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Abstract—The information about a system’s dynamics repre-
sented by measurement data sets are often confined to regions of
restricted operations where the system is not sufficiently excited
for model identification purposes. Experiments performed in
closed-loop with safety constraints allow only for reduced order
modeling. In the paper, a set of low order models are identified
from real experimental data of the lateral dynamics of an electric
passenger car. Low order models are advantageous for on-line
computation in model-based control, though uncertainty due to
neglected dynamics may deteriorate control performance and
constraint satisfaction. The effect of uncertainty is analyzed by
controller cross-validation where a controller designed based on
one model is evaluated on other models playing the role of the
true system. This method allows us to qualify not only model-
controller pairs, but to determine the properties of input data
and model uncertainty, which lead to more useful data sets, more
robust and better performing controllers than the others.

Index Terms—uncertainty modeling, model predictive control,
feature selection, classification

I. INTRODUCTION

Model predictive control (MPC) recently became an appeal-
ing technique even for fast nonlinear systems with state and
input constraints due to the real-time feasibility of problem
specific optimization algorithms [1], [2]. One of the main
issues regarding MPC is robustness, the ability of maintaining
feasibility, stability and performance specifications in the
course of on-line computations in the presence of model
uncertainty and noise [3].

In this paper we restrict the questions about robustness to the
analysis of control performance. Specifically, we are interested
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in finding the properties of the model and its uncertainty that
mostly influence the accuracy of a nominal reference tracking
model predictive controller. Data-based control oriented model
identification and uncertainty modeling have a great literature
both in the prediction error and the deterministic robust
control frameworks. In the most efficient methods, the criteria
of modeling and control are closely related. Therefore, the
windsurfer approach [4], the unfalsified control approach [5]
and other iterative schemes [6], [7], developed for classical and
modern robust control, are not directly applicable for MPC.
Data driven MPC oriented modeling is presented in [8], where
model and controller are optimized iteratively using closed-
loop data collected on the true plant. Instead of applying
a robust MPC algorithm, the predictor model is selected to
provide the best closed-loop performance. In contrast to the
above works that develop a model directly applicable for
control, our goal is to perform a preliminary analysis to reveal
the model’s important properties on which any identification
for control method should focus in order to improve closed-
loop MPC performance.

The structure of the paper is organized according to the
following summary of the proposed method.

• Given a large amount of open- or closed-loop segmented
data, for each segment several low order output-error
(OE) models are identified. One obtained model may be
valid only in a small region of operation (Section II).

• Then closed-loop simulations are performed, where every
model is considered as a predictor model of an MPC
reference tracking problem, and every other model is
considered one after the other as the plant. The result
is a large matrix of tracking performance values (Section
III).



• We choose an initial set of features that we think it
might be relevant and physically meaningful for every
pair of model and plant. These features should relate to
the region of operation where the model or plant is valid,
the model’s and plant’s dynamics, and the properties of
the reference signal to be tracked. The next task is to
select the features with the greatest influence in deciding
whether a pair of model and plant have acceptable
performance or not (Section IV).

• Given a predictor model, a second goal is to provide
bounds on the tolerable model uncertainty based on the
selected features. The contribution of this method is to
present hints for experiment design and identification on
what are the relevant properties of a good model for MPC
(Section V).

Conclusions are presented in Section VI.

II. SET OF LOCAL MODELS

Data for identification purposes are collected on an electric
vehicle that is equipped with actuators supporting autonomous
functions. Closed-loop steering experiments are conducted
where a PID controller ensures keeping the road and additional
pseudo random binary noise (PRBS) disturbance on the control
signal excites the lateral dynamics for identification. The input
of the plant is steering angle, δ the output and scheduling
variable are yaw rate, r and speed v, respectively. The experi-
ments cover a range of speed [0, 30]/3.6ms and steering angle
of [−30, 30] π

180 radians.
In order to obtain linear models data segments of con-

stant speed are selected. The segments represent transient
motion in steering for ensuring sufficiently exciting input
for identification (for example, lane change maneuvers, or
increasing/decreasing the radius of cornering). Then for each
data segment multiple OE models are identified of orders
n = 1, 2, 3, 4 in the form

rp(t) =
bp,1q

−1 + . . .+ bp,nq
−n

1− (ap,1q−1 + . . .+ ap,nq−n)
δp(t) + νp(t), (1)

where t denotes discrete time t = 1, . . . , Np, q denotes the for-
ward time shift operator, ap,i, bp,i, i = 1, . . . , n, are constant
coefficients determining the rational transfer function Wp(q)
of the model, and νp(t) is the simulation error. All models
identified from different data segments and different orders
are indexed and collected in set P , {Wp|p = 1, . . . , P}.
Model Wp is identified from IO data δp and rp. The constant
speed of segment p is denoted by vp.

