
EasyChair Preprint
№ 7008

Analysis of the Adequacy of L. Euler’S Critical
Parameters to the Results of Calculations of
Systems for Loss of Stability of the Form

Vladimir Kulikov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 7, 2021



 

 

Analysis Of The Adequacy Of L. Euler's Critical Parameters 

To The Results Of Calculations Of Systems For Loss Of 

Stability Of The Form 

 
 Kulikov V.G.1,a)  

1Moscow State University of Civil Engineering, Yaroslavskoe shosse, 26, Moscow, Russia 

 
 a)KulikovVG@mgsu.ru  

Abstract. It is obvious that in modern conditions, information technologies are being intensively introduced in all spheres of human 
activity, allowing for a comprehensive systematic approach to all aspects of modern human life. Of course, the technologies being 
implemented before their practical use are first conceived, developed and formalized by their algorithmization. The paper is devoted 
to the formalized algorithmization of structural analysis processes to reliability requirements in terms of their resistance to formally 
possible manifestations of critical impacts during the operation of buildings and structures. The algorithm of structural stability 
analysis considered in this paper consists of many separate different steps, and this set is finite. The principle of discreteness is 
observed in the analysis algorithm. A descriptive algorithm compiled in natural and mathematical languages is proposed. 

INTRODUCTION 

The phenomenon of loss of stability can occur in many cases and in any structures. And in plates, and in shells, and in 

rod systems. Thus, it is obvious that stability as a phenomenon for both simple systems and complex structures consisting 

of many elements depends on the stability of individual elements and on their joint work in structures. The loss of stability 

in many cases can be characterized as a bifurcation1 of the equilibrium form. For example, a rectilinear rod, when the 
longitudinal force reaches a critical value, can also take a curved shape, i.e. lose stability. 

Two approaches are usually used to establish the equilibrium of the system: 1) the principle of possible displacements, 

in which: if the system is in equilibrium, the sum of all external and internal forces in any infinitely small displacements 

equal to zero. 2) the property of the potential energy of the system, which: if the system is in equilibrium, its potential 

energy (i.e. the energy external and internal forces) has an extreme value.  

However, these methods, as signs, do not answer the question whether the equilibrium is stable or unstable. It is known 

that the Lagrange-Dirichlet principle can answer this question: the equilibrium of a system is stable if its total potential 

energy is minimal compared to all sufficiently close positions of the system. 

In the future, approach №1 will be used in the work to eliminate the problems that have arisen.  
 

MATERIALS AND METHODS 

 About definitions.  

Let's define the concept of "stability" of buildings and structures by the ability of their elements to maintain their 

original geometric dimensions at a constant level throughout the entire service life, despite aggressive environmental 

influences 

At the same time, we will assume that these positions or forms of equilibrium in working condition during operation 
throughout the entire life cycle will be considered stable if, under any influences, structural elements deforming from these 

influences, nevertheless retain properties to restore their geometric dimensions and operational properties.  

                                            
1 Bifurcation – splitting, doubling. 

 



 

 

Buildings and structures, their elements, as systems that do not possess these properties, are subject to destructive states 

with a high degree of reliability of a priori statistics, and natural destruction can occur with them throughout the life cycle, 

both of individual elements and structures as a whole. 

Thus, the constructions considered by us, as systems, are equally likely to be in different states from the point of view 

of estimating geometric parameters and properties in the dynamics of their states. But in time, they can alternate between 

both equilibrium and non-equilibrium states. The period of time and the state of the properties of systems at such 

transitional moments of time will be called "loss of stability", and this moment in time itself will be called the "critical 

state" of the object. 
At the same time, the modules of the magnitudes of the applied external loads causing such states are called critical 

forces. 

On the calculation of the stability of frame structures. 

To calculate stability, the so-called critical loads "RCR" are found using L. Euler's multifunctional critical parameter 

"v". The values of this parameter depend on the adopted main system, the type and form of the applied forces, on the types 

of connections of the structural elements with each other. In addition, to determine the "RCR" at the initial stage of solving 

the problem, the so-called coefficient of the calculated length "µ" is also found. 

Thus, the calculation for the stability of systems consists in determining the critical parameter "v", according to which 

the values of the critical loads "RCR" are further determined based on the fact that: 

𝑃кр =
𝑣 2∙𝐸∙𝐼

𝑙2                                             (1) 

The algorithm for calculating frame structures for stability. 

