unstructured data into structured data [8],
[9]. Its purpose is to separate header information (including
date, time, level, etc.) and content (including static text and
dynamic variables) [10], [11], [12].

As shown in “Fig. 1”, when the system is running, a log
record statement will generate a raw log message [13], which
usually consists of header information and content. The header
information is usually composed of date (“2015-10-18”), time
(“18:01:56”), level (“916 INFO”) and other parts.

Log parsing requires more content (“Got allocated con-
tainers”) than the header information which can be filtered
out by regular expressions. The content consists of the static
text of the log record statement (”“Got allocated containers”)
and its designated dynamic variable (“1”). The log template
corresponding to this log message is (”“Got allocated con-

tainers <*>”) The position of the dynamic variable in the
log template is marked with a wildcard ”<*>”.

Raw Log 

Message

Parsed 

Log

2015-10-18 18:01:56,916 INFO [RMCommunicator Allocator] 

org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator: Got allocated containers 1

Date:2015-10-18  Time:18:01:56 Level:916 INFO Process:[RMCommunicator Allocator]

Component:org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator:

Static text:Got allocated containers

Dynamic variable:1

Content:Got allocated containers 1

Log Parsing

LOG.info("Got allocated containers " + variable) 
Log Record 

Statement

Header Information:2015-10-18 18:01:56,916 INFO [RMCommunicator Allocator] 

org.apache.hadoop.mapreduce.v2.app.rm.RMContainerAllocator:

Log Template：Got allocated containers <*>

Fig. 1. The Log Parsing Process of a Raw Log Message from Hadoop.

In this paper, we propose an online automatic log parsing
method logNG, which accurately and efficiently parses the
raw log messages in a streaming manner. logNG automatically
extracts log templates from raw log messages without source
code and historical log data.

We evaluated logNG and other log parsers on real log data
sets collected by the LogPai team1 [14]. logNG achieved the
highest results on most of the data sets, and it was also very
fast in running time.

In general, our work mainly has the following contributions:
• This paper proposes logNG, an online automatic log

parsing method. The log messages we input in the form of
a stream are divided into different log groups according
to their length. For each log group, we use N-gram to
further divide log messages for template matching.

1https://github.com/logpai/logparser

https://github.com/logpai/logparser


• Our method not only solves the problem of manually
parsing log templates, but also is an online method that
does not require collection of historical data for training.

• The experimental results on real log data sets prove the
accuracy and high efficiency of logNG.

II. RELATED WORK

Rule-based log parsing relies on artificial heuristic rules
(basically in the form of regular expressions) to parse logs.
However, this approach is not feasible due to rapid develop-
ment of log size [15], [16], [17], [18], [19].

Log parings based on source code has been supported by
some research [20], [21]. However, this method is actually
difficult to achieve because of unavailability of source code.

Log parsing based on data mining does not require source
code, but uses various data mining techniques to separate
dynamic variables and static text by mining the characteristics
in the log [22].

LKE [23] is a representative algorithm for log parsing. In
this offline parser, log messages are hierarchically clustered
using weighted edit distance, and log keys are generated from
the generated cluster. The log key corresponds to the log
print statement. After the log message is converted to the log
key, a finite state automaton is learned from the training log
sequence.

LogMine [24] is an unsupervised framework. It only scans
log messages once and works in an iterative manner to
generate a pattern hierarchy that can be extracted from a set
of log messages quickly and efficiently High-quality mode,
which can process millions of log messages in a few seconds.

MoLFI [25] is a tool for solving the problem of log
message format identification. It reconstructs the problem of
log message identification into a multi-objective problem and
uses an evolutionary method to solve this problem.

SHISO [26] is an online method of mining log formats and
retrieving log types and parameters. It creates a structured tree
by using nodes generated from log messages.

III. METHODOLOGY

A. Method Overview

1) Data Structure: A good data structure can be more
convenient for us to analyze. We introduced a data structure,
the log group, as shown in “Fig. 2”.

The log group is a data structure with four attributes,
including Template, Length, TemplateID, and LogIDList. In
this paper, italicized and capitalized words indicate attributes.

Before the logs are entered in the form of a stream, we
first create an empty log group list. When log messages are
continuously input, logNG will create log groups and add them
to the log group list.

Each attribute of the log group has its role. As the name
implies, Template and Length are the log template parsed by
our parser and the number of tokens. Taking the log group
in “Fig. 2” as an example, Length is 4 and Template is
“Verification succeeded for <*>”.

When the log group is created for the first time, we directly
assign the content of the log message to Template. At this
time, logNG has not distinguished between static text and
dynamic variables. When the next log message comes, we
will match it with Template of the existing log group. If the
match is successful, logNG will compare Template with this
log message. logNG will recognize static text and dynamic
variables, and finally update.

