
EasyChair Preprint
№ 4687

Adaptive Binary Artificial Bee Colony Algorithm

Rafet Durgut and Mehmet Emin Aydin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 2, 2020

Adaptive Binary Artificial Bee Colony Algorithm

Rafet Durguta, Mehmet Emin Aydinb

aKarabuk University, Dept. of Computer Engineering, Karabuk, Turkey
rafetdurgut@karabuk.edu.tr

bUWE Bristol, Dept. of Computer Science and Creative Technologies, Bristol, UK
mehmet.aydin@uwe.ac.uk

Abstract

Metaheuristics and swarm intelligence algorithms are bio-inspired algorithms, which have long
standing track record of success in problem solving. Due to the nature and the complexity of
the problems, problem solving approaches may not achieve the same success level in every type
of problems. Artificial bee colony (ABC) algorithm is a swarm intelligence algorithm and has
originally been developed to solve numerical optimisation problems. It has a sound track record in
numerical problems, but has not yet been tested sufficiently for combinatorial and binary problems.
This paper proposes an adaptive hybrid approach to devise ABC algorithms with multiple and
complementary binary operators for higher efficiency in solving binary problems. Three prominent
operator selection schemes have been comparatively investigated for the best configuration in this
regard. The proposed approach has been applied to uncapacitated facility location problems, a
renown NP-Hard combinatorial problem type modelled with 0-1 programming, and successfully
solved the well-known benchmarks outperforming state-of-art algorithms.

Keywords: Artificial Bee Colony, 0-1 Programming, Adaptive Operator Selection, Uncapacitated
facility location problems

1. Introduction

Optimisation remains one of the prominent engineering problems, which influences many other
fields in engineering research including real-world problem solving. It is well known that optimisa-
tion requires never-ending attention from researchers due to its crucial role in handling many other
engineering problems. This includes efforts for both functional and combinatorial optimisation. A
large literature on engineering optimisation is produced on research results, which drives attentions
on a trade-off between computational complexity and the quality of solutions that put decision-
makers in a dilemma in this regard. ”Metaheuristics” is known as a mature sub-field of research
in optimisation, which offers a number of search and problem solving frameworks to implement
for each problem type. The literature is full of many successful metaheuristic implementations [1]
across the whole horizon of problem solving field including transport [2], finance and economy [3],
health-care systems [4], and many engineering problems [5].

∗Corresponding author
Email address: rafetdurgut@karabuk.edu.tr (Rafet Durgut)

Preprint submitted to EasyChair Preprints December 2, 2020

Metaheuristic approaches, which are developed inspiring of natural processes and intelligence,
can be viewed in two categories with respect to the number of solutions considered while operating;
(i) population-based, e.g. evolutionary computation and swarm intelligence, and (ii) individual-
based approaches, e.g. simulated annealing, tabu search etc. Particularly, swarm intelligence
algorithms recently become very popular due to their flexibility in implementation and ability to
model collective intelligence and behaviours, which can become very efficient in search and problem
solving. The most renown swarm intelligence algorithms are ant colony optimisation [6], particle
swarm optimisation [7], and artificial bee colony (ABC) [8] algorithms. Metaheuristics and swarm
intelligence approaches are very adaptive in implementation for various discrete and combinatorial
problems with minor revisions across domains minimising the reality of no-free lunch theorem [9].
More useful details can be captured from these articles; [10, 11, 12].

ABC algorithms are relatively recently developed swarm intelligence algorithms inspired by nat-
ural collective behaviours of bee colonies in searching for food sources. They have been implemented
for solving a number of real-world problems alongside theoretical performance benchmarking prob-
lems. Success has been proven for a number of functional optimisation in continuous space by
various works [8]. Due to performance and efficiency issues, hybrid approaches have also been
studied for combinatorial and functional domains [13]. A number of studies attempted for solving
combinatorial optimisation problems across manufacturing to economy and finance with ABC vari-
ants [14] [15] [16]. It is well-known that many combinatorial problems have been mathematically
modelled in binary form for higher efficiency purposes. Binary approach, a.k.a. 0-1 programming
in operations research, has been used for solving a number of combinatorial optimisation problems
such as quadratic assignment [14], knapsack [17] and set-covering [18] problems.

Similar to other metaheuristic and swarm intelligence approaches, ABC algorithms use neigh-
bourhood functions, which are also called operators, to move from one state of the problem to
another, e.g. the next state. However, the performance of the ABC variant remains very much de-
pendent on the boundaries and limitations of neighbourhood functions. Hybridisation has mainly
been introduced to avoid the negative impacts of these boundaries (limitations). A typical hy-
bridisation is to use multiple neighbourhood functions, algorithms[19, 20], or operators subject to
an interchanging scheme to minimise the impact of the such limitations, which impose a selection
rule to opt one operator from the set of existing ones. A random selection scheme is introduced
by [13] and [21] for these purposes. Few operator selection schemes based on multi-armed bandit
approaches have been studied for the purpose of opting genetic operators in genetic programming
domain [22]. These prioritisation schemes can be named as probability matching (PM), adaptive
pursuit (AP) or upper confidence bound (UCB) methods [23]. These schemes work based on credit
assignment procedures, which are awarding processes for successful operators to make them more
prominent/preferable over the alternatives in the prospective cases. The success of an operator can
be identified with either improvement in the fitness values or a binary process represents the state
of success; success/fail (1/0) [24]. To the best of the authors’ knowledge, there is not any study
attempted a hybrid ABC algorithm to solve binary problems use adaptive approaches.

The main idea of this paper is to create an adaptive scheme for organising multiple neighbour-
hood functions to work adaptively within the framework of ABC algorithm. This scheme aims to
help create an adaptive and hybrid ABC algorithm to solve binary problems. It is important to
note that the keyword of ”neighbourhood function” is used interchangeable with ”operator” in the
rest of this paper. The adaptive scheme, called adaptive operator selection, devises an approach to
arrange when and how each alternative operator is to take up the role of producing new solution
within the stages/phases of ABC algorithm [25]. Interchangeably use of different operators is ex-

2

pected to fertilise the search process as each operator uses different breeding rule, which can rescue
search from local optima whenever it sticks in. It is not trivial to arrange rescue operators to offer
a way out of local optima driven by other operators, where there should be a measure based on
capabilities for each operator to indicate if it offers better action for given search circumstances.
The measure for capabilities can be designed based on success and failure history of each operator.
This requires studying credit assignment and update process using the success and failure data
[26, 27] in order to make operator selection process smart and the main algorithm efficient.

In this paper, an adaptive operator selection procedure is investigated, and finally suggested, to
ensemble in ABC algorithm for solving one of combinatorial optimisation problems, uncapacitated
facility location problem, which is modelled with binary programming. The performance is studied
with well-known benchmark problems from OR Library [28].

2. Related Works

Binary ABC has been implemented for solving binary, 0-1 programming, problems. The studies
carried out for solving binary problems with ABC variants propose use of different schemes to
improve the performance and efficiency on various levels. The success of all variants of ABC is
bounded with the limitations of ensembled neighbourhood structures and operators similar to all
other metaheuristics. One way to break through the corresponding limitations to enhance the
performance further is either to design new and more capable functions, which will also impose its
own limitations, or to exploit multiple neighbourhood functions to work in a bespoke order [29],
which is aimed in this study. This may also be called as a hybrid adaptive approach since it brings
different distinctive procedures together to work in collaboration.

There are not many studies have been undertaken to solve binary problems using ABC. Table
1 tabulates the most relevant ABC studies for solving binary problems indicating strength and
weaknesses. Few approaches such as [30], [31] and [15] are developed to adapt original ABC, which
works in continuous domain, for solving binary problems using converter functions, while more works
propose binary versions of ABC for solving binary problems more efficiently [32] [33] [34] [35]. The
majority of the studies included in Table 1 use either single binary operators or original ABC scheme
with a converting functions. Few of them such as [36], [37] and [38] exploit multiple operators with
either non-adaptive selection schemes or sole adaptive schemes. These leaves a substantial deficit in
research that more adaptive approaches are to be thoroughly investigated with respect to efficiency
in prioritisation and credit assignment to contributing operators in prioritisation process.

It can clearly be observed from the right-most column of Table 1, titled ”Area to improve”,
that binary ABC algorithms have not been comprehensively studied to reveal if adaptive selection
schemes would help improve efficiency and performance of binary ABC algorithms in problem
solving adaptively selecting operators from the set of existing alternative operators. In this paper,
a comprehensive study has been conducted to clarify if the adaptive selection schemes would help
improve the algorithmic performance and which of the schemes would assist to perform better. The
winning scheme has been identified via an extensive experimentation and suggested ultimately.

3. Artificial Bee Colony

The artificial bee colony (ABC) algorithm is one of recently developed swarm intelligence ap-
proaches inspired by food search behaviors of the honey bee swarms. The original algorithm has
been developed by Karaboğa [30], which imitates the collective behaviour of honey bees within

3

Table 1: Summary of related works
Article Year Domain Contribution Area to improve

[30] 2005 Continues
The first ABC algorithm; works in
continues domain only.

Requires additional operations for
binary or discrete domains

[32] 2012 Binary
Uses another optimisation model to
convert the problem to binary space;
works for rather smaller size problems.

slower approximation for larger
problems, may stuck in local
minima.

[33] 2013 Binary
Uses logic gates to convert the problem
to binary space.

