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Abstract—A new broad of video services that support live
streaming has become tremendously popular in recent years.
Compared with traditional video-on-demand (VOD) services, live
video streaming has much higher requirements on Quality-of-
Experience (QoE), including low rebuffering, high definition,
low latency and low bitrate oscillations. While previous adaptive
bitrate algorithms (ABR) solely optimize bitrate for ensuring QoE
of VOD, live video streaming has a larger decision space, making
the optimization problem more difficult to solve. We propose
Deeplive, which maximizes QoE through deep reinforcement
learning (DRL), so it does not rely on fixed rules. To accelerate
the training process of Deeplive, we further propose optimization
including window completion with historical data and quick-
start with rate-based algorithm. We compare Deeplive with other
advanced ABR algorithms in a frame-level dynamic adaptive
video streaming simulator using different network traces, QoE
definitions, and video categories. In all experiments, we find that
Deeplive not only has significant improvement in training time,
but also shows an average of 15-55% improvement on QoE than
the state-of-the-art ABR algorithms.

Index Terms—live video streaming, QoE, deep reinforcement
learning.

I. INTRODUCTION

Internet traffic statistics show that video traffic demand has
reached 76% in 2016, and is expected to increase to 82%
by 2021 [1]. Streaming media transmission has become the
top priority in today’s network transmission. In recent years,
with the rise of live streaming services, the number of people
watching live video streaming has increased dramatically. It
is particularly important to ensure the Quality-of-Experience
(QoE) of live video streaming transmission. Compared with
video-on-demand (VOD), live streaming QoE has much higher
requirements on high bitrate and less rebuffering, where
bitrate refers to the definition of the video and the higher
bitrate means that video can be played in higher definition;
rebuffering implies the time video stops for buffering and
less rebuffering means users can watch the video smoothly.
Moreover, minimizing the latency between when a video frame
is generated and when it is received by the end user is also
extremely important for ensuring the real-time interaction.

They mainly rely on the prediction on throughput (e.g.,
FESTIVE [2] and Rate-based algorithm [3]) or buffer size
(e.g., Buffer-based algorithm [4] and BOLA [5]), or a combi-
nation of them (e.g., DYNAMIC [6] and MPC [7]). However,
these algorithms cannot be applied into a complex network
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with oscillations, and cannot meet the various QoE demand
for live video streaming users. The state-of-the-art Pensieve
[8] which uses deep reinforcement learning (DRL) has been
proven to have an average QoE improvement of 12-25% over
other traditional algorithms and can adapt to different network
conditions. However, these algorithms do not take latency
into consideration and have a poor performance in live video
streaming scenarios.

In live video streaming, we can only get a few seconds of
video ahead at every moment. It means that there is much
less information that can be utilized to make optimal live
video streaming decisions. In addition, due to the limitation of
network conditions, choosing a high bitrate means that more
transmission time is needed, which inevitably brings latency
or even rebuffering. It is also particularly important to ensure
the stability of transmission during the live video streaming.

In this paper, we present Deeplive, a QoE optimization algo-
rithm for live video streaming using DRL, which can deal well
with complex scenarios with perplexing network conditions
and various video content, and can choose appropriate actions
from the decision space for live video streaming according
to the state. Unlike previous optimization goals, we improved
video quality from multiple metrics rather than just bitrate.
We establish a DRL model to select bitrate,target buffer and
latency limit for future video chunks based on states observed
in the live video streaming. By using the past status observed
from the client and instead of the raw video pictures, the
state space of the Deeplive can be reduced efficiently. We also
implement optimizations based on Deeplive, making it able
to converge in a short time in the training phase. In general,
Deeplive can optimize the bitrate, rebuffering and latency in
the live video streaming an average 15-55% improvement over
the performance of other algorithms.

II. SYSTEM MODEL

In this section, we describe the model of the Dynamic
Adaptive Streaming over HTTP (DASH) system, including the
overview of live video streaming process and the correspond-
ing QoE definition.

A. Overview

As shown in the Fig. 1, DASH system adopts a chunked
transfer encoding mechanism for splitting video data into
multiple chunks. Video chunks are encoded into multiple video
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Fig. 1. Overall processing of DASH system.