Consider the method of calculating the above elements and systems for stability. At the same time, we will use both 

calculated and tabular and hardware forms and values of the reactive behavior of structures, both for real and virtual 

external influences, while using appropriate normative literary applications.  

 
Preparation of the calculation scheme 

 
Let's formulate the algorithm of the calculation method:  

1. First, it is necessary to conduct a kinematic analysis of the design scheme according to the formula: 

𝑛 = 𝑛𝑎 + 𝑛𝐿 = 𝑛𝑎 + (2 ∙ 𝑁 − С − С0)                                (2) 

where  na– the number of rigid nodes in the structure: nL- the number of possible linear deformations of the nodes 

of the structure; N – the number of nodes of the structure;  С- number of rods in the structure; С0- the number of hinge 

supports. 
1.1 At the next stage, based on the calculation scheme, we will develop the so-called "main system" of the system 

under consideration, thereby constructing and designing this structure as a geometrically immutable system. 

2. We will determine the parameters of the system that potentially have the ability to bring it to a previously defined 

state of "loss of stability" using the following ratio: 

𝑣𝑖 = 𝑘 ∙ 𝑙𝑖 = √
𝑃𝑖

𝐸∙𝐼𝑖
                                       (3) 

where: vi- «critical parameter»; k- proportionality coefficient; li- length of the structure; Pi- load; E ∙ Ii- stiffness of 

the section. 

Based on the results obtained, we will choose such an element of the design under consideration, in which the parameter 
"v" will receive the maximum value from the considered values. 

After finding the specified parameter, the "critical" parameters of other elements will be correlated to the maximum 

value of the found parameter.  

3. In an analytical form, the equilibrium state of the considered construct can be represented by a system of canonical 

equations without free terms. Why? Because the forces acting in the direction coinciding with the geometric axis of the 

elements do not create bending moments for these elements. Thus: 

 

{

𝑟11 ∙ 𝑍1 + 𝑟12 ∙ 𝑍2 + ⋯ + 𝑟1𝑛 ∙ 𝑍𝑛 = 0
𝑟21 ∙ 𝑍1 + 𝑟22 ∙ 𝑍2 + ⋯ + 𝑟2𝑛 ∙ 𝑍𝑛 = 0

…
𝑟𝑛1 ∙ 𝑍1 + 𝑟𝑛2 ∙ 𝑍2 + ⋯ + 𝑟𝑛𝑛 ∙ 𝑍𝑛 = 0

                               (4) 

 

At the next stage, we will construct "single plots" of bending moments Mi in the accepted basic system of the design 
scheme from the action of single torsional and linear virtual loads. At the same time, we use both literary and empirical 

forms of their representation 



 

 

5. After that, we determine the values of the coefficients for the unknown Zi using the above system of canonical 

equations. Using the values of rij found from the above system, we then compose the so-called matrix equation of the 

stability of the system in the following form: 

 

𝑀 = |

𝑟11𝑟12 … 𝑟1𝑛

𝑟21𝑟22 … 𝑟2𝑛

…
𝑟𝑛1𝑟𝑛2 … 𝑟𝑛𝑛

| = 0                                    (5) 

 

Let's pay attention to the fact that in the problems with strength determinant of the matrix M often > 0, and in stability 

problems, determinant of the matrix M usually = 0.  

6. To solve the specified matrix equation with respect to the parameter "v", as a rule, iterative solution methods are 

used. In this case, the initial values of the parameter "v" will be set based on the conditions of interaction of the structural 

elements with each other.  

7. To determine the "critical forces" we will use the following relation: 

𝑃кр =
𝑣 2∙𝐸𝐼

𝑙2                                          (6) 

8. The values of the reduced lengths of the elements will be further calculated using the following formula: 

l0 = μ ∙ l =
π

v
∙ l                                           (7) 

The values of μ and v will be taken, taking into account calculations, and l - based on the given geometry of the 

structure. 

 

DISCUSSION AND RESULTS 

 

 
FIGURE 1. Design scheme of the analyzed structure 

 
Let's illustrate the above with the following actions. Suppose, for the calculation scheme given in Fig. 1, it is necessary 

to determine the critical forces of the Pcr. 