III. REFERENCE TRACKING PREDICTIVE CONTROL WITH
CONSTRAINTS

Assume that each model is stable and represents the vehi-
cle’s behavior, of certain quality depending on the model order,
under the conditions of its experiment has been conducted.
This implies that under the same conditions, the true plant is
locally approximated by these models, i.e., the models may
play the role of the plant in certain closed-loop reference
tracking simulations, where the reference signal rref,p to be

followed is generated by the model and the corresponding
input used in the identification, i.e.,

rref,p(t) ,Wp(q)δp(t), p = 1, . . . , P. (2)

So, on one hand, every identified OE model plays the role of
the plant in simulations where rref,p is to be tracked.

On the other hand, we have to choose models from P
that will play the predictor in the MPC problem. To keep
the computational complexity as low as possible we are
interested only in the first order models with n = 1. Let
M , {Wm|m = 1, . . . ,M,Wm is of order 1} ⊂ P denote
the set of tested predictors.

Remark. An alternative to the choice of reference signal (2)
could be the measured yaw-rate of the true plant used in the
identification. The difference between the two signals is the
residual in the identification problem, which is the smallest
possible for the optimal OE model given the model order.
Since model uncertainty defined in Section IV is expressed in
terms of identified OE models reference signal (2) is preferable
because it can be accurately tracked when the plant and
predictor models are the same, thus zero uncertainty model
will guarantee good control performance.

Let’s simulate all model-plant pairs (Wm,Wp) ∈ M × P
in the following MPC problem.

min
u0,...,uH−1

Vm,p(u, t) (3)

s.t. uk ∈ [u, ū] (4)
uk − uk−1 ∈ [∆u,∆u] (5)

where the horizon length determined by data segment p is
denoted by H , (4) and (5) define control input constraints.
The quadratic criterion is defined on the horizon by

Vm,p(u, t) ,
H−1∑
k=0

Q(rm(t+ k|t)− rref,p(t+ k))2

+

H−1∑
k=0

R(u(k)− u(k − 1))2 (6)

where Q and R are parameters, rm(t + k|t) is the pre-
dicted output of model Wm with input u(k), and initial state
rm,p(t − 1) ”measured” at time t − 1 on plant Wp. Some
on-line and explicit MPC solutions for the above problem are
presented and compared in terms of computational time and
memory requirement in [9]. After solving the convex quadratic
program, input δm,p(t) := u0 is applied to plant Wp, and as
the simulation evolves the horizon is shifted forward in time
to finally obtain the performance of the pair (Wm,Wp)

Jm,p ,
1

Np −H − n

Np−H∑
t=n+1

(rm,p(t)− rref,p(t))2. (7)

measuring the mean squared reference tracking error of the
simulation. The final result of the simulations is the M × P
performance matrix J with elements Jm,p. If m = p and
R = 0 the solution of the optimization problems give back δp



and Jp,p = 0. An R > 0 is required, however, to ensure some
degree of robustness.

IV. FEATURE SELECTION

The first of our questions is: which properties of the model-
plant pair lead to good tracking performance? Certainly, Jm,p
depends directly on both models and the reference signal,
and indirectly, on the dynamics of the true plant and the
identification inputs. The tool we have chosen to answer
this question is to build a binary classification model C that
maps property variables (features) into two classes. One class
denoted by C1 should contain the model-plant pairs that result
in tolerable closed-loop performance, i.e., with Jm,p < c.
The other class C0 is the complement set. During training the
classifier, weights for the features are developed. At the end,
very small weight of a feature will imply its insignificance.

In order to minimize the bias of the classifier model, initially
all features that may influence the tracking performance should
be included in the feature set. Let

xTm,p , [v̄m, |δ̄m|, b1, a1, v̄p − v̄m, |δ̄p| − |δ̄m|,
Am,p(ω1), . . . , Am,p(ωs), φm,p(ω1), . . . , φm,p(ωs),

Dp(ω1), . . . , Dp(ωs)] (8)

denote the row vector of features of one model-plant pair
where v̄m = 1

Nm

∑Nm

t=1 vm(t) and |δ̄m| =
∣∣∣ 1
Nm

∑Nm

t=1 δm(t)
∣∣∣

characterize the region of operation where the identification
data of model Wm were collected; b1, a1 are the model
parameters completely determining its dynamics. The next two
features are the differences between the operating regions of
the model and the plant. The model uncertainty (or ”neglected
dynamics”) is defined in the frequency-domain in a multiplica-
tive form by Wp(e

jω) = (1 + ∆m,p(e
jω))Wm(ejω). Am,p

and φm,p are the magnitude and phase of ∆m,p at the chosen
frequency grid. Finally, Dp(ωi) are the samples of Welch’s
(smoothed) power spectral density (PSD) estimate for input
δp at the specified frequencies. Input δp characterizes both
the true measured output rp and the reference signal rref,p,
thus it’s PSD influences both the quality of model Wp and
the hardness of tracking the reference signal in the control
problem.