Does not use neighbourhood
information and approximates
slowly

[36] 2014 Continuous

Uses multi-operator ABC using 3
different operators selecting operators
either randomly or based on success
count.

Credit assignment process has not
been considered.

[39] 2015 Binary
Uses additional operations to convert
continues problem to binary space

the performance in continues
domain and the characteristics of
conversion operators bind its success
in binary space. approximation is
slower.

[31] 2015 Continuous

An adaptive approach is proposed,
based on success counter and roulette
wheel processes, to work with 5
operators in the continuous domain.

Alternative selection operators and
credit assignment procedures are
not considered.

[15, 40] 2015 Binary
Genetic operators are used to covert to
binary space

Local minima is very likely

[37] 2015 Continuous
Uses 3 operators to generate 3
alternative solutions per update cycle.

Credit assignment or success-based
approach is not considered.
Approximates slowly

[41] 2018 Binary
Uses comparative approaches in
conversion to binary space.

Performance is bound by it success
in continuous domain.
Approximates slowly.

[38] 2019 Continues

Uses Probability Matching to select
operators adaptively among 5 operators
used with ABC and developed to solve
continuous problems

Neither alternative detailed analysis
nor other adaptive mechanisms
considered.

[35] 2020 Binary
Extends the idea suggested in [33] with
considering multiple revisions in the
solutions

Single operator is used. The
performance is bound by the
characteristics of the operator

their hives. The algorithm implies use of two types of bees within the hive; employed and onlooker
bees. These social insects fulfil collective behaviour in three different phases as modeled into this
approach, where first phase imposes each employed bee to improve its own food source, while the
second phase involves each onlooker bee to look for improving the quality of its own food source.
In the final phase, an exploration is initiated for new food sources by onlooker bees, subsequently
transformed into scout bees, if non-adequate improvement is achieved. Further investigations and
enhancements for functional optimisation problems are reported in [13].

The conceptualisation of the ABC algorithm translates the natural processes and activities
into algorithmic components and functionalities, where ”food source” is translated into a ”feasible
solution” denoted with xi, while ”nectar amount” is recognised as the fitness of a solution denoted
by F (xi) as given in Eq. 1.

F (xi) =

{
1

1+f(xi)
f(xi) ≥ 0

1 + |f(xi)| otherwise
(1)

The probability of a particular food source to be selected through the process of ABC algorithm

4

is calculated with Eq. 2, while a neighbouring solution such as xn = xi + vi generated using Eq. 3

p(xi) =
F (xi)∑N
j=1 F (xj)

(2)

vi = xi + φi(xi − xn) (3)

where xi,xn,vi in the equations refer to the current solution, neighbor solution and candidate
solution, respectively. φi is a randomly generated number in the scale of [−1, 1]. i = 1, 2. . . , N
indicates the index of the food source, where N indicates the number of food sources. On the other
hand, the scout bees can be generated using Eq. 4 when no improvement is realised by onlooker
bees.

xi,j = LBj + rand(0, 1)× (UBj − LBj) (4)

where, xi,j is the jth decision variable as the member of xi solution vector; j = 1, 2, .., D is the
index, D is the total number of decision variables, LB and UB are the upper and lower boundary
values defined for the decision variable.

3.1. Binary Artificial Bee Colony

Swarm intelligence algorithms have been originally developed for either discrete or continuous
problems, and then implemented for the problems from other type; ant colony optimisation (ACO)
was originally developed for combinatorial problems, e.g. traveller salesman problem, while particle
swarm optimisation (PSO) and artificial bee colony (ABC) algorithms were developed for continuous
problems. In order to implement a search algorithm for a problem type that was not originally
developed for, additional conversion procedures are embedded into the algorithms, which applies
to ABC, too. Two approaches are mainly devised for implementing ABC to solve combinatorial
problems. The commonly used approach is to keep the continuous variables in use with an operation
to map the variable in use to a binary vector and vice versa. Here, ψ : [−a, a]D → [0, 1]D is employed
for mapping [41], where ψ, a and D are the mapping function, the boundary of the range of the
variable, and the dimension of the the variable vector, respectively. This conversion strategy looks
very inline with the idea of phenotype-genotype concepts in evolutionary computation. The other
approach imposes use of binarification functions such as zi = round(|yi (mod 2)|) mod 2, where zi
and yi are the ith element of binary vector and real vector, respectively [31].

Eq. 5 is commonly used to initialise the population of solutions by many binary problem solving
algorithms.

xi,d =

{
0, if rand < 0.5

1, otherwise
(5)

Ozturk et al. [40] use genetic operators including crossover and swap operators as neighbourhood
functions. Santana et al. [34] proposes cloning n ≥ 1 dimensions from the selected solution, xi,j ,
and its neighbour solution, xk,j , and applying other well-engineered operations to compose a new
solution while Kashan et al. [32] suggests use of dissimilarity index in between a neighbour solution
and the selected solution as a measure to produce a new solution. On the other hand, logical
operators have been used in generating new binary vectors to be new solution by the authors of [42]
and [33]. The former work suggests use of vi,j = xi,j⊗ (φi,j� (xi,j⊕xk,j)) and the latter study uses
vi,j = xi,j ⊗ (ϕi,j(xi,j ⊗ xk,j)) to update each dimension of the new solution, vi,j , where ⊗, � and

5

⊕ respectively represent XOR, AND and OR logical operators, φi,j ∈ [0, 1] valued randomly, ϕi.j
is logical NOT operator that inverts the bit values with 50% probability. Durgut [35] proposes an
iterative procedure to run the rule proposed by [33] dynamically for more dimensions than a single
one. The estimation of ϕi,j is pragmatically conducted considering the neighbouring solution.

As explained above, ABC has been proposed for continuous problems, hence, modifications are
required to implement it for binary optimisation problems. More details for the following three
methods presented so as to use them later.

3.1.1. binABC Algorithm

binABC algorithm has been proposed by Kiran et al. [33] using binABC operator with which
the new solutions can be generated with Eq. 6 that replaces Eq. 3 in original ABC. binABC imposes
use of XOR logical operator to generate new binary solutions from a selected solution, xi,j , and one
of its neighbours, xk,j . It is important to note that the variables provided in Eq. 3 are in vector
form while are in scalar form in Eq. 6. The parameter of ϕ is used as logical NOT operator with
which the output of the parenthesis is inverted with 50% probability.

vi,j = xi,j ⊗ ϕ(xi,j ⊗ xk,j) (6)

XOR operator is applied to current,xi,j , and neighbor, xk,j , solutions, then the output value is
negated if ϕi,j < 0.5, kept as is, otherwise. Afterwards, XOR is re-applied to the current solution,
xi,j and the output value filtered out with ϕi,j for the final output value, vi,j .

3.1.2. disABC Algorithm

disABC is proposed by Kashan et al. [32] which calculates a similarity measure by Eq. 7
in which the similarity of the bits in two compared solutions plays the key role. A dissimilarity
measure, which names the algorithm, is subsequently determined for the operator to generate the
new solution with for neighbour solution generation. The approach imposes use of Eq. 5 to initialise
the solutions replacing Eq. 4 as used in original ABC, then to calculate Jaccard’s similarity constant
with Eq. 8 between a chosen solution and one of its neighbour solutions for evolutionary iterations.

sim(xi,xk) =
M11

M01 +M10 +M11
(7)

dissim(xi,xk) = 1− sim(xi,xk) (8)

where M11 is the number of 1 bits in both xi and xk at the same positions, while M01 and M10 are
determined, accordingly. Eq. 9 declares the dissimilarity of the selected solution with the solution
to be generated, vi is an approximate dissimilarity between the selected solution, xi and one of its
neighbour solutions, xk, normalised with φ, which is optimally calculated using the minimisation
model presented in Eq. 10. Once the model solved to optimum the new solution to-be, vi, is
generated with a new update equation, vi = xi + φ× dissim(xi,xk) , replacing Eq. 3.

dissim(vi,xi) ≈ φ× dissim(xi,xk) (9)

min |dissim(vi,xi) − φ× dissim(xi,xk)| (10)

6

Subject to:

M11 +M01 = n1

M10 ≤ n0

{M10,M11,M01} ≥ 0 and ∈ Z

where φ is a random positive value, n1 and n0 represent the number of bits with a value of 1 and
0 in the current solution, xi. The aim in here is to solve the model to identify the best φ value to
normalise dissim(xi,xk) measure. Detailed information and examples can be found in [32].

3.1.3. Improved binABC (ibinABC)

This algorithm is an improved version of binABC, which originally updates a single dimension,
one among D, of decision variable per operation, while various other swarm intelligence algorithms
propose updating multiple variables within the complete vector of decision variables. Obviously,
there is a trade-off between exploration and exploitation balance to handle while attempting the
updates.

ibinABC attempts to balance exploration and exploitation with an exponentially calculated
rate, dt as in Eq.11 inspired by the idea of updating multiple dimensions per operation in [34]. dt
number of dimensions will be updated at iteration t.

dt = rand(0, α) + e−(t
tmax

)×0.1×D + 1 (11)

where, the α is randomly determined perturbation number, D is the problem dimension, number
of decision variables, and t and tmax indicate the current and maximum number of iterations,
respectively. We note that change in multiple dimensions increases the exploration but reduces
exploitation. In order to balance that dt is set to decrease with growing t so that the exploration
becomes higher in earlier iterations while exploitation gets stronger in later iterations.