 

 

 

 

 

FIGURE 2. 
a-design scheme; b-main system; c-longitudinal forces plot; "v1.2"-critical Euler parameters 

 
For the calculation scheme shown in Fig.2a, we propose the basic system given in the same place, scheme (b). For it, 

we determined the internal forces M, Q and N, having previously determined its reference reactions. Fig. 2 "c" shows that 

in this case M and Q are zero.. Then it is obvious that only longitudinal forces N are present in the elements of the analyzed 

structure from the applied vertical loads. Then here you need to ask the question: -"How adequately does the specified 

system comply with the provisions on immutable systems?" Then we will further evaluate this system by analyzing its 

kinematic stability. Let's determine the number of degrees of freedom of this system: 𝑛 = 𝑛𝑎 + 𝑛𝐿 = 1 + 1 = 2 

It turns out that the analyzed construction is twice statically indeterminate. Optimization of this system consists in 

finding the so-called "superfluous connections", as well as in finding and minimizing the values of its values M, Q and N. 

The main system and the "balancing" of the structure by angular and linear reactions of the bonds Z1 and Z2, respectively, 

are shown in Fig.3 (a, b). 

 

 
 

FIGURE 3. Deformation scheme of the main system of the analyzed structure. a-the main system; b-the virtual scheme of the 
application of "balancing" forces compensating for possible displacements; c- deformation scheme of possible deformations; 

  

 Using the "Lagrange principle" of possible displacements, the values of possible displacements are calculated 

and presented in Fig.3. Along with this, we have determined the distributions of internal forces M,Q and N, from possible 

deformations in the form of corresponding plots, Fig.4 (a,b,c). 



 

 

 

 
FIGURE 4. Distributions of internal forces M, Q, and N 

 

Comparison of Fig.2 and Fig.3 clearly indicates significant changes in the distribution of internal efforts in the first 

and second cases. Let's pay attention to the fact that in the construction, at the same time, internal stresses (M, Q and N) 

appeared,. This fact indicates that a stress-strain state has arisen in the structural elements, initiated by virtual deformations. 

Let us consider in Fig.4 two states of the main system obtained as a result of the use of virtual single reactive bonds Z1 

and Z2, These bonds virtually compensate for the two degrees of freedom that we found earlier, one angular degree of 

freedom and one linear degree of freedom 

 
 

FIGURE 5. Single plots of moments from reactive bonds Z1 and Z2. 

a-from Z1; b- from Z2 
 
Considering the analyzed structure from the point of view of analyzing the possible loss of stability and noting the 

nonlinearity of the values of factors that can potentially lead the system to such a result, we point out that in this case, the 

graphs of moments in Fig.5 - must be non-linear. 

We will calculate the critical stability parameters of L. Euler for the elements of the analyzed structure using the 

following relations (8): 

𝑣1 = 2 ∙ √
2∙𝑃

𝐸∙𝐼  
,   𝑣2 = 2 ∙ √

𝑃

𝐸∙𝐼  
, 𝑣3 = 𝑣4 = 0                           (8) 

Taking into account the calculation below, the largest value of the stability parameter of the considered elements 

belongs to the first core of the main system. Based on this, for further calculations we will select the parameter with the 

highest value as the main critical parameters and, - denote it as 𝑣1. 



 

 

𝐼𝑓 𝑣1 = 2 ∙ √
2∙𝑃

𝐸∙𝐼  
  = 𝑣 , then 

𝑣2

𝑣
=

2∙√
∙𝑃

𝐸∙𝐼

2∙√
2∙𝑃

𝐸∙𝐼

=
1

√2
≈ 0,7, - hence 𝑣2 = 0,7𝑣 

At the next stage of the algorithm implementation , we will compile a system of canonical equations for the considered 

case of loading of the main system and the reaction of the system to this loading , in which 𝑅1𝑃 = 𝑅2𝑃 = 0: 

{
𝑟11 ∙ 𝑍1 + 𝑟12 ∙ 𝑍2 = 0
𝑟21 ∙ 𝑍1 + 𝑟22 ∙ 𝑍2 = 0

                                    (9) 

 

The reduced homogeneous system of equations can have many solutions, and in particular we show some of them: 

If 𝐷 = 𝑑𝑒𝑡 |
𝑟11 𝑟12

𝑟21 𝑟22
| = 0  provided that   𝑟12 = 𝑟21   then 

 

𝐷(𝑣) = 𝑟11 ∙ 𝑟22 − 𝑟12
2                                    (10) 

The equation (10) shown by us can be interpreted as a formalization of the equilibrium condition of the analyzed 

structure from the impact of critical loads, expressed in mathematical language (the stability equation). 

