
EasyChair Preprint
№ 7949

An Efficient Test Time Model for Optimizing
Tessent SSN for a 3D Design

Vasubabu Ravipati, Shyam Kallepalli and Lance C Cheney

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 15, 2022

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

An Efficient Test Time Model for Optimizing
Tessent SSN for a 3D Design

Abstract—This paper presents an efficient scheme to calculate
and optimize test time when using Tessent Streaming Scan Network
(SSN) by bypassing the traditional vendor solution of patterns re-
targeting process. SSN retargeting process requires stand-alone
patterns of all partitions present in SSN network and availability of
full chip SoC Netlist model which is too late in the design cycle.
Many “case” studies can be performed for estimating test
volume/test time, easily without hardware changes using the
described algorithm in the paper. This methodology helps to update
test network design for optimal test time and volume in very early
phase of the project, thereby reducing iterative and late change costs
for DFT design.

Keywords— SSN, pattern re-targeting, test time, test volume, 3D

I. INTRODUCTION

With each generation, SoC designs have increased in size and
complexity. To maintain same or lesser tester time & tester
volume than previous generation SoC designs, the use and
optimization of a scan test system fabric is a must. Test
volume directly depends on test fabric design spec therefore,
it is required that the design team analyze, estimate, and react
to test time growths in a timely fashion and do the necessary
changes to the test fabric spec early in design cycle. With
classical designs this meant tuning the mapping and muxing
of test-port IOs to individual scan endpoints throughout the
design process as partitions were added, deleted, or changed.
Streaming Scan Network (SSN) is a new structural scan test
system from Siemens which promises a portable and scalable
architectural solution and eliminates top-level IO mapping
and muxing. It delivers efficient scan vectors by enabling
parallel testing of all partitions in the design [1] and
decouples the size and design of the test-port from the internal
scan construction. However, using only the tooling supplied
by the vendor, scan pattern volume and test time estimation
with SSN fabric requires a SoC-level ATPG re-targeting flow
which takes too long due to the late availability of full chip
soc netlist model and results in late feedback to design. In this
paper we would like to share a methodology for estimating
pre-silicon pattern volume and test time for any given SSN
specification without the use of a retargeting flow. We assess
test time with various bus widths, regrouping of partitions
across SSN networks based on bandwidth usage, and the
results of optimization of the SSN network distribution. We
are using SSN architecture for an SoC scan testing, and this
paper details the method we have implemented to optimize
test time in very early phase of design cycle.

II. SOC SSN IMPLEMENTATION OVERVIEW

In our 3D stacked SoC design, we have a top-die which
contains IO buffers that are routed as package balls using
micro-bumps (ubumps) and through-silicon vias (TSV)
routing through the bottom/base-die [2]. The top die and base
die contain multiple physical partitions, all of which must be
tested via scan. In this design, we created four parallel SSN
networks to address all the partitions: the Top Left network

(TLNW) and Top Right network (TRNW) for top-die, and
the Base Left network (BLNW) and Base Right network
(BRNW) for base-die, as shown Figure 1. Parallel networks
are created to ease the scan routing and timing convergence,
as we have limited routing channel availability and in due
consideration of the IO placement. For TLNW and TRNW
the SSN data bus and clock inputs are routed from package
balls through TSV, to probe-able ubumps in base-die, through
IO buffers in top-die and onto the SSN fabric in the top die.
We have added repeater stages for SSN data bus out of
TLNW and TRNW prior to IO buffers in the top-die; these
are routed to ubumps in the base-die and TSVs to package
balls. The base die networks are available independently via
probe-able ubumps at sort but are connected only through the
top die network after die stacking. For package-level testing
the base-die sort content must be updated through retargeting
flows to comprehend the additional repeater stages in top-die.
Figure 1 depicts custom muxing logic in the top die to stitch
the TLNW into the BLNW and similarly for TRNW into
BRNW. By enabling this feature, we convert 4 parallel SSN
networks to 2 parallel SSN networks during package testing.
This helps evaluate future SoC designs where we could be
limited by IO buffer availability which is beyond the scope
of this paper.