TemplateID refers to the ID of Template. The log group
list is empty at the beginning. There is no log group, and
TemplateID value does not exist at this time. When a new log
group is generated, logNG assign TemplateID to 1. After that,
whenever a new log group appears, logNG will assign a new
TemplateID, the value of which is the previous TemplateID
plus 1, so that TemplateID value is equivalent to the sequence
number of this log group in the log group list. For example,
TemplateID in “Fig. 2” is 13, indicating that this is the 13th
log group and log template generated and identified by logNG.

LogIDList is a list of the log ID. Each log message has a
corresponding log ID. When the log message matches the log
group, the LogIDList of the log group will add the ID value
of the log message. For example, LogIDList in “Fig. 2” is
[1,22,56,168,245. ..], this means that log messages with log
ID 1, 22, 56, 168, 245, etc. match Template with TemplateID
13.

Log Group List

Log Group

  

Log Group

  
 

Log Group

  

Log Group

TemplateID:13

Template:Verification succeeded for <*>

Length:4

LogIDList:[1,22,56,168,245...]

Fig. 2. Data Structure.

2) Hierarchical Structure: logNG is divided into 4 hierar-
chical structures from beginning to end, as shown in “Fig. 3”.

When the raw log message is input into the logNG, it
first passes through the preprocessing layer. The preprocessing
layer will filter out the header information part of the raw log
message first, and mark some fixed format data (such as IP
address, block ID, etc.) as “<*>”, to facilitate the subsequent
parsing process.

In the length layer, logNG will divide log messages into
different log groups by length. Taking “Fig. 3” as an example,
log messages can be divided into groups of the length less
than 3, the length less than 4, and the length equal to 5 and
so on.

It should be noted that when the length of the log message
is less than N, logNG cannot parse this kind of log message
because the length is not enough. When logNG encounters this
situation, it first checks whether the log group corresponding
to this log message has been saved in the log group list. If so,
it only adds the ID of the log message to LogIDList of the log
group. If not, it creates a new log group directly.

In the matching layer, logNG will make N-gram judgments
on log messages and divide them into more detailed log



groups. This is because different log templates may exist in
log groups of the same length.

In the update layer, logNG identifies the static text and
dynamic variable parts in Template of the log group, and
updates it.
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Log Group3

  

Log Group4

Log Group5

Log Group6

Update Layer

Log Group1

Log Group2

Log Group3

  

Log Group4
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End

Fig. 3. Hierarchical Structure.

B. Step 1: Preprocessing

logNG starts with an raw log message every time. Prepro-
cessing is the first step of our method. Previous studies [13]
have shown that preprocessing can improve the accuracy of log
parsing. Preprocessing can filter out the header information of
the raw log message and extract the content. As mentioned
above, the header information of the raw log message is
usually composed of date, timestamp, level and so on. Because
most logs of the same software system follow the general
format configured by the log library, we can easily delete
the header information and obtain the content directly. In
addition, some fixed-format data can be marked as “<*>”
using predefined regular expressions, such as IP address or
block ID.

C. Step 2: Length Judgment

When a raw log message is preprocessed, this method will
divide it according to the length. A research [27] has shown
that extracting log templates from log messages of the same
length can easily achieve good results. If this raw log message
is the first data in the log data set, then the log group list is
empty. logNG directly creates a new log group and adds it to
the log group list. If the log group list is not empty, compare
the length of this log message with the length of all log groups.
If the match is successful, add it to the log group list, otherwise
create a new log group.

Take “Fig. 4” as an example. The log message is “Got
allocated containers 1”, and TemplateID is set to 1, and
LogIDList is [1], and Length is 4, and Template is log message
itself, that is, “Got allocated containers 1”. If the log group
list is not empty, compare the length of the log message with
Length of all log groups. If there is no log group with the
same length, then directly create a new log group and add it
to the log group list. If there are log groups of the same length,
proceed to the next step of judgment.

Log Group

Template ID:1

Template:Got allocated containers 1

Length:4

Log IDs:[1]

Fig. 4. The First Log Group in the Log Group List.

D. Step 3: N-gram Matching and Update

Length layer can filter out most of the log messages that do
not belong to the same log template. However, there is still a
problem with this division, because some log messages have
the same length, but belong to different log templates, which
shows that we need more detailed matching and identification
methods.

In this section, we will use an intuitive and simple assump-
tion: If continuous multiple different tokens appear between
log messages, these log messages belong to different log
template. N-gram [28] must be used under this assumption.
When logNG sets N to 3, we believe that when different tokens
appear three times in a row between two log messages, the
two log messages do not belong to the same log template.
The setting of N is defined by the user. For the convenience
of discussion, logNG sets N to 3.