Let's continue the search for unknown coefficients of the system of canonical equations (9) for the subsequent 

determination of the values of the quantities Z1 and Z2, To determine the coefficients of the system, we will use, among 

other things, the data shown in Fig.4a in analytical form: 

 𝑟11 = 4 ∙
𝐸 ∙ 𝐼

2
∙ 𝜑1(𝑣1) + 3 ∙

𝐸 ∙ 𝐼

2
∙ 𝜑5(𝑣2) = 𝐸 ∙ 𝐼[2 ∙ 𝜑1(𝑣1) + 1,5 ∙ 𝜑5(𝑣2) + 3] 

𝑟12 = −6 ∙
𝐸 ∙ 𝐼

22
∙ 𝜑3(𝑣1) + 3 ∙

𝐸 ∙ 𝐼

22
∙ 𝜑5(𝑣2) = 𝐸 ∙ 𝐼[−1,5 ∙ 𝜑3(𝑣1) + 0,75 ∙ 𝜑5(𝑣2)] 

𝑟22 = 12 ∙
𝐸 ∙ 𝐼

23
∙ 𝜑4(𝑣1) + 3 ∙

𝐸 ∙ 𝐼

23
∙ 𝜑6(𝑣2) + 3 ∙

𝐸 ∙ 𝐼

23
= 𝐸 ∙ 𝐼[1.5 ∙ 𝜑4(𝑣1) + 0,375 ∙ 𝜑6(𝑣2) + 375] 

How to find the roots of the stability equation (10). To do this, we will substitute the previously found coefficients of 

the system into the stability equation. Next, we choose from all the roots we found, the root value, which will be the 

smallest value of the root of the stability equation. To determine the smallest positive root of this equation, we first look 

for the range of possible values in which this root of the equation can be located. 

Let us take into account all the previously given arguments, as well as all the previously given analytical dependencies, 

then on their basis we can draw the following conclusion. The stability of the analyzed structure directly depends on the 

operation of element No. 1, taking into account the value of the non-linear and multi-parametric critical parameter of L. 

Euler. Then it is obvious that :𝑣1 = 𝑣,   

Therefore, in the future, based on the analysis of the work of element No. 1, we will be able to judge the work of the 

entire structure as a whole. 

Let's take a closer look at the work of element No. 1 separately from the work of other structural elements by applying 
the "superposition principle" in the analysis of the work of this structure (Fig. 5 a, b). 

Then, in the case of the operation of element No. 1 in accordance with option (a), as shown in Fig. 5: 𝜇 = 2 𝑣 =
𝜋

𝜇
=

3,14

2
= 1,57. 

Then, in the case of the operation of element No. 1 in accordance with option (b), as shown in Fig. 5: 𝜇 = 0,5 𝑣 =
𝜋

𝜇
=

3,14

0,5
= 6,28 

 

 
 

FIGURE 6. Justification of the values of 𝜇𝑖 for finding the interval of values of the critical parameter vj 



 

 

 
If the critical parameter for element No. 1 with the same probability for all other elements of the scheme can take 

values in the range 𝑓𝑟𝑜𝑚 0 𝑡𝑜 ∞ then the root of the stability equation must be in the interval: 

1,57 ≤ 𝑣𝑗 ≤ 6,28 

Solution of the stability equation by the method of successive approximations for the tabulated values of the parameter 

𝜑𝑖(𝑣𝑗) is summarized in table 1: 

 
TABLE 1. Relations between the critical parameters of L. Euler and the parameter D of the stability equation 

 

v=v1 v2 ϕ1(v1) ϕ3(v1) ϕ4(v1) ϕ5(v2) ϕ6(v2) r11 r12=r21 r22 D 

2,8 2,0 0,706 0,861 0,208 0,294 2,317 1,154 0,338 1,38 -1,706 

4,0 2,8 0,293 0,696 0,637 2,173 7,506 9,806 4,154 0,631 23,446 

4,9 3,4 0,361 0,505 1,495 4,146 3,857 3,964 1,601 3,806 17,649 

5,7 4,0 -2,18 0,258 -2,45 1,124 9,707 1,361 0,387 2,895 3,79 

  

When solving the stability equation, including using Table 1, in the found interval 1,57 ≤ 𝑣𝑗 ≤ 6,28, we determine 

the values of 𝑣𝑗, between which the function D changes its sign. So, for 𝑣1 = 5,9 it turns out that D=3,790  > 0, and for 

𝑣1 = 4,9 D=-17,649  < 0. This means that the critical parameter, as the root of the stability equation, is between the 

values of 4.9 and 5.9. 