On the other hand, ibinABC imposes a dynamic normalisation factor, ϕ, in contrary to the
one proposed by Kiran et al. [33] as in Eq.6. The operator in Eq.6 is revised in the way that
ϕ dynamically takes values for each iteration instead of the original setup, ϕ = 0.5. In fact, this
pre-fixed threshold potentially weakens the exploitation, especially in later stages, as it involves
more random process. Eq.12 proposes a new way to determine ϕ. This rule allocates 0 to ϕ if the
new solution is worse, a calculated value in the range of [0,1] otherwise, as updated depending on
the iteration, t.

ϕ =

{
ϕmax − (ϕmax−ϕmin

tmax
)× t F (xk) < F (xi)

0 otherwise
(12)

where ϕmax and ϕmin represent the upper and lower limits of the defined range, respectively [35].

3.2. Adaptive Operator Selection

ABC algorithm has been implemented in various variants for wide rage of applications. The
majority of the implementations have been developed with either single neighbourhood function or
hybrid with some kind of local search. Dugenci and Aydin [21, 13] have introduced a hybrid form
to randomly select operators among alternatives. However, it does not offer an adaptive and merit-
based scheme. Adaptive operator selection is a merit-based scheme that imposes to exploit different
operators interchangeably whenever applies whilst the search ongoing. This has been successfully

7

applied to individual-based search approaches, particularly systematically implemented in variable
neighbourhood search algorithms [43]. This has recently been implemented for population-based
metaheuristics, too [44]. Wu et al. [29] overview the up-to-date literature for population based
metaheuristics and ensemble algorithms with this respect. Fialho et al. [45, 46, 27] have exper-
imentally studied the impact of average, extreme and immediate/instant credit/awards upon the
performance of genetic algorithms, while Chent et al. [38] have implemented an approach used with
ABC for solving continuous problems combining three search strategies borrowed from differential
evaluation (DE) studies using probability matching (PM) method.

Wang et al. [36] proposed a framework to orchestrate three ABC variants in which a selected
rule is kept re-used as long as it produces success, another rule is randomly pulled up from the preset
rule base. Gao et al.[37] have implemented an ABC for continuous problems using three search
strategies in which the operators are selected with roulette-wheel that determines the probabilities
based on success rates, while Kıran et al. [39] have increased the number of strategies to five
using the best producing one adaptively with their ABC variant. Finally, Xue et al [22] suggest
a self-adaptive structure to use among three search strategies, which are benefited of global best
solution. To the best knowledge of the authors, any adaptive approach to select operators has not
been applied to binary ABC algorithms so far.

4. Proposed Methodology

This section details the proposed methods and corresponding material sources including the
set of benchmarking uncapacitated facility location problems. The main focus goes on how the
neighbourhood functions, the operators, are integrated into binary ABC in an adaptive way, which
requires a selection scheme. The adaptive operator selection (AOS) procedure and credit assignment
rule for the selected operators are introduced accordingly. Furthermore, introduction in uncapaci-
tated facility location problem follows, accordingly. Apparently, AOS involves with two interacting
components; (i) operator selection - how operators are selected from the pool of operators based on
the credit level, (ii) credit assignment - how to assign/update credit to each operator employed.

4.1. Operator Selection Schemes

Operator selection is the process of choosing an operator from the pool of operators using
the credit level of each, where the pool of operators is devised and integrated in the main search
algorithm. The selection is conducted with a particular rule, which can be bespoke from a very
random rule to a complex heuristic procedure. It is paramount to indicate that the main concern
in search algorithms is the balance set up between exploration and exploitation, where exploration
is to look for a solution rather randomly (blindly), while exploitation is the way to search with the
guidance gained/provided within the algorithm. This concern might be called as the dilemma of
exploration versus exploitation (EvE). The success of an operator selection rule relies significantly
on how it addresses the dilemma of EvE. Among heuristic rules, probability matching (PM), adaptive
pursuit (AP) and multi-armed bandit based methods [25] are chosen to work with in this study. PM
and AP heuristic rules use roulette-wheel mechanism to determine the probabilities. PM determines
the probabilities as in Eq. 13.

pi,t = pmin + (1−Kpmin)
qi,t∑K
j=1 qj,t

, i = 1, 2..K (13)

8

where K is the number of operators in the pool, pmin ∈ [0, 1] represents the minimum probability
of being selected, and qi,t is the credit level/value of operation i at time t. Both PM and AP use
pmin to set a base probability for each operator, which would help address the dilemma of EvE
with allocating a minimum chance to every operators to be selected. PM imposes to calculate
the probabilities of being selected per operation, while AP uses the strategy of ”winner takes all”
approach that credits more to promising options. AP calculates the probabilities with Eq. 14.

pi,t+1 =

{
pi,t + β(pmax − pi,t), if i = it∗
pi,t + β(pmin − pi,t), otherwise

(14)

where it∗ = arg maxi=1,..,K{qi} and β ∈ [0, 1] denotes learning coefficient, while pi,0 = 1/K as the
initial probability value. PM is experienced to take longer time to approximate a balanced EvE
policy while AP offers the winner-takes-all normalised with learning coefficient, β. More discussions
can be found in [27].

The operator selection rules based on multi-armed-bandit (MAB) approach are considered as
friendly to EvE dilemma in which exploitation phase is supported/empowered with opting highly
prioritised operators while weaker operators are given opportunity with supporting exploration
phase. UCB method is one of most commonly used MAB approach, which determines the operator
to select with Eq. 15.

opt = arg max
i=1,..,K

{qi,t + C ×

√
2 log

∑K
j=1 nj,t

ni,t
} (15)

where opt represents the selected operator, C works as a scaling factor, n is number of times the
operator selected while qi,t and ni,t on the right-hand-side of equation help control EvE dilemma,
respectively.

4.2. Credit Assignment Mechanisms

Credit assignment is the process of evaluating the success level of a chosen operation that is
exploited once selected. Each selected operator per iteration is evaluated following the delivery of
operation with respect to the level of success; if it achieves a full success, partial success or a failure.
A reward value is decided and assigned to the selected operator in order to update its credibility for
the next runs. The reward, in another word credit, is determined based on either immediate results
(instant), or as the average of a pre-set window of the time, where the average is recalculated after
delivery of each operation considering last W number of iterations, i.e. run of an operation. The
level of success per run of operations can be estimated based on either (i) the value of objective
function, denoted as O.V., or (ii) the success value, denoted as S.V. so forth. In the case of instant
reward/credit using objective function, the reward will be as in Eq. 16.

ri,t = f(vi)− f(xi) (16)

where ri,t is the reward estimation for operation i at time t, f(vi) is the calculated objective
value after applying the chosen operator, and f(xi) is the known objective value of the current
solution, xi. Reward calculation with immediate results. i.e. instant case, can cause degeneration
or disruption in the later stages [45]. For instance, it is not so difficult to improve a very rough
solution, particularly at very early stages of the search while can be very difficult in the later sages,
therefore, the quantity calculated for reward should not be the same. One idea to overcome this

9

issue is to normalise the difference between f(vi) and f(xi) with the factor of the rate between
attained objective value and the global best value as in Eq. 17.

ri,t =
f(vi)

gbestt
(f(vi)− f(xi)) (17)

The credit assignment is conducted following the estimation of reward, ri,t. The type of reward
to be used in the credit assignment using the following update function, Eq. 18, can be (i) instant
reward, (ii) average reward, or (iii) extreme reward, where both of (ii) and (iii) are estimated within
a sliding window of the time, with the size of W , in which the average is considered as the mean
and the best reward is considered as extreme. The credit assignment is fulfilled using the update
rule given in Eq. 18.

qi,t+1 = (1− α)qi,t + αri,t, i = 1, 2..K (18)

where qi,t+1 and qi,t are the updated and current credit levels for operation i in time t + 1 and t,
while K is the number of operators in the pool and α ∈ [0, 1] is the adaptation factor. Meanwhile,
MAB uses the average reward as the credit update, which is calculated up-to-date or the average
of sliding time window.

4.3. Adaptive Binary Artificial Bee Colony (ABABC)

The binary ABC algorithms furnished with adaptive selection operators mean to be called
adaptive binary artificial bee colony (ABABC) algorithms. The main idea of ABABC is sketched
in Figure 1, which centers around the candidate generation process supplied by the population of
the solutions and the pool of operators, denoted with O. The pool can be defined as a set of binary
operators; O = {Opi|i = 1..|O|} = {binABC, disABC, ibinABC}, which allows the selection of
an operator, Opi, from the pool, O, using one of the operator selection schemes explained above,
i.e. one of PM, AP or UCB. A new candidate solution, vj , is generated with an operator selected
from the pool, Opi ∈ O, based on the information cloned from a selected solution, xj , and one of
its neighbours, xk. Once the generated solution, vj , is found better performing than the selected
solution, xj , i.e. f(vj) is better than f(xj), a reward, ri,t, is estimated and fed into credit assignment
rule to update the chosen operator’s credit level, qi,t.

Figure 1: General overview of adaptive operator selection process with support of population and pool of operators

The proposed approach is algorithmised in pseudo code as provided in Algorithm 1. Each
solution, i.e. bee, takes part the population, i.e. the complete bee colony, is generated using Eq. 5
and evaluated with Eq. 1. Then, an operator for each bee is selected from the pool, where all
operators are equally credited, initially, here at initialisation phase, but, are updated based on their
success in due course.