Top-Die

DATA

TLNW – TOP LEFT NETW ORK TRNW – TOP RIGHT NETWORK BLNW-BASE LEFT NETWOR K BRNW-BASE R IGHT NETW ORK
BLNW R PTS- BASE LEFT NETWORK REPEATERS BRNW RPTS- BASE R IGHT NETW ORK REPEATERS

Package Balls

Base-Die

FDI

FDI

RPT

PN

RPT

P1

P2

P3

RPT

RPT

RPT

PN

P1

P2

P3

RPT

RPT

RPT

RPT

RPT

TLN
W

RPTRPT RPT RPT

P1BLN
W

TLN
W

PN P1 PN

TRN
W

BR
N

W

TRN
WBLN

W
 R

PTS

BR
N

W
 R

PTS

BLN
W

 R
PTS

BR
N

W
 R

PTS

TSV

TSV

TSV

TSV

P1 RPTLEGEND uBump Partition Mux Rep eater

Figure 1: SoC SSN Arch Overview

In legacy GPIO flows, partitions always have different shift
counts even with good planning. This results in a lot of
wasted bandwidth due to padding that is required to
synchronize the capture cycles across partitions. SSN
alleviates this wastage by varying the amount of data sent to
each partition and enabling independent captures between
partitions. This is done by using a packet-based system where
each packet contains a variable amount of scan data for each
partition under test. Packets can span multiple test-port clock
cycles and each controller manages its transitions between

shift and capture modes independently, which reduces the
droop effect of scan shift. The number of bits allocated for
each SSH is dependent on the total amount of data it must
consume for the duration of the test but cannot exceed the
number of bits used for one shift operation [3]. Additionally,
each packet delivered on the network must contain at least
one bit of data for every SSH block that is enabled for that
test [3]. The final test volume is dependent on the
configuration of all of the enabled SSH blocks in the system:
each blocks’ total shift cycles and their channel counts. A
model to convert these inputs into a test volume estimate can
be used to quickly provide feedback on the effects of a
channel count change, partition-level content truncation or
growth, and to estimate test time before a full retargeting run
can be completed. Under a standard flow, partition-level
ATPG patterns are generated, then retargeted to SoC level,
with all partitions enabled in parallel. This provides a test
time estimate and details about the packet utilization. We can
analyze the resulting pattern and regroup the partitions under
a single SSH and/or adjust the SSN bus width for each
network. This information is fed into SSN RTL spec and new
RTL is then generated. The final optimized test time and
optimized network can be achieved within a few iterations.
The biggest drawbacks are that the iteration loop is very long,
intrusive to the design cycle, and each iteration requires a new
model for retargeting, as shown in the Figure 2.

Figure 2: Traditional SSN design optimization flow

With offline modeling for test time and SSN network
optimization we bypass the retargeting flow altogether and

feedback to design is much faster and minimizes the design
rework, with shorter iterations as shown in Figure 3. We can
evaluate test time for other SSN grouping and EDT channel

count permutations without making RTL or hardware
changes, and use the results for the final optimal network.

Figure 3: Optimized SSN Modeling flow

SSN Packet sizing and Wastage Calculation:

Our vision was to create a spreadsheet model that could be
used for rapid what-if evaluation of changes to the design and
content: EDT channel counts, capture/pattern count
truncation, chain count adjustment, SSH sharing, etc. We
would then run partition-level ATPG to get initial capture
count estimates and permute variables until an optimal
solution was found, at which point the changes could be
committed to the RTL design. The key to this evaluation was
building the algorithm which determines the total packet size
and number of bits in that packet that are used by each
partition. Table 1 shows the details of pattern volume of the
9 partitions in TLNW, including the number of scan
captures/Patterns (Np), number of shifts per capture for
load/unload (SLp) and the EDT channel count (Cc). We used
Symmetric EDT for all partitions and did not use the on-chip
compare feature. The “# Patterns” (Np) multiplied with “Max
Shifts per load” (SLp) provides the approximate “shifts/loads
required” (TotalL) for each partition, which can be multiplied
by the “Channel Count” (Cc) to get the ideal number of input
bits (IIb) required for each partition’s test. Because each
packet can contain at most one shift for each SSH, the number
of packets required is constrained by the partition with the
highest number of loads (MaxTotalL)required, which in this
example was partition “H” @9.41Million loads. We then
calculate the number of bits per packet that should be sent to
each partition using the ratio of its TotalL vs the now-
determined MaxTotalL packet count, multiplied by its
channel count (Cc), (TotalL / MaxTotalL) * Cc which is shown

here in the “# bits per packet (ideal)” BPPi column. Fractions
are always rounded up to determine the actual number of bits
used for each SSH, providing us the final “Real bits per
packet” BPPr. The actual number of input bits delivered by
the SSN bus (SSNIBr) for each partition is calculated by
multiplying the partition’s “# bits per packet (real)” with
“Total #packets to send” (BPPr * MaxTotalL). For example:
partition “I” has SSNIBr input volume of 9.4 megabits.
Wastage percentage (Wp) is then calculated based on the total
input bits ideal IIb (0.57M) vs total SSN bits real SSNIBr
(9.41M) for each partition. This results in maximum wastage
of 94% for partition “I” in this network. Similarly, Wasted
Bits (Wb) per partition is determined as delta between SSNIBr

and IIb as shown in Table 1. Understanding this algorithm
aids in determining the right solution to improve the overall
efficiency of the system. In this case SSN has done a good
job of controlling data delivery and the overall waste is fairly
small at just 8%, and the test volume (and thus test time) is
dominated by partition H. Since SSN can easily support
internal changes in partition EDT channel counts without
affecting test-port or fabric design, a range of options are
available at relatively low design cost to minimize vector
volume. It takes just seconds to do what-if analyses such as
considering the effects of doubling the channel and chain
count for partition H assuming no increase in
captures/#patterns (4% reduction in total test volume), or of
reducing the number of channels allocated to partitions with
low capture/#pattern counts, such as “F” or “C” (which has
no effect).

Table 1: TLNW SSN packet size and wastage calculation

This calculation of wasted bits and wasted bits percentage per
partition can be extended to all networks using simplified
formula as shown below.

Wp = (1 – (IIb/SSNIBr)) *100

Substituting for IIb in above equation we get:
Wp = (1 – ((TotalL * Cc)/SSNIBr)) *100

Substituting for TotalL and SSNIBr we get:

Wp = (1- ((Np*SLp*Cc)/BPPr*MTotalL))) *100

Similarly Wasted Bits Per partition is determined by,
Wb = (BPPr*MTotalL) – (Np*SLp*Cc)

Table 2 below shows the TRNW’s pattern volume of all 17
partition as estimated by our model using the algorithms
described earlier. In this case also SSN has done a good job
of controlling data delivery and the overall waste is fairly
small at just 8%, but the test volume (and thus test time) is
dominated by partition “Q”, which requires (MaxTotalL) of
11.62M loads.

Table 2: TRNW SSN packet size and wastage calculation

Table 3 details the test time calculation for both TLNW and
TRNW assuming the SSN Bus width allocated as 20 in/20
out and omitting SSN IJTAG setup test time which would be
a be constant for the network and cannot be modulated by
internals of the network. Test time is approximated here by
dividing the total pattern volume (bits) with the bus width to
get pattern vectors @ SSN width, and then multiply by bus
frequency. Calculations are done for both 100mhz and
200mhz bus frequencies. With our estimated SSN bus POR
@200mhz, test time for TLNW is ~117ms and TRNW will
be ~ 322ms. In our architecture both these networks are in
exercised in parallel, so the maximum test time is limited by
TRNW (322ms).