Sequentially reducing the interval between the values of vj with different signs, as a result we get the table.2: 
 

TABLE 2. Relations between the critical parameters of L. Euler and the parameter D of the stability equation 
 

v=v1 v2 ϕ1(v1) ϕ3(v1) ϕ4(v1) ϕ5(v2) ϕ6(v2) r11 r12=r21 r22 D 

2,8 2,0 0,706 0,861 0,208 0,294 

-

2,317 1,154 -0,338 

-

1,380 -1,706 

4,0 2,8 0,293 0,696 

-

0,637 

-

2,173 

-

7,506 9,806 4,154 

-

0,631 

-

23,446 

4,9 3,4 

-

0,361 0,505 

-

1,495 4,146 

-

3,857 3,964 1,601 

-

3,806 

-

17,649 

5,7 4,0 

-

2,180 0,258 

-

2,450 1,124 

-

9,707 

-

1,361 0,387 

-

2,895 3,790 

5,3 3,7 

-

0,942 0,394 

-

1,947 2,067 

-

7,297 1,116 0,590 

-

1,038 -1,507 

5,5 3,9 

-

1,418 0,329 

-

2,192 1,546 

-

8,538 0,164 0,494 

-

1,752 -0,530 

5,6 3,9 

-

1,748 0,294 

-

2,319 1,327 

-

9,127 

-

0,496 0,442 

-

2,247 0,920 

 
From the table.2 we find the maximally reduced interval for the function D, which in our case is: −0,530 ≤ 𝐷𝑖 ≤

0,920. These values of the function D correspond to the minimum range of values of the critical parameter of L. Euler: 

5,5 ≤ 𝑣1 ≤ 5,6. 

We interpolate the specified interval using a linear proportion: 
0,920−(−0,530)

5,6−5,5
=

100

Х
     𝑤ℎ𝑒𝑟𝑒 𝑓𝑟𝑜𝑚      𝑋 = 25,663. 

Since the value of the found number is specified after the second decimal place, let's take the value of the specified 

number equal to 𝑣1 = 5,574. Then 𝑣2 = 0,7 ∙ 𝑣1 = 3,902. 

Further, it is for these values of the critical parameter found by us that we calculate the so-called "transformed" length 

l0 of the elements of the structure, as well as the critical force, using the following relations: 

𝜇𝑘 =
𝜋

𝑣𝑗
  и   𝑃𝑚 𝑐𝑟 =

𝑣𝑗 𝑐𝑟
2

𝑙𝑚
2 ∙ 𝐸 ∙ 𝐼                               (11) 

The results of the calculations are presented as follows: 

Thus, the "converted" length is l01: 𝜇1 =
𝜋

𝑣1
=

3,14

5,574
= 0,563; 𝑙01 = 𝜇 ∙ 𝑙 =

𝜋

𝑣
∙ 𝑙 = 0,563 ∙ 2 = 1,126; 

Thus, the "converted" length is 𝑙02:   𝜇2 =
𝜋

𝑣2
=

3,14

3,902
= 0,805; 𝑙02 = 𝜇 ∙ 𝑙 =

𝜋

𝑣
∙ 𝑙 = 0,805 ∙ 2 = 1,610; 



 

 

Critical power:  𝑃1 𝑐𝑟 =
𝑣1

2

𝑙1
2 ∙ 𝐸 ∙ 𝐼 =

31,073

4
∙ 𝐸 ∙ 𝐼 =  7,768 ∙ 𝐸 ∙ 𝐼; 

Critical power: 𝑃2 𝑐𝑟 =
𝑣2

2

𝑙2
2 ∙ 𝐸 ∙ 𝐼 =

15,226

4
∙ 𝐸 ∙ 𝐼 =  3,806 ∙ 𝐸 ∙ 𝐼     

The influence of the argument v1 on the function D(v1) in the work is estimated by a polynomial of the sixth degree 

with a degree of adequacy R2=1.  

𝐷(𝑣1) = −0,3057(𝑣1)6 + 7,301(𝑣1)5 − 67,993(𝑣1)4 + 310,37(𝑣1)3 − 713,68(𝑣1)2 + 759,56(𝑣1)  
2,8 < (𝑣1) < 6,5                                                    (12) 

The influence of the argument v2 on the function D(v2) in the work is also estimated by a polynomial of the sixth degree 

with a degree of adequacy R2=0,9606. 

