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Abstract
Human falls occur very rarely; this makes it diffi-
cult to employ supervised classification techniques.
Moreover, the sensing modality used must preserve
the identity of those being monitored. In this paper,
we investigate the use of thermal camera for fall
detection, since it effectively masks the identity of
those being monitored. We formulate the fall detec-
tion problem as an anomaly detection problem and
aim to use autoencoders to identify falls. We also
present a new anomaly scoring method to combine
the reconstruction score of a frame across differ-
ent video sequences. Our experiments suggests that
Convolutional LSTM autoencoders perform better
than convolutional and deep autoencoders in de-
tecting unseen falls.

1 Introduction
Each year, more than one out of four older people fall, and
one out of five falls causes a serious injury such as broken
bones or a head injury [CDC, 2017]. Among nursing home
residents, on an average, 2.6 falls per person per year oc-
cur [Rubenstein et al., 1990]. Detecting falls is important
from the perspective of health and safety; however, due to
their infrequent occurrence per person, it is difficult to col-
lect sufficient training data for them [Khan et al., 2017]. In
such highly skewed situations, it is hard to employ supervised
classification techniques. There are also concerns that the
sensing devices for the task of fall detection may be inva-
sive and breach the privacy of a person [Mercuri et al., 2016;
Yusif et al., 2016]. Some non-invasive sensing devices, such
as a thermal or depth camera, may not reveal the identity of
a person, but it is difficult to extract discriminative features
to identify unseen falls from these sensing devices [Skubic
et al., 2016]. It is thus desirable to find a model which can
learn discriminative features from the data captured by non-
invasive sensors.

In this paper, we take an alternative approach to fall detec-
tion, by formulating it as an anomaly detection problem, due
to the rare occurrence of a fall. A deep autoencoder (DAE)
can be used to learn features by training on the normal activi-
ties of daily living (ADL) and identify a fall as an anomaly
based on the reconstruction error [Khan and Taati, 2017].

However, traditional autoencoders ignores the 2D structure of
images and may force each feature to be global, and thus span
the entire visual field [Masci et al., 2011]. In visual recogni-
tion tasks, convolutional autoencoders (CAE) perform better
because they can discover localized spatial features that re-
peat themselves over the input [Masci et al., 2011]. Further,
a video sequence embeds information in both space and time;
therefore, autoencoders that can learn a representation of lo-
cal spatio-temporal patterns of frames in a video can be more
useful [Baccouche et al., 2012]. This motivates us to use a
convolutional LSTM autoenocder (ConvLSTM-AE) to learn
spatio-temporal features from ADL videos. In this paper, we
train DAE, CAE, DAE and ConvLSTM-AE on only the nor-
mal ADL. An anomaly score for video frames is then calcu-
lated, which can be used to identify an unseen fall during the
testing phase.

2 Related Work
In this section, we present a brief review of the literature that
uses DAE, CAE, and ConvLSTM-AE for anomaly detection
in videos and other data types. Sabokrou et al. [Sabokrou et
al., 2016] use a sparse DAE to detect key-points in videos,
and then train a non-sparse DAE on patches formed around
these key points. The reconstruction error of these patches
is used to determine if they are anomalous or not. Hasan
et al. [Hasan et al., 2016] use both hand-crafted spatio-
temporal features and CAE to learn regular motion patterns
in videos. They introduce a regularity score that scales the
reconstruction error of a frame between 0 and 1. However,
it requires minimum and maximum values of reconstruction
error across all the test samples, which may not have been ob-
served. They show competitive performance of their method
to other state-of-the-art anomaly detection methods. Chong
and Tay [Chong and Tay, 2017] present a method to detect
anomalies in videos that consists of a spatial feature extractor
and a temporal encoder-decoder framework based on convo-
lutional long short term memory layers (more details in sec-
tion 3.2). Their model is trained only on the videos with nor-
mal scenes. They use a regularity score [Hasan et al., 2016]
to identify anomalies. They show comparable performance in
comparison to other standard methods; however, it may pro-
duce more false alarms. Medel et al. [Medel and Savakis,
2016] detect anomalies in video using a predictive convolu-
tional long-short term memory networks. Unlike [Chong and



Figure 1: ConvLSTM-AE architecture [Chong and Tay, 2017]

Tay, 2017], they use only ConvLSTM layers for both encod-
ing and decoding. Their decoding also differs in that it uses
both a past decoder and future decoder. The future decoder
predicts future frames, and past decoder attempts to recon-
struct the original input. They also use a regularity score to
identify anomalies.

The literature review suggests that using spatio-temporal
CAE to learn features is a plausible approach to identify
anomalies, which are falls in our case. In the next section,
we briefly describe the ConvLSTM-AE.