Table 3: Test Time calculation for given SSN bus width

III. RESULTS AND SUMMARY

TRNW is the test time limiter for Top-die SSN scan testing,
with partition “Q” requiring 11.62M packets of desired bus
width of 111 in/out bits, while the TLNW is idle for more
than 60% of the scan testing. We evaluated the below options
to optimize the test time.

1. Rebalancing TRNW vs. TLNW, by moving some of the
physical routable partitions to TLNW

2. Increasing the SSN Bus Width by using additional IOs
3. Combining adjoining partitions into a single SSH,

targeting those with a large % of wastage bits

In option 1, we moved partitions R thru Z into TLNW which
are physically accessible without any timing limitations.
Using our test time model, we observed ~33% reduction in
test time(~107ms). There is an ~68ms of test time increase
for TLNW but is not of concern since it is not a limiter as
both TLNW, TRNW runs in parallel during silicon scan
testing. As seen in the Table 4 below in this option, the input
bits for the TLNW changed to 79 as ideal case. With the
partition moved to TLNW the total wastage of bits has
reduced considerably. In option 2, we evaluated the
feasibility of sharing leftover IO’s and able to increase the
SSN Bus Width from 20 in/out to 30 in/out. Using our test
time model, we were able to quickly evaluate the test time
benefits and was able to roll in the required design changes
without waiting for ATPG re-targeting flow results.
Similarly, we have evaluated for base-die SSN networks but
haven’t found any significant improvements that would
dictate a design change.

Table 4: Test time calculation for given SSN bus width 20,30 and with

TL NW, TR NW replan

IV. CONCLUSIONS AND FUTURE PLAN

The SSN Bus Width and Test time optimization model which
we created for our SoC design is scalable and re-usable for
all SoC’s which are using the SSN scan solution. This can
also model asymmetric/dual EDT which can be useful when
SSN is operating in on-chip compare mode. This modeling

could be automated to populate the input data such as number
of captures/Patterns, EDT channel count, max loads per
partition by directly reading such information from design
and atpg pattern generation area. We have also observed that
Tessent SSN retargeting introduced bandwidth throttling that
limited the usefulness of two parallel independent networks
during retargeting flow as shown in Figure 4. Ideal scenario
for two independent SSN networks patterns re-targeting as
separate runs shown in Figure 5. More optimized testing
solution requires enhancement to vendor tooling such that
multiple parallel networks can independently tested as
depicted in Figure 6. We anticipate more designs to adopt
SSN with these enhancements.

Test
Setup

SSN IJTAG setup for
NW1

SSN IJTAG setup for
NW2

NW1 pattern(Throttled)

NW2 pattern

Figure 4: NW1, NW2 pattern retargeting by Tessent tool

Test
Setup

SSN IJTAG setup for
NW1

NW1 pattern

Test
Setup

SSN IJTAG setup for
NW2

NW2 pattern

Figure 5: Standalone NW1, NW2 pattern re-targeting

Test
Setup

SSN IJTAG setup for
NW1

SSN IJTAG setup for
NW2

NW1 pattern

NW2 pattern

NW1 pattern

NW2 pattern

Figure 4: Ideal scenario and requirement for NW1, NW2 pattern
retargeting

V. ACKNOWLEDGEMENTS

We would like to thank all our colleagues in AXG DFT team
who worked on Streaming Scan Network implementation to
enable us to come with this algorithmic test time optimization
model without going through SoC level pattern re-target
flow. We would like to extend our thanks to Siemens AE’s
who provided the training on Streaming Scan Network
solution.

VI. REFERENCES

[1] J-F. Cộté, et.al., "Streaming Scan Network (SSN): An
Efficient Packetized Data Network for Testing of Complex
SoCs," ITC, 2020

[2] D. B. Ingerly, et.al., “Foveros: 3D Integration and the use
of Face-to-Face Chip Stacking for Logic Devices”, IEEE,
2019

[3] Siemens Tessent Streaming Scan Network (SSN) User

manual