10

The next phase of the algorithm runs with employee bees, following the initialisation, in which
each employee bee updates the colony with a particular food source running its own allocated
operator to update on the solution with corresponding fitness value calculated accordingly. The
generated candidate solution replaces the original one if the new solution is better, it is discarded
otherwise. The corresponding counts are updated, accordingly. Then, the onlooker bees come to
effect, where the probabilities of food sources are estimated, operators are assigned to the bees
and then the same procedure as employee bees is executed. This phase creates an alternative
improvement opportunity in parallel to employee bee phase. The update phase follows these two to
revise the credit levels and apply memorisation for updating the best solution so far, accordingly.
The following phase, last of stage of an iteration, is to check the age of non-improving bees and
to replace with randomly generated new bees, i.e. scout bees, if corresponding non-improving bees
are out-aged, to age each bee otherwise. The algorithm keeps iterating until the pre-set stopping
criterion is met.

4.4. Uncapacitated Facility Location Problem

UFLP has been studied with metaheuristics including simulated annealing [47, 48, 49], tabu
search [50] and genetic algorithms [51, 48]. The benchmarking problem instances released by OR
Library [28] are very popular to test the algorithmic performances of metaheuristic approaches. The
problem mathematically is defied to be a minimisation problem in which the best facility locations
are chosen among many alternatives so that the overall cost including capital expenditure, i.e. setup
cost, and operational expenditure, i.e. shipment cost, is minimised subject to the set of constraints.

Let m and n be the number of alternative facility locations and the number of customers,
respectively. c = {ci,j |i = 1..m, j = 1..n} denotes shipment cost between facility location, e.g.
warehouse, i and delivery point, e.g. customer, j and f = {fi|i = 1..m} denotes setup cost for
facility location i. The problem requires to work out with two binary decision variables; xi is
identify if location i is to take part of the set of facilities to open, and yi,j is to decide if location
i it to serve customer j, where xi will value of 1 if the location is to open, 0 otherwise. Similarly,
yi,j is to be 1 if location i serves customer j, 0 otherwise. The details of mathematical model is
provided in Eq: 19 and 20. The UFLP model has turned to be a pure 0-1 programming model, while
there exists another version of UFLP, which implements a mixed integer linear programming model
considering shipment decision variable, yi,j here, as a non-binary integer variable, as in references
of [47],[48], [49] and [51].

min f =

m∑
i=1

n∑
j=1

ci,jyi,j +

n∑
i=1

fixi (19)

Subject to:

n∑
i=1

yi,j = 1, j = 1, 2, ...,m

yi,j ≥ xi, i = 1, 2, ..., n j = 1, 2, ...,m

yi,j , xi ∈ {0, 1}

(20)

ABABC has been implemented to solve UFLP in a very straightforward way since the problem
is modelled as a 0-1 programming problem and ABABC is a binary problem solving algorithm.

11

Algorithm 1 The pseudo code of the adaptive binary artificial bee colony

1: Initialization phase:
2: Set algorithm parameters
3: Create initial population
4: Evaluate population
5: while Termination criteria is not met do
6: Employed bee phase:
7: Select operators and assign to bees
8: Increment operator counter
9: for i=1 to N do

10: Select neighbor, apply operator and obtain candidate solution (vi)
11: if f(vi) is better than f(xi) then
12: Replace vi with xi
13: Get reward and add to rop,t
14: Increment reward counter
15: Reset trial counter
16: else
17: Increment trial counter
18: end if
19: end for
20: Onlooker bee phase:
21: Calculate probabilities for food sources
22: Select operators and assign to bees
23: Increment operator counter, t=0
24: for i=1 to N do
25: Determine current solution according to probability
26: Select neighbor food source
27: Apply operator and obtain candidate solution (vi)
28: if f(vc) is better than f(xc) then
29: Replace vc with xc
30: Get reward and add to rop,t
31: Increment reward counter
32: Reset trial counter
33: else
34: Increment trial counter
35: end if
36: end for
37: Update Phase:
38: Credit assignment
39: Memorization
40: Scout bee phase:
41: if Limit is exceed for any bee then
42: Create random solution for the first exceeding bee and evaluate it
43: end if
44: end while

12

Each solution, i.e. bee, is created in a pair of binary elements; x1×n is a vector of n binary values
to represent the facility locations if each is open or not and ym×n is a matrix of binary values to
identify the relationship between customers and open facilities. Here, x1×n has to include n̄ ≤ n
number of 1 bits to keep facilities open while each row of ym×n has to include only one 1 bit per
open facility for satisfying the constraints in the model. The objective function given by Eq.19 is
used to calculate the fitness values, F (x,y), using Eq.1.

The performance of the variants of the algorithms considered in this study has been evaluated
using the commonly used benchmark problems taken from OR-Library [28] as tabulated in Table 2.

Table 2: OR-Library UFLP dataset

Problem name Problem size Optimal cost value
Cap71 16, 50 932615.75
Cap72 16, 50 977799.40
Cap73 16, 50 1010641.45
Cap74 16, 50 1034976.98
Cap101 25, 50 796648.44
Cap102 25, 50 854704.20
Cap103 25, 50 893782.11
Cap104 25, 50 928941.75
Cap131 50, 50 793439.56
Cap132 50, 50 851495.33
Cap133 50, 50 893076.71
Cap134 50, 50 928941.75
CapA 100, 1000 17156454.48
CapB 100, 1000 12979071.58
CapC 100, 1000 11505594.33

5. Experimental Results

UFLP has been chosen for testing the performance of ABABC, which is the algorithm proposed
in this paper. Parameter setting and fine-tuning is to be reported first, and then the produced
results are evaluated in comparison with the state-of-art works. The proposed approaches are
implemented and developed using C programming language to run each experiment applying 8e5

number of operations in order for a fair comparison.

5.1. Parameter Tuning

Table 3 presents ABABC results for CapC with a configuration of instant reward, PM and AP
selection approaches. Given these circumstances, the best bespoke values are are investigated for
N , pmin, and α parameters, where the best results are obtained with pmin = 0.2 that increases the
randomness level, which pushes PM and AP rules towards lower performance.

Table 4 presents the results produced with a reward calculation based on objective function
and using the same parametric configurations adopted for the experimental results tabulated in
Table 3. The new results seem clearly improved, particularly, with 0.05 and 0.1 values of pmin that
help improve, significantly. This means that the selection process allocates lower rate to exploration
and higher rate to exploitation so as to smartly switch in between whenever needed. Withstanding
these circumstances, the best results are observed with parametric setting of N = 80, α = 0.9 and
pmin = 0.1 for PM, and N = 40, α = 0.7 and pmin = 0.05 for AP. The rest of experimentation will
be conducted under the light-shed of these parametric settings that found best productive.

It is observed in Table 3 and 4 that better results for PM and AP obtained with objective
function-based reward calculations, herewith O.V. to denote so forth. The best parametric setting

13

Table 3: Parametric exploration for N , α and pmin with success rate reward function

Parameters Probability Matching Adaptive Pursuit
N α pmin Mean Std.Dev Hit Mean Std.Dev Hit

20

0.3
0.05 11563334.96 43042.61 0 11539816.34 29538.38 0
0.1 11516440.94 15791.23 8 11515503.20 13560.41 9
0.2 11508039.92 2748.16 13 11511834.49 8698.81 8

0.5
0.05 11548768.93 31881.39 2 11540272.29 29191.67 1
0.1 11517703.10 14500.48 4 11516888.26 13344.06 5
0.2 11511247.64 7877.58 12 11509561.29 7396.88 14

0.7
0.05 11564366.42 40831.55 1 11532992.27 25800.14 3
0.1 11516321.28 14242.15 10 11514113.24 12789.67 8
0.2 11510440.33 7079.94 7 11508592.28 5373.11 13

0.9
0.05 11549317.87 41532.51 0 11527449.16 22089.79 3
0.1 11516378.08 11139.72 4 11513261.58 11052.49 9
0.2 11508625.41 4394.45 14 11509131.50 6462.54 15

40

0.3
0.05 11599617.86 60970.06 0 11564559.39 39911.57 0
0.1 11540460.14 31035.28 2 11533374.36 29771.53 1
0.2 11513135.80 9822.15 5 11511703.93 9046.67 10

0.5
0.05 11580583.92 42876.96 0 11556058.60 38951.08 0
0.1 11537540.81 19361.95 2 11519918.75 14872.14 5
0.2 11514226.67 10082.87 5 11513673.74 11054.35 6

0.7
0.05 11594740.41 63220.02 1 11555309.88 41856.81 1
0.1 11541724.52 27172.95 1 11524611.84 21670.23 4
0.2 11510031.92 5126.22 6 11513671.55 10247.55 7

0.9
0.05 11591382.36 65415.94 0 11537780.05 33631.49 6
0.1 11537540.49 30949.45 0 11525922.70 15165.57 0
0.2 11512992.70 7813.90 5 11510149.51 6927.57 9

80

0.3
0.05 11626170.36 62320.24 0 11589859.20 51211.10 0
0.1 11558109.06 34198.76 0 11541427.82 34023.35 0
0.2 11530108.86 16013.07 2 11529462.85 17072.21 1