TABLE I
PARAMETERS FOR DEFINING QOE.

Params Notations Params description
FrameTimeLen λf Length of each frame

Bitrate λb Bitrate of video
Rebuffering λr Freezing time
EndDelay λed End-to-end delay

SkipFrameTimeLen λsf Length of skip frame
Smooth λs Frequency of bitrate switching

frames. Our algorithm can work at the frame level DASH
system. Rectangular vertical bars with equal spacing represent
video over a while. The height of the video bar represents
the bitrate of this chunk. Higher bar implies higher definition
of video and more data transmission. The total length of all
buffered chunks is the size of the buffer, which freezes when
the buffer is empty.

A pull request towards the next chunk is issued at the end of
last chunk. Adaptive bitrate algorithms (ABR) needs to derive
bitrate, target buffer and latency limit for maximizing user
QoE. In particular, bitrate decides the video definition, target
buffer means that if video freezes at this moment, it needs
to buffer the content of target buffer capacity before it can
be played. And latency limit is the threshold for the frame
skipping, i.e., when the latency reaches this threshold, in order
to reduce the latency, the frames are skipped and the newer
ones are downloaded. Then, ABR algorithm is to find the best
decision so that live video playback can get a maximum QoE.

B. QoE Definition

We focus on the five aspects that affect the QoE in live
video streaming (parameters are listed in the Tab. I):

• Frame video quality: QoE of the kth frame is denoted by
Q(k) = λf · λb. The higher the bitrate, the larger the
corresponding value.

• Rebuffering: The first the kth frame video rebuffering time
of QoE notes for R(k) = λr. The longer the rebuffering
time, the greater the penalty.

• Latency: The delay time QoE of video in the kth frame is
marked as L(k) = λed. The higher the delay, the greater
the penalty.

• Frame skipping: Frame skipping QoE of the kth frame
video is recorded as F (k) = λsf . If frame skipping
occurs, there is a penalty for skipping frames.

• Bitrate switch: The QoE of the ith chunk switching
frequency is denoted as S(i) = λs. If frequent switching
occurs, a penalty will result. Switching across the bitrate
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Fig. 2. The overview of Deeplive.

(from super definition to low definition) can increase
penalties.

The choice of bitrate is related to Q(k), R(k) and S(k).
Target buffer and latency limit are used to control the L(k).
There is a close relationship between latency limit and time
F (k).

We define the QoE of a chunk of live video streaming as
following.

QoEchunk(i) = µq

K∑
k=1

Q(k) + µr

K∑
k=1

R(k) + µl

K∑
k=1

L(k)

+µf

K∑
k=1

F (k) + µsS(i)

(1)

Then, for the whole video, the calculation formula of QoE
is as follows:

QoE =

I∑
i=1

QoEchunk(i) (2)

In addition, µq is reward coefficient for QoE while µr, µl, µf

and µs are penalty coefficient. By changing the values of the
parameters (µq , µr, µl, µf , µs), we were able to implement
different QoE metrics.

III. DEEPLIVE DESIGN

In this section, we describe the design of Deeplive and
present optimizations on accelerating the training process.
Deeplive’s training algorithm uses Double-DQN [9]. The
detailed structure of Deeplive is explained below.

A. Design of our algorithm

As shown in Fig.2, Deeplive deploys an agent at each user
client. The agent utilizes a neural network to determine which
action should be selected for a larger user QoE.

1) Agent: The agent consists of two neural networks
with the same structure. Target network predicts the target
value(Qtarget) and evaluation network predicts the realistic
value(Qeval). The difference between them updates the pa-
rameter of the networks. In particular, target network is slow
to update, while the other always updates its parameters during
the training process. The neural network has a 1-dimentional
convolution layer and multiple full-connection layers. Each
node in the final output layer represents one action. The node
value represents the reward of the action. So the agent chooses
the action with the highest score.



Params Notations Params description
time interval(s) ~t Duration in this cycle

send data size(bit) ~s The data size downloaded in this cycle
rebuffering(s) ~r The rebuffring time of this cycle
buffer size(s) ~b The current buffer size
end delay(s) ~e The current end-to-end delay

TABLE II
PARAMETERS OF STATE. Deeplive USES THESE VARIABLES PROVIDED BY

THE SIMULATOR TO MAKE DECISIONS.