We first obtain the 3-gram lists of the log message and
Template in the log group respectively. For the two 3-gram
lists, we compare each pair of 3-grams one by one in order of
position. We check whether each pair of 3-grams is completely
different. When no pair of gram (or token) in each pair of 3-
grams is the same, we think they are completely different.
Note that “<*>” is a variable, and they are different from
each other by default. When two 3-gram lists have at least
one pair of 3-grams that are completely different, we think
that this log message does not belong to this log group, so we
skip this log group and compare it with the next log group
with the same length. Otherwise we think this log message
belongs to this log group.

“Fig. 5” shows the comparison of the two cases respectively.
We bold the different parts of each pair of 3-grams. In the
first case, Template is “PacketResponder 1 for block <*>
terminating” and the log message is “PacketResponder 2 for
block <*> terminating”. In the pair of 3-gram lists obtained
by them, there are no completely different pair of 3-grams.
For example, in the first pair 3-grams, although token “1” and
token “2” are different, but the other parts are the same. So
the first pair 3-grams are not completely different. We have
reason to believe this log message belongs to this log group.

In the second case, Template is still “PacketResponder 1 for
block <*> terminating” and the log message is “1 failures
on node MININT-FNANLI5.fareast.corp.microsoft.com”. In the
pair of 3-gram lists obtained by them, the first pair of 3-
grams (i.e., “PacketResponder 1 for” and “1 failures on”) are
completely different, which means that this log message does



not belong to this log group and it is no longer necessary to
continue compare.

When we determine that a log message belongs to a certain
log group, in addition to adding the ID of this log message
to the LogIDList, we also need to update the Template. To
update the log group Template is to mark the tokens that are
different between the log message and the log group Template
as “<*>”.

Taking the first case of “Fig. 5” as an example, only the
second token(i.e., “1” and “2”) is different between the log
message and Template of the log group, so we only need to
replace the token in this place with “<*>”. Finally, we get
the updated log Template: ”PacketResponder “<*> for block
<*> terminating”.

PacketResponder 1 for block <*> terminatingTemplate

Message PacketResponder 2 for block <*> terminating
3-grams

"PacketResponder 1 for"

"PacketResponder 2 for"

"1 for block"

"2 for block"

  

  

"<*> terminating PacketResponder"

"<*> terminating PacketResponder"

PacketResponder 1 for block <*> terminatingTemplate

Message 1 failures on node MININT-FNANLI5.fareast.corp.microsoft.com
3-grams

"PacketResponder 1 for"

"1 failures on"

Fig. 5. N-gram Matching.

IV. EVALUATION

A. Experimental Setup

1) Comparison: In order to illustrate the effectiveness of
our method, we compare the accuracy and efficiency of logNG
with the existing four log parsing methods, including three
offline log parsers and one online log parser. The brief infor-
mation of these log parsing methods is shown in “Table. I”,
and is introduced in Section II.

TABLE I
FIVE COMPARISON METHODS FOR EXPERIMENTS

Log Parser Pattern Method
LKE Offline Clusterinig

LogMine Offline Clusterinig
MoLFI Offline Evolutionary Algorithms
SHISO Online Clusterinig

2) Log Data Set: The LogPai team [14] provides con-
venience to researchers in the industry and academia. They
store large log data sets from different systems on their
Loghub2 [29]. These systems include distributed systems,
supercomputers, mobile systems, independent software and
server applications. Loghub collected a total of 440 million log
messages with a size of 77GB, which is now the largest col-
lection of log data sets [14]. We will conduct experiments on
10 public data sets provided by the LogPai team. For each data
set, the LogPai team randomly selected 2000 log messages and
manually marked the log template corresponding to each log
message as the groud-truth for our evaluation. The information
of these data sets is listed in “Table. II”. The Events(2k) table
shows the number of events in 2000 log messages.

2https://github.com/logpai/loghub

TABLE II
PROPORTION OF CONTINUOUS DYNAMIC VARIABLES

Dataset Description Events(2k)
HDFS Distributed System 14

Hadoop Distributed System 114
Spark Distributed System 36

Zookeeper Distributed System 50
BGL Supercomputer 120
HPC Supercomputer 46

Thunderbird Supercomputer 149
HealthApp Mobile System 75

Apache Server Application 6
Proxifier Standalone Software 8

TABLE III
PARSING ACCURACY OF LOG PARSING METHODS

logNG LKE LogMine MoLFI SHISO
HDFS 1 1 0.8505 0.9975 0.9975

Hadoop 0.9545 0.6695 0.8695 0.8535 0.867
Spark 0.92 0.6335 0.5755 0.418 0.906

Zookeeper 0.987 0.4375 0.6875 0.839 0.66
BGL 0.9545 0.6455 0.7245 0.9385 0.711
HPC 0.904 0.574 0.784 0.8245 0.3245