0.5
0.05 11604198.02 49800.73 0 11586844.34 46164.99 0
0.1 11561410.95 34675.64 0 11549366.36 34967.73 1
0.2 11528999.51 14250.57 0 11536128.84 24507.11 3

0.7
0.05 11595266.19 59125.39 0 11553105.36 52644.25 7
0.1 11561325.80 39041.08 0 11545000.57 27891.08 0
0.2 11522240.74 14103.06 2 11529383.14 18270.58 0

0.9
0.05 11605819.39 49001.41 0 11551884.84 50713.27 10
0.1 11564947.39 45338.69 0 11540146.27 26467.60 1
0.2 11527534.12 18367.37 1 11526508.05 23730.50 1

14

Table 4: Parametric exploration for N , α and pmin with objective function-based reward function

Parameters Probability Matching Adaptive Pursuit
N α pmin Mean Std.Dev Hit Mean Std.Dev Hit

20

0.3
0.05 11507101.26 1877.16 18 11507352.42 1911.60 16
0.1 11507032.30 3916.43 23 11507785.76 3930.13 17
0.2 11508903.05 5680.00 13 11506975.68 1846.49 19

0.5
0.05 11507660.19 3938.22 18 11508900.05 6319.50 15
0.1 11507534.61 3942.15 19 11507352.42 1911.60 16
0.2 11507226.84 1898.76 17 11508341.12 5420.71 15

0.7
0.05 11507101.26 1877.16 18 11508341.12 5420.71 15
0.1 11506850.11 1806.30 20 11507477.99 1915.87 15
0.2 11506975.68 1846.49 19 11507101.26 1877.16 18

0.9
0.05 11506724.53 1755.92 21 11506975.68 1846.49 19
0.1 11507713.23 5486.12 20 11506724.53 1755.92 21
0.2 11507101.26 1877.16 18 11507226.84 1898.76 17

40

0.3
0.05 11506598.95 1694.46 22 11506975.68 1846.49 19
0.1 11507101.26 1877.16 18 11507226.84 1898.76 17
0.2 11507477.99 1915.87 15 11507226.84 1898.76 17

0.5
0.05 11506473.37 1620.64 23 11506724.53 1755.92 21
0.1 11506724.53 1755.92 21 11507352.42 1911.60 16
0.2 11507035.30 2770.62 21 11507226.84 1898.76 17

0.7
0.05 11506598.95 1694.46 22 11506347.79 1532.69 24
0.1 11506724.53 1755.92 21 11506975.68 1846.49 19
0.2 11506724.53 1755.92 21 11506850.11 1806.30 20

0.9
0.05 11506598.95 1694.46 22 11506981.14 4281.62 24
0.1 11506724.53 1755.92 21 11506850.11 1806.30 20
0.2 11507332.72 2492.66 18 11507226.84 1898.76 17

80

0.3
0.05 11506598.95 1694.46 22 11507352.42 1911.60 16
0.1 11507477.99 1915.87 15 11507785.76 3930.13 17
0.2 11507854.73 1877.16 12 11508918.97 2393.96 6

0.5
0.05 11506473.37 1620.64 23 11507609.03 4309.28 19
0.1 11506850.11 1806.30 20 11508193.49 4670.88 15
0.2 11509462.00 6862.49 12 11511277.22 7985.92 9

0.7
0.05 11507766.07 4245.31 19 11506850.11 1806.30 20
0.1 11507477.99 1915.87 15 11508416.66 2639.62 10
0.2 11508613.65 4153.73 11 11507603.57 1911.60 14

0.9
0.05 11506850.11 1806.30 20 11507101.26 1877.16 18
0.1 11506222.22 1428.00 25 11506850.11 1806.30 20
0.2 11508165.50 2718.47 12 11509959.39 6423.93 9

15

Table 5: Parametric exploration for α, pmin, Credit Type and W objective function-based reward function

Parameters Probability Matching Adaptive Pursuit
α pmin W Credit Type Mean Std.Dev Hit Mean Std.Dev Hit
0.7 0.05 5 Average 11506975.68 1846.49 19 11506598.95 1694.46 22
0.7 0.05 5 Extreme 11506473.37 1620.64 23 11506850.11 1806.30 20
0.7 0.05 10 Average 11506473.37 1620.64 23 11507583.87 2494.71 16
0.7 0.05 10 Extreme 11506975.68 1846.49 19 11506850.11 1806.30 20
0.7 0.05 20 Average 11506473.37 1620.64 23 11506975.68 1846.49 19
0.7 0.05 20 Extreme 11506473.37 1620.64 23 11506222.22 1428.00 25
0.7 0.05 50 Average 11506347.79 1532.69 24 11506704.83 2369.98 23
0.7 0.05 50 Extreme 11506724.53 1755.92 21 11506473.37 1620.64 23
0.9 0.1 5 Average 11506850.11 1806.30 20 11506598.95 1694.46 22
0.9 0.1 5 Extreme 11506598.95 1694.46 22 11506975.68 1846.49 19
0.9 0.1 10 Average 11506724.53 1755.92 21 11507101.26 1877.16 18
0.9 0.1 10 Extreme 11506598.95 1694.46 22 11506347.79 1532.69 24
0.9 0.1 20 Average 11506347.79 1532.69 24 11506473.37 1620.64 23
0.9 0.1 20 Extreme 11506724.53 1755.92 21 11506724.53 1755.92 21
0.9 0.1 50 Average 11506598.95 1694.46 22 11506347.79 1532.69 24
0.9 0.1 50 Extreme 11506473.37 1620.64 23 11506096.64 1302.54 26

Table 6: Experimental results to fine tune C value

N=20 N=40 N=80
C Reward Mean Std.Dev Hit Mean Std.Dev Hit Mean Std.Dev Hit

1
O.V. 11508036.92 3901.37 15 11519031.55 25267.30 5 11543820.67 32453.10 1
S.V. 11755508.65 110385.59 0 11727526.10 90952.56 0 11687905.10 78007.98 0

5
O.V. 11509451.62 5356.29 8 11516964.65 13163.72 8 11545538.87 33066.04 0
S.V. 11649598.60 86777.80 0 11626647.30 74737.50 0 11628728.41 76735.98 0

10
O.V. 11508111.34 4262.94 15 11518637.12 19395.98 7 11532917.15 28054.63 1
S.V. 11527454.20 23421.45 1 11548081.70 38257.48 0 11568191.98 48084.45 0

50
O.V. 11508291.08 2682.38 11 11514943.97 11606.26 6 11546459.68 36176.19 1
S.V. 11507207.14 2481.79 19 11509782.90 7463.99 11 11518209.76 13918.82 2

100
O.V. 11510248.95 8250.18 9 11515405.37 9881.23 3 11544436.99 30132.55 1
S.V. 11508827.52 7399.66 18 11508377.26 3488.81 14 11517062.91 15906.45 2

500
O.V. 11510630.99 8815.61 14 11514309.60 10452.94 5 11533447.50 25786.90 4
S.V. 11508466.70 5398.47 14 11508823.74 5553.91 13 11511801.59 8196.15 6

fine-tuned as N = 40, α = 0.7 and 0.9, pmin = 0.05 and 0.1. The next set of experimentation inves-
tigate the best window size, W from the alternative value set of {5, 10, 20, 50}, for sliding window
approach to produce average and extreme rewards. All the experiments have been conducted using
CapC benchmark as indicated before. The experimental results for window size are tabulated in
Table 5, where the best results are obtained with W = 50 and average reward approach for PM,
and W = 50 and extreme reward approach for AP. It is also observed that the sliding window
approach works better for PM and AP selection methods.

Another prioritisation/selection approach is known as UCB, as a multi-bandit armed approach,
which requires a parametric setting study for C via testing through CapC benchmark. The reward
type chosen for these experiments is not average or extreme, but instant reward. The results are
tabulated in Table 6, where the performance results with lower C values are not good with success
rate-based reward estimation, herewith S.V. denotes so forth, but get better with growing values
of C. It is observed that the best result obtained with S.V is C = 500, while is C = 10 with O.V.
The best value for N is observed as 20 in these circumstances. The rest of experimentation will
consider the best parameter set found so far.