2) State: As shown in Tab. II, during the live video, the
algorithm obtains the information in the list from the client. It
just reaches the chunk boundary at time t, and the algorithm
starts to make decisions. Deeplive takes st = ( ~t , ~s , ~r , ~b
, ~e ) as the input of neural network, where ~t, ~s, ~r, ~b and ~e
stand for the vector consisting of the duration, the size of data
downloaded, rebuffering time, buffer size and end-to-end delay
for the past k video frames respectively. In the real training
process, we find that when we normalize the values of these
variables to the interval of [-1,1], the neural network tends to
converge faster.

3) Action: Agent makes decisions on bitrate, target buffer
and latency limit. The value range of bitrate is determined
by the video trace provided, while the value range of target
buffer and latency limit can be set by users. To maintain
the consistency of the experiment, we used the set of values
provided above throughout the experiment. The nodes of the
neural network are the combination of the above three vectors.
We use π for decision-making strategies. The decision made
at time t can be expressed as:
at = π (st) → [bitrate, target-buffer, latency-limit]

B. Policy

The pseudocode of Deeplive is described in Algorithm 1.
First, we initialize the model, including the setting of some hy-
perparameters and the initialization of neural network weights.
At t moment, the agent gets state st from the environment.
At this point, the agent has a probability of ε to randomly
select an action at, otherwise the agent will choose the at
with the maximum reward according to the neural network
at = argmax

a
Qeval(st). After the agent selects at, video

continues to play, and the agent will get the next state st+1

and the real reward rt, and the agent will save the quadruple
[st, at, rt, st+1] in replay experience pool REP. In the process
of training, agents will randomly select some tuples from REP
for playback of training at intervals. Loss function is Huber
Loss, denoted by L(yt, yp).

L(yt, yp) =

{
0.5|yt − yp|2, |yt − yp| < δ
0.5δ2 + δ · (|yt − yp| − δ), otherwise

(3)
In the formula above, yp is the real reward of playing on video,

yt = rt + γ ·max
a

Qtarget(st+1, argmax
a

Qeval(st+1)) (4)

Algorithm 1: The pseudocode of Deeplive
Input : Multiple video samples, hyperparameters;
Output: Neural network parameter;

1 [Parameters]:
2 video m; {choose a video file from input.}
3 chunk t; {download tth chunk from the video.}
4 frame k; {download kth frame from the chunk.}

5 Initialize replay experience pool REP;
6 Initialize Qeval Network and Qtarget Network with

random weights;
7 for video m = 1, 2, ..., M do
8 Observe initial state st;
9 for chunk t = 1, 2, ..., T do

10 With probability ε randomly select action at;
11 Otherwise action at = argmax

a
Qeval(st);

12 for frame k = 1, 2, ...,K do
13 Download kth video frame;
14 Observe reward rk;
15 if it’s time to train then
16 Randomly sample tuples from REP;
17 if the video ends then
18 yt = rt;
19 else
20 Compute for yt using Formula (4);
21 Train the network using Huber Loss

as loss function;

22 if it’s time to update target network then
23 Set the weights of Qtarget to be the

same as that of Qeval;

24 Set reward rt =
∑
rk and next state st+1;

25 Store tuple (st, at, rt, st+1) into REP.

[9] and δ = 1.0 by default. Every once in a while, eval-network
assigns its weight parameters to target-network.

C. Optimizations

1) Window completion with historical data: In the actual
situation, the frame rates of the two bitrates are inconsistent,
which creates different chunk video with a different number
of frames after switching the bitrate. However, the input to
our neural network is fixed. For the input which has frames
less than inout size, our solution is window completion with
historical data(WCHD) which fills in the frame information
before this chunk.

2) Quick start with Rate-based algorithm: The startup
phase refers to the beginning of video or after switching
video. At this time, the DRL algorithm has no frame history
information to refer to. Pensieve uses a default action for this
situation, which is obviously not rigorous enough. Deeplive
starts the Rate-based algorithm, which only depends on the
historical network condition and has a better performance



TABLE III
THE QOE METRICS WE USE IN OUR EVALUATION.