3 Convolutional LSTM Autoencoder
The ConvLSTM-AE architecture used in our experiments is
proposed by Chong and Tay [Chong and Tay, 2017], which
uses convolutional layers for spatial encoding/decoding, and
ConvLSTM layers for spatio-temporal encoding/decoding
(see Figure 1). In particular, a window of T contiguous video
frames are passed as input to the network. The spatial encoder
takes each of these frames one at a time. The spatial encoder
consists of two 2D convolution layers with full padding and
stride 4 × 4, and 2 × 2. This results in spatial dimension re-
duction, and produces T encoded features, which are concate-
nated and fed into the temporal encoder. The decoder repeats
this process in reverse to reconstruct the video window.

In order to generate windows of contiguous frames to give
as input the the ConvLSTM-AE, we apply a sliding window
with stride S = 1, and window length T . The stride repre-
sents the amount of shift by frames in subsequent windows.
The sliding window process is continued until all frames are
selected (we do not use any padding). If a video contains V
frames, then the number of windows (D) generated is

D = bV − T
S
c+ 1 (1)

For training ConvLSTM-AE, we use mean squared error
loss between input windows (I) and reconstructed output
windows (O), optimized on a per batch basis, giving the fol-
lowing cost function:

Figure 2: Temporal sliding window showing reconstruction error
(Ri,j) per frame (Frj) .

C(θ) =
1

N

N∑
i=1

‖Ii −Oi‖22 (2)

whereN is the number of training samples in a batch, θ de-
notes the network parameters, and ‖·‖2 denotes the Euclidean
norm.

4 Detecting Unseen Falls
For CAE and DAE, the input to the network is a single frame;
therefore, the reconstruction error is computed per frame. For
ConvLSTM-AE, the input to the network is a video sequence.
That is, given a test video sequence, we apply a sliding win-
dow as described in previous section. For the ith window
Ii, the network outputs a reconstruction of this window, Oi.
The reconstruction error for the jth frame (Ri,j) of Ii can be
calculated as

Ri,j = ‖Ii,j −Oi,j‖22 (3)

Figure 2 shows this sliding window approach, with T =
8. The first window of T = 8 frames, I1 (Fr1 to Fr8) are
reconstructed, and their corresponding reconstruction error is
stored (R1,1:8). For the next window of frames, the input
window is shifted forward in time by one frame. This process
continues until all frames are used.

4.1 Cross-Context Anomaly Score
To compare ConvLSTM-AE with CAE and DAE, we must
get a score per frame. Notice, a frame can appear in multiple
windows. For instance, frame 2 (see Figure 2) is given two
reconstruction errors: R1,2, and R2,2. The former is attained
with frame 2 as the second frame, and the latter with frame
2 as the first frame of the input window. Each window that a
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frame appears in provides a different temporal context within
which this frame can be viewed. The cross-context anomaly
score gives scores on a per-frame basis, by considering all of
the reconstruction errors obtained for a frame across different
windows. For the jth frame of the ith window, an anomaly
score can be computed based on the mean (Cjµ) or standard
deviation (Cjσ) of the reconstruction error across contexts:

Cjµ =

{
1
j

∑j
i=1Ri,j j < T

1
T

∑T
i=1Ri,j j ≥ T

Cjσ =


√

1
j

∑j
i=1(Ri,j − C

j
µ) j < T√

1
T

∑T
i=1(Ri,j − C

j
µ) j ≥ T

(4)

A large value of Cjµ or Cjσ means that the jth frame, when
appearing at different positions in subsequent windows, is re-
constructed with a high average error or highly variable error.
In a normal ADL case, the reconstruction error of a frame
should not vary a lot with its position in subsequent win-
dows; however, if it does, then this may indicate anomalous
behaviour, such as a fall.

5 Experiments and Results
5.1 Thermal Fall Dataset
We test our framework on the Thermal Fall Detection Activ-
ity Recognition dataset. This dataset consists of videos cap-
tured by a FLIR ONE thermal camera mounted on an An-
droid phone in a room setting with a single view [Vadivelu et
al., 2016]. A total of 44 videos are collected, out of which
35 videos contain a fall event (36, 391 frames total, 828 fall
frames), and 9 videos (22, 116 frames) contain only ADL.
The resolution of the thermal images is 640× 480. Some ex-
ample frames of ADL of thermal dataset are shown in Figure
3.

(a) ADL Frame (Empty). (b) ADL Frame (Entering).

(c) ADL Frame. (d) Fall Frame.

Figure 3: Thermal Data ADL and Fall Frames.

5.2 Data-preprocessing
The thermal data set frames were extracted from video files.
The videos had frame rates of either 25 fps, or 12 fps (ob-

served from their properties). All of the frames in the dataset
are normalized by dividing pixel values by 255 to keep them
in the range [0, 1], and subtracting the per-frame mean from
each frame, resulting in pixel values to be in the range [−1, 1].
All frames are re-sized to 64× 64. The video frames used for
training the models were not annotated because all of them
were considered normal ADL. In order to test the models, fall
videos are used that contained both fall and non-fall frames.
The fall frames were manually annotated in these videos.