Table 7 summarises the experimental results for UCB approach with average and extreme reward
approaches using sliding window, where the window size, W , is looked for the best choice among
the options of {5, 10, 20, 50}. The best choices are observed as W = 50 and N = 20 for both average

16

Table 7: Window size, W , fine-tuning with average and extreme rewarding approaches using UCB

N W Reward Base Average Reward Extreme Reward

20

5
O.V. 11507603.6 1911.61 14 11507101.3 1877.16 18
S.V. 11509402.4 6180.39 11 11507478.0 1915.87 15

10
O.V. 11507974.0 3439.93 16 11508215.5 5439.86 16
S.V. 11507101.3 1877.16 18 11506724.5 1755.92 21

20
O.V. 11508142.8 4201.35 16 11507478.0 1915.87 15
S.V. 11507911.3 3917.90 16 11506724.5 1755.92 21

50
O.V. 11508717.9 5344.58 12 11507729.1 1898.76 13
S.V. 11507894.6 4464.75 17 11507815.3 2946.54 16

40

5
O.V. 11508878.0 5673.84 14 11507352.4 1911.61 16
S.V. 11508990.4 4027.59 8 11507980.3 1846.49 11

10
O.V. 11507709.5 2485.91 15 11510070.9 8569.16 17
S.V. 11508953.1 7374.82 17 11510882.1 8718.45 12

20
O.V. 11510804.9 9907.43 16 11506724.5 1755.92 21
S.V. 11508039.9 2748.16 13 11507854.7 1877.16 12

50
O.V. 11507664.0 5889.56 21 11508483.9 9583.01 20
S.V. 11507942.3 4703.58 17 11507226.8 1898.76 17

80

5
O.V. 11508268.4 4178.79 15 11512719.4 11470.36 10
S.V. 11512874.4 10390.86 4 11515062.1 12602.81 7

10
O.V. 11510465.7 10109.25 14 11510437.8 19495.87 19
S.V. 11514648.8 11936.96 5 11511488.0 7340.76 5

20
O.V. 11506473.4 1620.64 23 11516425.4 26900.04 17
S.V. 11512716.0 9313.44 7 11517605.8 12654.65 7

50
O.V. 11506347.8 1532.69 24 11521711.1 33922.83 18
S.V. 11518448.7 12364.40 1 11511859.4 8516.39 9

Table 8: Best Configurations

Parameters PM AP UCB
Reward O.V. O.V. O.V.
α 0.9 0.9 -
pmin 0.1 0.1 -
N 80 40 80
C - - 50
Credit Type Instant Extreme Average
W - 50 50

and extreme rewarding cases, while the performance declines with growing population size.
The experimental results so far (Table 3 - 7) help derive the best configuration for parametric

settings as in Table 8, which have been applied to all benchmark functions taken from OR-library
as tabulated in Table 9.

Figure 2 shows the plots of the results produced with adaptive binary ABC, averaged over
30 repetitions, for CapC benchmark problem using the best configuration identified for PM with
Instant reward adaptively selecting one of three operators; disABC, binABC and ibinABC. The
figures included plot different aspects; (a) plots the credit levels against the number of iterations
in normal scale and (b) in log scale, while (c) presents operator usage over the iteration numbers
in % and (d) plots the success of chosen operators in %. It can be observed that disABC produces
much better results in first 100 iteration, but, then consumes its gained credit very quickly for the
remaining stages until iteration 800, then starts raising credit and turns to be competitive once
again, competing with ibinABC. This can be seen clearly in Figure 2 (a), (b) and (c). On the other
hand, binABC performs moderately, keeps being competitive, but, the performance declines towards
the end. This can be viewed from Figure 2(d) that the performance rises in the earlier iterations,
but starts gradually declining after 200 iterations. This might be due to that binABC produces
less improvable solutions, which may reduce the diversity within the operating neighbourhood.
Figure 2(d) also tells us that binABC gains high credit while its success rate is not proportionally

17

high. The graphs in all 4 plots in Figure 2(d) suggest that PM helps select the operations on merit
base driving through quality of solutions.

Figure 2: Dynamic behaviours of BABC algorithms equipped with PM solving CapC benchmark problem

(a) Credit values (b) Credit values in log scale

(c) Operator selection (d) Success of selected operators

The dynamic behaviour of operators selected with AP approach is experimented with CapC
benchmark. The best found configuration, as reported in Table 8, has been considered and the
experiments have been repeated 30 times. The results are plotted in Figure 3 to reveal the be-
haviours (a) in normal scale credit, (b) log-scale credit, (c) operators’ usage, and (d) the success
of selected operators. AP approach is found to serve better with extreme rewarding as suggested
in previous experimentation. disABC is observed to produce better in earlier until 200 iterations,
then it under-performs until 1400 iterations, while binABC competes with ibinABC until 400 itera-
tions, then lessens effectivity. As suggested by all plots in Figure 3, disABC and ibinABC perform
comparatively while binABC under-performs.

UCB approach with the best configuration to select operators is examined with experimental
results collected for CapC benchmark, where each is repeated 30 times, and plotted in Figure 4,
accordingly; the plots show (a) credit in normal scale, (b) log-scale credit, (c) operators’ usage, and
(d) the success of selected operators. It can be seen through plots, between 100 - 300 iterations,

18

Figure 3: Dynamic behaviours of operators selected with AP solving CapC benchmark problem

(a) Credit in normal scale (b) Credit in log-scale

(c) Operator usage (d) Success of selected operators

19

Figure 4: ABABC algorithms perform with UCB approach to solve CapC benchmark

(a) Credit in normal scale (b) Credit in log-scale

(c) Operators’ usage (d) Success of selected operators

how impactful UCB can be on the balance between exploration and exploitation from the figures,
especially, Figure 4(c). disABC performs better in the last 300 iterations, where it achieves 15%
usage rate. binABC behaves in the same way as with the other two approaches with comparatively
not performing well, but remains competitive with ibinABC in the race.

All three figures (Figure 2, 3, 4) help derive the characteristics of the operators. disABC
performs well in early stages, but, does not keep up in the later stages, while binABC helps improve
the solution quality earlier, but steadily turns to be unproductive later, but ibinABC keeps better
performance across the entire search process demonstrating with competitive results. PM and AP
behave very similar, while operator change by AP seems sudden and sharper. UCB seems fueling
competition among the operators initially, which falls in exploration phase, while promoting more
promising operators in middle and later stages.

Table 9 presents the results of adaptive binary ABC algorithms equipped with either of operator
selection schemes - PM, AP, or UCB - solving UFLP benchmark problems taken from OR-Library.
Three configurations have been tested and tabulated, where the performance of each configuration
is measured with three metrics; Gap, the difference between the optimum and the mean of replicates

20

Table 9: Comparative results with Binary ABC adopting different prioritisation approaches

ABABC-PM ABABC-AP ABABC-UCB
Instance Gap Std. Dev. Hit Gap Std. Dev. Hit Gap Std. Dev. Hit
Cap71 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap72 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap73 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap74 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap101 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap102 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap103 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap104 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap131 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap132 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap133 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
Cap134 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
CapA 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
CapB 0.00 0.00 30 0.00 0.00 30 0.00 0.00 30
CapC 0.005 1428.00 25 0.004 1302.54 26 0.006 1532.69 24

in %, standard deviation denoted with Std. Dev, and Hit, the number of times optimum value is
achieved. The first 14 of the benchmarks have been solved optimally by all three configurations
in all 30 replications while the performances for CapC benchmark vary due to the difficulty of the
benchmark, which has been used for all previous parameter fine-tuning purposes. CapC benchmark
is the only problem instance helps differentiate the achievements of different configurations. As seen
in Table 9, the ABABC versions with PM, AP and UCB solve the problem, CapC, optimally 25,
26 and 24 times out of 30, respectively. Apparently, the results are slightly different over Gap and
Hit measures, but more distinctive in Std.Dev, where AP scheme seems doing better than other
two. This may help conclude that configuration of ABABC with AP and Extreme rewarding is
suggested to be adopted over the others.

5.2. Performance Evaluation

This section includes performance evaluations in comparison to relevant state-of-art literature.
The comparisons include the results of ABABC-AP variant, found best performing in the previous
sections, binABC [31], disABC [52] and ibinABC [35]. In order to keep the comparison fair, all
algorithms have been run for the same number of functional evaluations and runtime. Apparently,
the best performing algorithm is ABABC-AP, which solves all benchmarks optimum except CapC,
which is solved to optimum 26/30 as indicated in Table 10 while the runner up algorithm is ibinABC,
which solves 13 benchmarks to optimum, but other two do much worse in solving to optimum.

Table 11 provides performance results of a number of state-of-art non-ABC literature extracted
from [53] for details. The extracted results are produced by the authors of [53] using Single point
crossover genetic algorithm, denoted with GA-SP (not clear taken from which reference), binary
PSO, denoted as BPSO [54], binary artificial algae algorithm, denoted as binAAA [55] and XOR-
based Jaya Algorithm, denoted as JayaX [53]. The results in Table 11 suggest that ABABC-AP,
which is the best of this study, outperforms all others with solving 14 benchmarks to optimum, and
CapC with the highest hits. The runner up algorithm, JayaX solves 12 benchmarks to optimum. It
is clear that the most distinctive performances can be gained with solving CapA, CapB and CapC,
where CapC is the most challenging one. It is noted that the ABABC variants without AP scheme,
binABC, disABC and ibinABC, were under-performing in comparison to both binAAA and JayaX.
This clearly demonstrates the contribution of adaptive mechanisms embedded in ABABC variants.

21

Table 10: Comparative results between ABABC other Binary ABC variants

binABC disABC ibinABC ABABC-AP
Instance Gap Std Gap Std Gap Std Gap Std. Dev.
Cap71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap101 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap102 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap103 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap104 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cap131 0.00 0.00 0.62 2337.64 0.00 0.00 0.00 0.00
Cap132 0.00 0.00 0.095 813.37 0.00 0.00 0.00 0.00
Cap133 1.22 200.24 0.031 359.03 0.00 0.00 0.00 0.00
Cap134 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CapA 2.96 236833.50 0.152 74782.61 0.00 0.00 0.00 0.00
CapB 2.51 9143.13 3.303 109738.50 0.07 23762.93 0.00 0.00
CapC 2.58 82312.70 4.697 95778.78 0.062 11326.015 0.004 1302.54

22

T
a
b

le
1
1
:

C
o
m

p
a
ri

so
n

w
it

h
st

a
te

-o
f-

a
rt

G
A

-S
P

B
P

S
O

b
in

A
A

A
J
a
y
a
X

A
B

A
B

C
-A

P
In

st
a
n
c
e

G
a
p

S
td

.
D

e
v
.