Name µq µr µl µf µs
QoEal 0.0001 -1.5 -0.01 -1.0 -0.01
QoEar 0.001 -3.0 0 0 0
QoEhd 0.002 -0.5 0 0 0
QoEb 0.001 -1.5 -0.005 -0.5 -0.02

than taking the default action. This provides a way for ABR
algorithms of reinforcement learning to perform better in the
startup phase.

IV. EVALUATION

A. Experimental setup

We compare Deeplive with four other state-of-the-art algo-
rithms: BBA [4], RBA [3], DYNAMIC [6] and Pensieve [8].
And we use a DASH video streaming simulator [10] which
is a frame-level simulator with a pluggable client module for
bitrate control and latency control. The datasets we use include
network trace and video trace [11]. The network trace contains
the network throughput over time, which is used to simulate
the dynamic change of network conditions. We divide the
network trace into four different types: high speed network,
medium speed network, low speed network and fluctuation
network (i.e., mixed of the previous three network conditions).
Video trace provides the time and size of each frame arriving
at CDN collected on the transcode server and CDN. The video
trace consists of three datasets: AsianCup China Uzbekistan,
Fengtimo 2018 11 3 and YYF 2018 08 12 [11]. For eval-
uating QoE, we consider four different scenarios, and the
weights are listed in Tab. III. In particular, QoEal prefers
low latency of the video playing; QoEar prefers to avoid
video rebuffering; QoEhd places emphasis on high bitrate; and
QoEb favors a balance among the low latency, less rebuffering
and high bitrate.

B. QoE Evaluation

Tab. IV shows the performance of RBA, BBA, DYNAMIC,
Pensieve and Deeplive under four different network conditions:
high, medium, low and mixed, respectively. The values are
normalized with regard to the maximum QoE achieved by all
algorithms. These network conditions are unaware by these
algorithms. In the case of low network speed, performance
improvement space is limited. Thus, the improvement by
Deeplive is not significant compared with other algorithms.
When the network is in good condition, we find that Deeplive
performs better than other algorithms in different network
conditions. It improves QoE by an average of 40% than RBA,
53% than BBA, 34% than DYNAMIC, and 18% than Pensieve.

Next, we evaluate the performance of the algorithms using
three different video datasets under all QoE settings. Tab. V
shows that Deeplive increase QoE by 32% than RBA, 39%
than BBA, 30% than DYNAMIC, and 16% than Pensieve.

Finally, we compare the performance of the algorithm under
different QoE and network settings. As shown in Fig.3, we

TABLE IV
COMPARING Deeplive WITH EXISTING ABR ALGORITHM BY ANALYZING

THEIR PERFORMANCE ON THE QOE METRICS LISTED IN TAB. III.
RESULTS ARE EVALUATED FOR THE AsianCup China Uzbekistan

VIDEO AND FOUR THROUGHPUT
DATASETS(high,medium, low,mixed).(RB:RBA, BB:BBA,

DY:DYNAMIC, PE:PENSIEVE, DL:DEEPLIVE.)

Throughput high medium low mixed high medium low mixed

Q
o
E

a
l

RB 0.67 0.60 0.62 0.64

Q
o
E

a
r

0.82 0.77 0.79 0.80
BB 0.50 0.61 0.97 0.64 0.58 0.68 0.92 0.70
DY 0.60 0.65 0.88 0.67 0.73 0.79 0.99 0.81
PE 0.77 0.80 0.93 0.82 0.87 0.88 0.96 0.90
DL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Q
o
E

h
d

RB 0.75 0.72 0.71 0.73

Q
o
E

b

0.76 0.70 0.67 0.72
BB 0.53 0.61 0.80 0.63 0.55 0.64 0.85 0.66
DY 0.67 0.72 0.88 0.74 0.68 0.72 0.87 0.74
PE 0.85 0.89 0.96 0.89 0.78 0.77 0.72 0.77
DL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TABLE V
COMPARING Deeplive WITH EXISTING ABR ALGORITHM BY ANALYZING

THEIR PERFORMANCE ON THE QOE METRICS LISTED IN TAB. III.
RESULTS ARE EVALUATED FOR THE MIXED THROUGHPUT AND THREE

VIDEO DATASETS.(AS:AsianCup China Uzbekistan,
FE:Fengtimo 2018 11 3, YY:Y Y F 2018 08 12, RB:RBA, BB:BBA,

DY:DYNAMIC, PE:PENSIEVE, DL:DEEPLIVE.).