In order to create windows of contiguous video frames to
give as input to the ConvLSTM-AE for training and testing,
we perform a sliding window on all video frames, as de-
scribed in 3, with window length of T = 8. The thermal
data contains 22, 116 ADL frames from 9 videos. After win-
dowing the ADL videos, we generate 22, 053 (using equation
1) windows of contiguous frames, which are used for training
ConvLSTM-AE.

5.3 Experiments and Results
To evaluate the performance on detecting unseen falls, we
compare the DAE, CAE, and ConvLSTM-AE. The DAE and
CAE specifications are shown in Table 1. This table only
shows the configuration of the encoding phase of the autoen-
coder. The decoding configuration is the same, but using
up-sampling, or deconvolution for CAE (denoted CAE Up-
Sampling, and CAE Deconv. in results section), and fully
connected layers for DAE. Also, dropout is applied to layer 1
for DAE. Deconvolution and up-sampling layers are used as
defined in Keras [Chollet and others, 2015]. For up-sampling,
we use an up-sampling factor of 2×2, and for deconvolution,
a 3 × 3 filter is used, with padding, and stride 2 × 2. For
Convolution, a filter size of 3 × 3 is used. Max-pooling uses
a pool size of 2× 2, stride 2× 2, and padding.

CAE DAE
Input - (64, 64, 1) Input - (64, 64, 1)
2D Convolution - (64, 64, 16) Fully Connected - (4096)
2D Max-pooling - (32, 32, 16) Fully Connected - (150)
2D Convolution - (32, 32, 8) Fully Connected - (100)
2D Max-pooling - (16, 16, 8) Fully Connected - (50)
2D Convolution - (16, 16, 8) -
2D Max-pooling - (8, 8, 8) -

Table 1: Configuration of the encoding phase of CAE and DAE.

We trained CAE and DAE for 200 epochs, and trained
ConvLSTM-AE for 50 epochs [Chong and Tay, 2017].
Adadelta optimizer was used in training all models. The
training batch size is set to 32 for DAE and CAE, and 16 for
ConvLSTM-AE, where each batch consists of windows of 8
frames. To train DAE and CAE, we augment the data by per-
forming horizontal flipping. No data augmentation was per-
formed when training ConvLSTM-AE, as it did not improve
results.

The cross-context anomaly score gives a reconstruction er-
ror per frame across different windows (for a given video),
which can be used as a score to identify a fall frame as an
anomaly. For CAE and DAE, the per frame reconstruction er-
ror is computed directly, and used as an anomaly score. These
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anomaly scores obtained for every frame are used to calculate
ROC AUC, with fall as the class of interest. All models and
training procedures are implemented in Keras with Tensor-
flow backend [Chollet and others, 2015].

Table 2 shows the AUC results for all models – DAE, CAE
and ConvLSTM-AE. The reported AUC is the average of
AUC across all test videos, with standard deviation in brack-
ets. We observe that CAE Up-Sampling slightly performs
better than CAE-Deconv, and both of them perform better
than DAE. Since DAE computes features on an image glob-
ally, it may fail to exploit the spatial structure present in the
data. We also observe that ConvLSTM-AE with Cµ performs
equivalent to CAE; however, ConvLSTM-AE with Cσ score
performs better than CAE. This may be because ConvLSTM
incorporates the spatial structure of the input image similar
to CAE, but also captures the temporal information of video
data, which is an important component of distinguishing a fall
from ADL.

Model ROC AUC
DAE 0.64 (0.15)
CAE Deconv. 0.70 (0.16)
CAE Up-Sampling 0.75 (0.13)
ConvLSTM-AE with Cµ 0.76 (0.13)
ConvLSTM-AE with Cσ 0.83 (0.11)

Table 2: Average AUC values for different models for Thermal
dataset, with standard deviation in brackets

6 Conclusions and Future Work
Detecting falls in a non-invasive manner is a challenging
problem; especially as falls occur rarely. In this paper, we
formulated detecting falls as an anomaly detection problem
and propose to use autoencoders to do the task. We also pro-
posed a new method of computing anomaly scores called the
cross-context anomaly score. We tested various autoencoder
approaches on a dataset that captured ADL and falls in a non-
invasive manner using a thermal camera. The results showed
that DAE was outperformed by CAE, and ConvLSTM-AE
outperformed CAE, indicating that incorporating spatial, as
well as temporal information was effective in detecting un-
seen falls. In future, we plan to employ 3D convolutional
autoencoders to advance our research in this direction.
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