Thunderbird 0.9445 0.8125 0.9185 0.648 0.576
HealthApp 0.9915 0.5915 0.6865 0.535 0.397

Apache 1 1 1 1 1
Proxifier 1 0.495 0.5165 0.013 0.5165
Average 0.9509 0.6859 0.7613 0.7067 0.6956

3) Evaluation Metric: We will prove the effectiveness from
the perspectives of parsing accuracy (PA). F-measure is a
weighted harmonic average of precision and recall. It is a
commonly used evaluation standard and is often used to
evaluate the quality of classification models. But PA is a more
stringent metric than F-measure. [13] defined PA as the ratio
of the number of log messages correctly parsed to the total
number of log messages. If and only if the log Templates
generated is exactly the same as ground truth, we think it is
parsed correctly. Even if there is only one log message that
does not match correctly, we still think that the parsing of the
log template has failed.

4) Experimental Environment: All our experiments were
performed on a Linux server running 64-bit Centos 7.4,
equipped with 16-core Intel(R) Xeon(R) Silver 4216 CPU @
2.10GHz and 32GB DDR4 2666. We support the implemen-
tation of logNG in Python 3.8.6. We run each experiment 10
times to get the average value to avoid bias.

B. Result Analysis

1) Effectiveness: Accuracy shows the ability of the log
parser to correctly match the raw log message with the log
template. A study [30] shows that accurate parsing of log
messages into templates is essential for many log processing
methods, and parsing errors are likely to cause the performance
of subsequent downstream tasks to degrade. We compare
logNG with 4 log parsing methods, including 3 offline methods
and 1 online methods. Generally speaking, the offline method
will be more accurate than the online method, because the

https://github.com/logpai/loghub
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Fig. 6. Running Time of Log Parsing Methods on Data Sets in Different Size

offline method can use all the raw log messages from the
beginning. But the online method is not, it can only gradually
adjust itself [13].

“Table. III” show the comparison of experimental data. The
bold data indicates the highest performance value that can be
achieved on this data set.

From the results of PA, logNG can achieve the highest PA
on 10 data sets, which are all above 0.9. The average PA of
logNG reaches 0.9509, which is also the highest among all log
parsers. The second-ranked parser is LogMine, with an average
PA of 0.7613. There is an obvious gap between logNG and
LogMine. logNG is not only significantly more effective than
other log parsers, but also more comprehensive. It can achieve
good or even the best results on each data set.

2) Efficiency: Efficiency is also a very important indicator.
The current log size is huge and the production speed is
fast, which puts forward requirements for the efficiency of
the log parser. In order to illustrate the running speed of
logNG, we will also conduct experiments on 10 real data sets
of different sizes and compare them with the other four log
parsing methods.

“Fig. 6” shows the running time of the five methods. The
red line in the figure is the running time of logNG on log
data sets of different sizes. The results show that logNG can
achieve the fastest speed on most data sets. Even if it is not
optimal for the three data sets of BGL, HDFS and HealthApp,
it can still be ranked second. On the whole, logNG running
time is maintained at a high level.

In addition, our method linearly increases with the increase
of log size on most data sets. However, LKE and LogMine are
often squared with the log size, causing their images to be out
of range. Because their time complexity is O(n2). The time
complexity makes them unable to complete the log parsing
task in limited time. And online parsing methods (i.e., SHISO,
logNG) process log messages one by one, so they enjoy linear
time complexity O(n) which makes them run faster. Although
LogMine can achieve the second place in accuracy, it costs a
lot of time.

V. CONCLUSION

In this work, we propose an online log parsing method based
on N-gram. We use an intuitive assumptions: Log messages
of the same log template will not have consecutively different
tokens. With the assumption, we have realized the processing
of raw log messages in a stream. The advantage of this method
is that no historical data training is required. In order to
prove the effectiveness and efficiency of logNG, we conducted
experiments on 10 real-world log data sets collected by the
LogPai team [14]. The final results show that logNG can
achieve the best accuracy on most data sets, and the running
speed is faster than other log parsing methods. However,
during our research, we found that some dynamic variables
of log templates have multiple value forms. For example, a
“<*>” can be either “00:01” or “<1 sec”. This means that
a “<*>ı̈s not necessarily a token, but a number of tokens.
This type of dynamic variable has an impact on our parsing
accuracy, and we next wanted to do further research on log
datasets with this type of dynamic variable.
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