Metric QoEal QoEar QoEhd QoEb
Video AS FE YY AS FE YY AS FE YY AS FE YY
RB 0.64 0.67 0.63 0.80 0.92 0.88 0.73 0.81 0.77 0.72 0.82 0.79
BB 0.64 0.69 0.67 0.70 0.87 0.84 0.63 0.73 0.70 0.66 0.79 0.76
DY 0.67 0.67 0.63 0.81 0.92 0.88 0.74 0.80 0.75 0.74 0.82 0.78
PE 0.81 0.90 0.86 0.90 0.94 0.94 0.90 0.91 0.89 0.77 0.76 0.77
DL 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

recorded the average QoE per chunk during video playback on
QoEb. Deeplive has more video chunks with higher QoE. As a
result, Deeplive can be applied to different network condition
with better performance.
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Fig. 3. Comparing Deeplive with existing ABR algorithm by ana-
lyzing their performance on the QoEb definition. Results are evalu-
ated for the AsianCup China Uzbekistan video and four throughput
datasets(high,medium, low,mixed).



V. RELATED WORK

We commit to the research of ABR algorithm. In recent
years, traditional ABR algorithms are mainly divided into
three categories: rate-based, buffer-based and hybrid. The
traditional ABR algorithm is usually based on the fixed rules
to dynamically adjust the bitrate. Among them, FESTIVE [2],
RBA [3], BBA [4], BOLA [5] and DYNAMIC [6] all have
limitations. They make decisions based solely on buffer or
throughput prediction, and do not fully utilize the available
information. The application of hybrid model based Model
Predictive Control(MPC) [7] makes use of both buffer and
throughput. But when the bandwidth changes dramatically, it’s
just hard to predict throughput. In addition, when the length of
the optimization interval is large, MPC will spend a lot of time
in solving the optimal solution. MPC needs to optimize the
future video interval, so it needs to know the video information
stored in CDN for a period of time in the future. In the case of
low delay, the CDN basic cumulative frame is basically empty.
They perform poorly in live scenarios with low latency.

In recent years reinforcement learning has been applied to
ABR algorithms, the most famous of which is the Pensieve
[8]. Compared with the traditional approach, the Pensieve
achieves better results with an improvement of about 12-
25%. But Pensieve performs poorly in a low-latency scenario.
Considering the live video streaming, adding auxiliary delay
control decision variables to the decision will increase the
decision space, and the convergence speed of Pensieve will
drop sharply. And Pensieve takes a default set of decisions in
the startup phase of video which is a poor method.

Recently, an algorithm called QARC [12] has been de-
veloped to control the bitrate in real-time video streaming
via DRL. QARC can be used to optimize video quality in
live broadcast. But it relies on predictions of future video
quality that is unconvincing for different user real experience
of video quality [13]. In the process of video optimization,
it may choose video with lower bitrate in order to save
bandwidth, and its QoE optimization target does not consider
the rebuffering situation.

To sum up, the state-of-the-art current ABR algorithms
have a series of problems in live video streaming, the startup
phase, training time, resource occupation and so on. We have
carefully studied these existing problems and put forward
corresponding solutions. After verification our algorithm has
been tested to perform better than these ABR algorithms.

VI. CONCLUSION

We propose Deeplive, a DRL method that is used for
optimizing QoE in live video streaming. We experimentally
evaluate the performance of Deeplive, and find that Deeplive
increase the QoE by an average of 15-55% than the state-
of-the-art RBA, BBA, DYNAMIC and Pensieve, under differ-
ent network conditions, video traces and QoE constraints.
Deeplive also performs faster training speed and less overhead
than the same DRL-based Pensieve. In the future, we would
like to further optimize the QoE in live video streaming, and
evaluate its performance in real systems.
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