H
it

G
a
p

S
td

.
D

e
v
.

H
it

G
a
p

S
td

.
D

e
v
.

H
it

G
a
p

S
td

.
D

e
v
.

H
it

G
a
p

S
td

.
D

e
v
.

H
it

C
a
p
7
1

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
7
2

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
7
3

0
.0

6
7

8
9
9
.6

5
0

1
9

0
.0

2
4

6
3
4
.6

2
5

2
6

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
7
4

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
9

5
0
0
.2

7
2

2
9

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
0
1

0
.0

6
8

4
2
1
.6

5
5

1
1

0
.0

4
3

4
2
8
.6

5
8

1
8

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
0
2

0
.0

0
0

0
.0

0
0

3
0

0
.0

1
0

3
2
1
.5

8
8

2
8

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
0
3

0
.0

6
4

5
0
5
.0

3
6

6
0
.0

4
9

5
2
1
.2

3
7

1
4

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
0
4

0
.0

0
0

0
.0

0
0

3
0

0
.0

4
1

1
4
3
2
.2

3
9

2
8

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
3
1

0
.0

6
8

7
2
0
.8

7
7

1
6

0
.1

7
1

1
5
0
5
.7

4
9

1
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
3
2

0
.0

0
0

0
.0

0
0

3
0

0
.0

5
8

1
0
5
5
.2

3
8

2
1

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
3
3

0
.0

9
1

6
8
5
.0

7
6

1
0

0
.0

8
3

6
9
0
.1

9
2

1
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
1
3
4

0
.0

0
0

0
.0

0
0

3
0

0
.1

9
5

2
5
9
4
.2

1
1

1
8

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
A

0
.0

4
6

2
2
4
5
1
.2

0
6

2
4

1
.6

9
1

3
1
9
8
5
5
.4

3
1

8
0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

0
.0

0
0

0
.0

0
0

3
0

C
a
p
B

0
.5

8
4

6
6
6
5
8
.6

4
9

9
1
.4

0
3

1
3
5
3
2
6
.7

2
8

5
0
.2

4
8

3
9
2
2
4
.7

4
4

1
5

0
.0

7
9

2
7
0
3
3
.0

2
0

2
6

0
.0

0
0

0
.0

0
0

3
0

C
a
p
C

0
.7

0
5

5
1
8
4
8
.2

8
0

2
1
.6

2
2

1
1
5
1
5
6
.4

4
4

1
0
.2

9
5

2
9
7
6
6
.3

1
1

1
0
.0

2
2

5
4
5
5
.9

4
0

1
7

0
.0

0
4

1
3
0
2
.5

3
9

2
6

23

Table 12: The results of the Wilcoxon signed-rank test of the proposed method with the state-of-art
Benchmark AAA JayaX BPSO GA-SP ibinABC disABC binABC

p-value H p-value H p-value H p-value H p-value H p-value H p-value H
Cap71 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Cap72 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Cap73 1 0 1 0 1.E-01 0 1.E-03 1 1 0 1 0 1 0
Cap74 1 0 1 0 3.E-06 1 4.E-08 1 1 0 1 0 1 0
Cap101 1 0 1 0 2.E-01 0 4.E-04 1 1 0 1 0 1 0
Cap102 1 0 1 0 5.E-01 0 1 0 1 0 1 0 1 0
Cap103 1 0 1 0 1.E-06 1 1.E-06 1 1 0 1 0 1 0
Cap104 1 0 1 0 5.E-01 0 1 0 1 0 1 0 1 0
Cap131 1 0 1 0 1.E-06 1 1.E-06 1 1 0 2.E-06 1 1 0
Cap132 1 0 1 0 1.E+00 0 4.E-08 1 1 0 4.E-06 1 1 0
Cap133 1 0 1 0 2.E-06 1 1.E-06 1 1 0 1.E-06 1 1.E-07 1
Cap134 1 0 1 0 5.E-04 1 1 0 1 0 1 0 1 0
CapA 1 0 1 0 5.E-05 1 1.E-01 0 1 0 3.E-01 0 6.E-06 1
CapB 6.E-05 1 2.E-07 1 2.E-06 1 2.E-06 1 3.E-02 0 2.E-05 1 1.E-05 1
CapC 4.E-06 1 8.E-01 0 2.E-06 1 2.E-06 1 2.E-03 1 4.E-06 1 2.E-06 1

The experimental results presented in Table 10 and 11 demonstrate outperforming performance
of the adaptive binary ABC algorithm in comparison to the recent state-of-art binary approaches
including ABC variants. Although the results are self-declaring the significant performance, a
statistical test is always the most secure way out to make sure the results lead to significant and
sound conclusions. The results have been considered for comparisons with the performance of
the state-of-art approaches using Wilcoxon signed-ranked test, which is a commonly used non-
parametric statistical test approach. The tests have been conducted to see if the null-hypothesis,
H0, of ”there is no significant difference in between the results” with confidence level of 95%. The
functionalities of MATLAB 2017b has been used to calculate the test results over 30 repeats of each
experimental setup.

The test results are tabulated in Table 12 showing the statistical test results for UFLP bench-
mark problem instances on the row and binary swarm intelligence algorithms in the column. The
test results per algorithm indicate (i) probability, p-value, and (ii) wining hypothesis, H. It is ob-
served that many of the comparisons confirm the H0 with p-value, p = 1.0 meaning that adaptive
binary ABC performs similar to the state-of-art approaches in solving the benchmark problems. It
can also be observed in Table 11 in which results fall at the same level of performance. This is not
surprising since all algorithms can solve these benchmark problems very easily. The main challenge
comes through the benchmark problems labelled as CapB and CapC with which the performance
of the algorithms can significantly differ. It clearly shows that the test results for the majority of
CapB and all of CapC instances indicate ”rejection of null hypothesis” with H = 1 and various p
values that confirm the difference in performance levels as shown in Table 11. This concludes that
adaptive binary ABC’s performance significantly differs in solving the most difficult benchmarks,
where it solves not only all easy and moderately difficult benchmarks to optimum similar to its
rivals but also the most difficult benchmarks, i.e. CapB and CapC, to optimum. The difference in
performance is found statistically different and significantly better than the others.

6. Conclusion

This paper presents a study that investigates the viability of devising ABC algorithms with
multiple operators selected adaptively for solving binary problems. Adaptive selection schemes have
been researched and tested in various configurations and the best performing scheme working with

24

binary ABC is sought to solve uncapacitated facility location problem instances. Three adaptive
selection schemes, namely probability matching (PM), adaptive pursuit (AP) and upper confidence
bound (UCB), have been tested and are found very competitive in performance. All three schemes
are implemented with three recently developed binary operators, binABC, disABC and ibinABC,
and tested accordingly. A number of variants of binary ABC algorithm were configured with a
number of parameters required by each of three operator selection schemes and have been tested
with UFLP benchmarks. The configuration tests reveal that AP is the best performing scheme
and extreme rewarding remains preferable, subject to given circumstances. Hence, it is concluded
that a binary ABC equipped with the three operators adaptively exploited using AP scheme and
Extreme rewarding approach outperforms all competing algorithms. In addition, all three non-
adaptive variants of binary ABC, binABC, disABC and ibinABC, perform much worse than the
adaptive variants. The configured new binary ABC is named adaptive binary ABC (ABABC) and
comparatively evaluated against the most relevant state-of-art approaches in the literature, where
ABABC significantly outperforms all rivals/alternatives with an achievement of solving 14 out of
15 benchmark problems to optimum, and solving 26 of 30 replicates of CapC to optimum. The
significance of this performance has been statistically tested and found significant in 95% confidence
level, is the sound highest achievement so far.

In the next step of this research, machine learning algorithms would be used to replace adaptive
selection schemes for improved efficiency. This is expected to impose smarter operator selection
schemes, which can be used as smartly guided adaptive search algorithms in which the operators,
and even the policies, i.e. selection schemes, can be smartly chosen among alternatives so as to
prevent the search from local optima with reduced complexity.

References

[1] J. Del Ser, E. Osaba, D. Molina, X.-S. Yang, S. Salcedo-Sanz, D. Camacho, S. Das, P. N.
Suganthan, C. A. C. Coello, F. Herrera, Bio-inspired computation: Where we stand and
what’s next, Swarm and Evolutionary Computation 48 (2019) 220–250.

[2] S. Sadeghi-Moghaddam, M. Hajiaghaei-Keshteli, M. Mahmoodjanloo, New approaches in meta-
heuristics to solve the fixed charge transportation problem in a fuzzy environment, Neural
Computing and Applications 31 (1) (2019) 477–497.

[3] A. E. Drake, R. E. Marks, Genetic algorithms in economics and finance: Forecasting stock
market prices and foreign exchange—a review, in: Genetic algorithms and genetic programming
in computational finance, Springer, Boston, MA, 2002, pp. 29–54.

[4] G. Hiermann, M. Prandtstetter, A. Rendl, J. Puchinger, G. R. Raidl, Metaheuristics for solving
a multimodal home-healthcare scheduling problem, Central European Journal of Operations
Research 23 (1) (2015) 89–113.

[5] X.-S. Yang, Engineering optimization: an introduction with metaheuristic applications, John
Wiley & Sons, Hoboken, New Jersey, 2010.