𝐷(𝑣2) = −0,0994(𝑣2)6 + 2,302(𝑣2)5 − 20,23(𝑣2)4 + 82,411(𝑣2)3 − 148,6(𝑣2)2 + 83,121(𝑣2) 

  2,0 < (𝑣1) < 4,6                                                    (13) 

The relationship between the calculated arguments (v1, v2) and the function D(v1, v2), as response functions are shown 

in figure 6 as a response surface from the specified arguments.  

 

 

 
FIGURE 7 Relations between the critical parameters of L. Euler v1,v2 and the parameter of D(v1,v2)  of the stability equation (10). 

 

The behavior of the function D(v1, v2), which is a condition for the stability of the analyzed system, as follows from 

figure 6, is non-linearly influenced with varying intensity by both arguments v1 and v2. Therefore, in further calculations 

for the stability of the analyzed system, both of these impacts are taken into account. In particular, the roots of the above 

polynomials are determined, i.e., the zeros of the function D(v1, v2). So for the polynomial (12) there are six roots, four 

real and two complex conjugate:v1(1 ÷ 6) ≃ 4,88; 3,71; 6,97; 6,06; 1,12 + 0,044𝑖; 1,12 − 0,044𝑖.. 

To check the correctness of the choice of confidence intervals 2,8 < (𝑣1) < 6,5 и2,0 < (𝑣1) < 4,6 local extremes 

of the function are determined D(v1, v2). Algorithmic process of finding extreme values D(v1) in the interval 2,8 < (𝑣1) <
6,5 shown on figure 7: 

 

 
FIGURE 8. Algorithmic process of finding extreme values of D(v1) 
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The calculated extreme values were recoded. The value of the value D(v1) corresponds to the value W(x), and the value 

v1 corresponds to the value X. Figure 7 shows the local extreme values of the polynomial dependence of the function D 

on the argument v1 in recoded form. The dynamics of the nonlinear influence of parameter v1 on local extreme values is 

shown on the corresponding graph in the same place. 

Algorithmic process of finding extreme values of D(v2) in the interval 2,0 < (𝑣1) < 4,6 shown on figure 8. The same 

as for the function D(v1), for the function D(v2) transcoding has been performed. So, the value of R(x) corresponds to the 

value of D(v2), and the size of v2 – value X. The dynamics of the nonlinear effect of parameter v2 on local extreme values is shown 

on the corresponding graph in the same place. 

 
FIGURE 9. Algorithmic process of finding extreme values of D(v2)  

 
To assess the significance of the obtained result, the spectral analysis of the analytical functions used in the form of 

the amplitude-frequency characteristics of these polynomials, performed by the fast Fourier transform method, was carried 

out, figure 9. 

 

 
FIGURE 10. Spectral analysis of the regression model 

The obtained regression model of the two-parameter function D(v1, v2) indicates that in the given low-frequency 

frequency range, up to 6 Hz, there is only one spectral frequency of the order of 100 Hz, which tends to decrease in 

amplitude and does not exceed the resonant threshold amplitude values of L. Euler's critical parameters accepted in the 

work. 

CONCLUSIONS 

The answer to the question "is the structure stable or unstable, or a separate element of this structure?” is a very 

important task. As it is shown in this paper, even a minor cause is sufficient for the loss of stability of a structure that has 

reached a critical state. If the process of loss of stability has "already" begun, then it goes very quickly and leads to a sharp 

change in the original shape, and very often, in addition to this, to the destruction of parts or the entire structure. The 

values of critical forces, and the relationship between the various parameters of the structure we are analyzing in its 



 

 

different states, found in this work, indicate that with the help of the method proposed in this work, it is fundamentally 

possible to predict the behavior of the structure being developed at the stage of its calculation and design. The methodology 

proposed in this paper allows you to be confident in the results of calculations and in the results of design of the structure 

at all stages of its life cycle. 

 

Results 

a) The method of forecasting the loss of stability of the analyzed structure is presented; 

b) The problem of stability of the form of the analyzed system is solved; 

с) For the analyzed structure, possible destructive factors have been identified in the form of critical impacts that 

potentially have the ability to disable it, (Fig. 7,); 

d) Analytical expressions are found between the critical parameters and the equilibrium conditions of the system (Fig. 8); 

e) The extreme values of the function D(v1,v2) in the considered intervals are found Fig. 8,9; 

f) The amplitude-frequency analysis of the analytical models of the stability equation (10) of the analyzed system found 

in the work is performed Fig. 10. 
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