All features xTm,p ∈ Rnf of all model-plant pairs are stacked
into a MP × nf feature matrix X . Similarly, for all pairs the
corresponding performance values are stacked into the MP
long column vector Y . By fixing the level c of acceptable
performance the vector of class labels is derived as C = (Y <
c) (i.e., C(i) is logical 1 if the ith pair is acceptable). The data
set X,C is divided into training and test sets, and for feature
selection for classification neighborhood component analysis
(NCA) is applied [10], [11].

Table I shows the trained classifiers confusion matrices for
the training and the test data sets, respectively. The number
of good model-plant pairs is the sum of the last row, none is
classified incorrectly from the training set and 156 (≈ 8.3%)
is misclassified from the test set. The first row shows that the
amount of good pairs that are estimated as bad pairs is less

TABLE I
CONFUSION MATRICES OF BINARY CLASSIFICATION

Estimated Classes
True Training Data Set Test Set

Classes Bad Pairs Good Pairs Bad Pairs Good Pairs
Bad Pairs 14528 3 14390 142

Good Pairs 0 1883 156 1726

Fig. 1. Histogram of the performance values of the incorrectly classified
pairs.

than 1%. Fig. 1 shows that most of the incorrectly classified
pairs has a tracking performance close to the given acceptance
level c = 0.4.

The weights of each features are plotted in Fig. 2. Features
with very small weights are not necessary for decision making.
It can be concluded from the list of significant features, that
performance depends

• on the region of operation represented by the model
features 1 and 2;

• on the dynamics of the model (or the plant) beyond model
uncertainty (features 3, 4);

• uncertainty magnitude and phase of the multiplicative
uncertainty at some frequencies (features 7,. . ., 26).

We note that some poles (complex pole pairs) of the plants
are in the frequency range of ω ∈ [10, 20] rad/s where both
magnitude and phase uncertainties are important.

Knowing the important features support any further design
tasks, like experiment design, model identification and uncer-
tainty modeling.

V. UNCERTAINTY MODELING

The goal of this section is to construct model uncertainty
bounds for possible further robust control design. Since fea-
tures 1,...,4 are important in the classification, the uncertainty
bounds may depend on these features. The following analysis
is working on a restricted set of models which are very
similar in the first four features. Then, within this group, zero
uncertainty must imply good performance by the classifier
model. Let M1 ⊂ M denote this subset of models. The
corresponding set of 595 pairs are characterized by v̄m ∈
[4.08, 4.23]m/s, δ̄m ∈ [2.5, 4.3]deg, b1 ∈ [0.43, 0.47] and



Fig. 2. Feature weights showing at least 9 insignificant features.

TABLE II
UNCERTAINTY BOUNDS FOR A GROUP SIMILAR MODELS

Minimum Maximum
v̄p − v̄m -0.42061 [m/s] 0.2205 [m/s]
Am,p(1) 0.14319
Am,p(1.51) 0.15672
Am,p(2.27) 0.10167
Am,p(3.42) 0.11318
Am,p(17.6) 1.4981
Am,p(26.5) 1.6293
Am,p(40) 1.4167
φm,p(1) -4.4908 [deg] 6.0588 [deg]
φm,p(5.15) -3.5473 [deg] 6.1264 [deg]
φm,p(7.76) -5.7413 [deg] 5.5751 [deg]
φm,p(11.7) -5.8913 [deg] 3.5648 [deg]
φm,p(40) -6.8919 [deg] 6.6991 [deg]

a1 ∈ [0.68, 0.71]. Within this group of pairs the goal is to
find (soft) upper and lower bounds for the uncertainty ∆m,p

Am,n(ωi) ≤ Ā(ωi), (9)
φ(ωi) ≤ φm,p(ωi) ≤ φ̄(ωi), (10)

for all i = 1, . . . , s and (Wm,Wp) ∈M1 × P , such that
• all pairs satisfying all of the bound constraints should be

classified as good performing pairs
• all pairs violating any of the bounds should be classified

as bad performing pairs
One possible method is to minimize the number of incorrectly
classified pairs in the bounds. Table II shows the obtained
bounds which lead to 16+16 misclassifications out of the 595
pairs.

The obtained uncertainty bound can also be viewed as the
region of validity of a given model. Performing the above pro-
cedure for multiple regions of operations and models (features
1,...,4), one could develop a set of models that together with
their validity regions may cover the whole working region of

the vehicle dynamics. But the elaboration and validation of
this problem is out of the scope of the paper.

VI. CONCLUSIONS

From experimental data that covered a wide range of
operating regions of a vehicle’s lateral dynamics, a large set
of low order local linear models were identified. Important
features of models and model uncertainty that are relevant in
contributing model predictive tracking control performance,
were revealed with the help of closed-loop simulations and
a binary classifier. The results provide important information
for model selection, experiment design and identification. By
using the classifier, frequency-domain bounds were derived for
the amplitude and phase of multiplicative model uncertainty.
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