[6] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE computational intelligence
magazine 1 (4) (2006) 28–39.

[7] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95-
International Conference on Neural Networks, Vol. 4, IEEE, 1995, pp. 1942–1948.

25

[8] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function opti-
mization: artificial bee colony (abc) algorithm, Journal of global optimization 39 (3) (2007)
459–471.

[9] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE transactions
on evolutionary computation 1 (1) (1997) 67–82.

[10] Y. Zhang, S. Wang, G. Ji, A comprehensive survey on particle swarm optimization algorithm
and its applications, Mathematical Problems in Engineering 2015 (2015) 931256.

[11] S. Das, P. N. Suganthan, Differential evolution: A survey of the state-of-the-art, IEEE trans-
actions on evolutionary computation 15 (1) (2010) 4–31.

[12] D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive survey: artificial bee
colony (abc) algorithm and applications, Artificial Intelligence Review 42 (1) (2014) 21–57.

[13] M. Düğenci, M. E. Aydin, A honeybees-inspired heuristic algorithm for numerical optimisation,
Neural Computing and Applications 32 (16) (2020) 12311–12325.

[14] E. L. Lawler, The quadratic assignment problem, Management science 9 (4) (1963) 586–599.

[15] C. Ozturk, E. Hancer, D. Karaboga, Dynamic clustering with improved binary artificial bee
colony algorithm, Applied Soft Computing 28 (2015) 69–80.

[16] P. Espahbodi, Identification of problem banks and binary choice models, Journal of Banking
& Finance 15 (1) (1991) 53–71.

[17] S. Sahni, Approximate algorithms for the 0/1 knapsack problem, Journal of the ACM (JACM)
22 (1) (1975) 115–124.

[18] V. Chvatal, A greedy heuristic for the set-covering problem, Mathematics of operations research
4 (3) (1979) 233–235.

[19] M. Tuba, N. Bacanin, Artificial bee colony algorithm hybridized with firefly algorithm for
cardinality constrained mean-variance portfolio selection problem, Applied Mathematics &
Information Sciences 8 (6) (2014) 2831.

[20] A. Kumar, V. Kumar, Hybridized abc-ga optimized fractional order fuzzy pre-compensated
fopid control design for 2-dof robot manipulator, AEU-International Journal of Electronics
and Communications 79 (2017) 219–233.

[21] M. Düğenci, M. E. Aydin, Diversifying search in bee algorithms for numerical optimisation,
in: International Conference on Computational Collective Intelligence, Springer, 2018, pp.
132–144.

[22] Y. Xue, J. Jiang, B. Zhao, T. Ma, A self-adaptive artificial bee colony algorithm based on
global best for global optimization, Soft Computing 22 (9) (2018) 2935–2952.

[23] S. L. Scott, A modern bayesian look at the multi-armed bandit, Applied Stochastic Models in
Business and Industry 26 (6) (2010) 639–658.

26

[24] J. Niehaus, W. Banzhaf, Adaption of operator probabilities in genetic programming, in: Eu-
ropean Conference on Genetic Programming, Springer, 2001, pp. 325–336.

[25] K. Li, A. Fialho, S. Kwong, Q. Zhang, Adaptive operator selection with bandits for a multi-
objective evolutionary algorithm based on decomposition, IEEE Transactions on Evolutionary
Computation 18 (1) (2013) 114–130.

[26] L. Davis, Adapting operator probabilities in genetic algorithms, in: Proceedings of the third
international conference on Genetic algorithms, 1989, pp. 61–69.

[27] Á. Fialho, L. Da Costa, M. Schoenauer, M. Sebag, Analyzing bandit-based adaptive operator
selection mechanisms, Annals of Mathematics and Artificial Intelligence 60 (1-2) (2010) 25–64.

[28] J. E. Beasley, Or-library: distributing test problems by electronic mail, Journal of the opera-
tional research society 41 (11) (1990) 1069–1072.

[29] G. Wu, R. Mallipeddi, P. N. Suganthan, Ensemble strategies for population-based optimization
algorithms–a survey, Swarm and evolutionary computation 44 (2019) 695–711.

[30] D. Karaboga, An idea based on honey bee swarm for numerical optimization, Tech. rep.,
Technical report-tr06, Erciyes university, engineering faculty, computer engineering department
(2005).

[31] M. S. Kiran, The continuous artificial bee colony algorithm for binary optimization, Applied
Soft Computing 33 (2015) 15–23.

[32] M. H. Kashan, N. Nahavandi, A. H. Kashan, Disabc: A new artificial bee colony algorithm for
binary optimization, Applied Soft Computing 12 (1) (2012) 342–352.

[33] M. S. Kiran, M. Gündüz, Xor-based artificial bee colony algorithm for binary optimization,
Turkish Journal of Electrical Engineering & Computer Sciences 21 (Sup. 2) (2013) 2307–2328.

[34] C. J. Santana Jr, M. Macedo, H. Siqueira, A. Gokhale, C. J. Bastos-Filho, A novel binary
artificial bee colony algorithm, Future Generation Computer Systems 98 (2019) 180–196.

[35] R. Durgut, Improved binary artificial bee colony algorithm, arXiv preprint arXiv:2003.11641
(2020).

[36] H. Wang, Z. Wu, S. Rahnamayan, H. Sun, Y. Liu, J.-s. Pan, Multi-strategy ensemble artificial
bee colony algorithm, Information Sciences 279 (2014) 587–603.

[37] W.-f. Gao, L.-l. Huang, S.-y. Liu, F. T. Chan, C. Dai, X. Shan, Artificial bee colony algorithm
with multiple search strategies, Applied Mathematics and Computation 271 (2015) 269–287.

[38] X. Chen, H. Tianfield, K. Li, Self-adaptive differential artificial bee colony algorithm for global
optimization problems, Swarm and Evolutionary Computation 45 (2019) 70–91.

[39] M. S. Kiran, H. Hakli, M. Gunduz, H. Uguz, Artificial bee colony algorithm with variable
search strategy for continuous optimization, Information Sciences 300 (2015) 140–157.

[40] C. Ozturk, E. Hancer, D. Karaboga, A novel binary artificial bee colony algorithm based on
genetic operators, Information Sciences 297 (2015) 154–170.

27

[41] Y. He, H. Xie, T.-L. Wong, X. Wang, A novel binary artificial bee colony algorithm for the
set-union knapsack problem, Future Generation Computer Systems 78 (2018) 77–86.

[42] D. Jia, X. Duan, M. K. Khan, Binary artificial bee colony optimization using bitwise operation,
Computers & Industrial Engineering 76 (2014) 360–365.

[43] M. Sevkli, M. E. Aydin, A variable neighbourhood search algorithm for job shop scheduling
problems, in: European Conference on Evolutionary Computation in Combinatorial Optimiza-
tion, Springer, 2006, pp. 261–271.

[44] M. E. Aydin, Coordinating metaheuristic agents with swarm intelligence, Journal of Intelligent
Manufacturing 23 (4) (2012) 991–999.

[45] Á. Fialho, L. Da Costa, M. Schoenauer, M. Sebag, Extreme value based adaptive operator
selection, in: International Conference on Parallel Problem Solving from Nature, Springer,
2008, pp. 175–184.

[46] Á. Fialho, M. Schoenauer, M. Sebag, Toward comparison-based adaptive operator selection,
in: Proceedings of the 12th annual conference on Genetic and evolutionary computation, 2010,
pp. 767–774.

[47] M. Aydin, T. Fogarty, A distributed evolutionary simulated annealing algorithm for combina-
torial optimisation problems, Journal of Heuristics 10 (3) (2004) 269–292.

[48] K. Chan, M. Aydin, T. Fogarty, Main effect fine-tuning of the mutation operator and the
neighbourhood function for uncapacitated facility location problems, Soft Computing 10 (11)
(2006) 1075–1090.

[49] V. Yigit, M. Aydin, O. Turkbey, Solving large-scale uncapacitated facility location problems
with evolutionary simulated annealing, International Journal of Production Research 44 (22)
(2006) 4773–4791.

[50] F. Glover, S. Hanafi, O. Guemri, I. Crevits, A simple multi-wave algorithm for the uncapaci-
tated facility location problem, Frontiers of Engineering Management 5 (4) (2018) 451–465.

[51] J. Kratica, D. Tošic, V. Filipović, I. Ljubić, Solving the simple plant location problem by
genetic algorithm, RAIRO - Operations Research 35 (1) (2001) 127–142.

[52] S. Korkmaz, A. Babalik, M. S. Kiran, An artificial algae algorithm for solving binary opti-
mization problems, International Journal of Machine Learning and Cybernetics 9 (7) (2018)
1233–1247.

[53] M. Aslan, M. Gunduz, M. S. Kiran, Jayax: Jaya algorithm with xor operator for binary
optimization, Applied Soft Computing 82 (2019) 105576.

[54] J. Kennedy, R. C. Eberhart, A discrete binary version of the particle swarm algorithm, in: 1997
IEEE International conference on systems, man, and cybernetics. Computational cybernetics
and simulation, Vol. 5, IEEE, 1997, pp. 4104–4108.

[55] X. Zhang, C. Wu, J. Li, X. Wang, Z. Yang, J.-M. Lee, K.-H. Jung, Binary artificial algae
algorithm for multidimensional knapsack problems, Applied Soft Computing 43 (2016) 583–
595.

28

