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Summary: This paper suggests a new type of latent variable model which discovers the association between

several categorical latent variables. A set of repeatedly measured categorical response variables forms a latent profile

variable, while the other set of item variables identifies a latent group variable. Latent class profile analysis with

group variable (GLCPA) explains an association between these two categorical latent variables as a form of two-

dimensional contingency table. We applied GLCPA model to the NLSY 97 data to investigate the association between

of depression process and the longitudinal behaviors of substance use development among adolescents who experienced

an Authoritarian parental styles in their youth.
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1. Introduction

Latent class analysis (LCA) is one type of finite mixture model which can be applied for a set

of discrete response random variable. It summarizes the structure of population distribution

by defining several partitions of population (i.e., latent classes) which cannot be observed

directly, but may be discovered with respect to the patterns for manifest response variables.

This LCA framework has been expanded to be utilized for more complicated data structures

such as a repeatedly measured longitudinal data in chung2011latent, a vectorized joint

structure in Jeon et al. (2017), and the hierarchical group-outcome structure in Lee and

Chung (2017).

In this article, a new type of LCPA with group variable has been proposed which consists of

a typical multivariate latent class profile model and an additional categorical latent variable

as a latent group variable. A set of repeatedly measured categorical response variables

identifies a vector of categorical latent variables for each time points, and a latent profile

variable is defined to divide the population into homogeneous subgroups whose sequential

patterns of latent class memberships are common. In addition, another set of categorical

response items defines a discrete latent variable using conventional LCA framework. Our

proposed model allows the prevalence of latent profiles to be differed with respect to the latent

group memberships. Namely, the prevalence of latent profiles are defined as the proportion

of latent profiles given a certain latent group membership, and this conditional probability

explain the existing association between latent profile variable and group variable in terms

of condition probability.

The rest contents of this article are as follows. The description of the GLCPA and the esti-

mation methods for the model parameters are presented in Section ModelSelection and Es-

timationSelection, respectively. In Section SimulSection, we examined the parameter esti-

mation and inference procedure through empirical simulation, and the simulation results
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are available in Appendix. In Section NLSY, we illustrate the practical usefulness of our

new model by analyzing the NLSY 97 data using discrete item variables that are related

with adolescent depression and longitudinal behaviors in substance use including alcohol,

cigarette, and marijuana. In Section Conclu, we summarize this paper and discuss about the

further research area.

1.1 Latent class analysis

A latent class analysis is a classical methodology that divides the population into homoge-

nous subgroups with respect to response patterns for manifest items. It postulates that a

ditribution of a set of categorical random variable is a mixture of finite classes with their

respective response patterns. Suppose there are P categorical manifest items Z1, . . . , ZP .

The responses of each manifest item for the ith individual are obtained as a P -dimensional

vector zi = [zi1, · · · , ziP ]T , where zip can take any value from 1, . . . , rp for p = 1, . . . , P . Let

the latent class variable D has G categories, then the observed-data likelihood of LCA can

be written as follows:

P (Zi = zi) =
G∑

d=1

P (D = d,Zi = zi) =
G∑

d=1

P (D = d)P (Zi = zi | D = d)

=
G∑

d=1

P (D = d)
P∏

p=1

P (Zip = zip | D = d) (1)

=
G∑

d=1

δd

P∏
p=1

rp∏
h=1

φ
I(zip=h)

ph|d

Here, I(zip = h) is the indicator function which is 1 when zip = h and 0 otherwise. The

likelihood of LCA given in (1) is constructed under the local independence assumptions,

implying that the manifest items are conditionally independent when a latent class mem-

bership is given. Here, φph|d = P (Zp = h | D = d), referred as the primary measurement

parameter, explains the relationship between the latent class and the pth manifest item, and

δd = P (D = d) represents the prevalence of latent class membership d. Since all parameters
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in (1) are conditional probabilities, the sum-to-one and non-negative constraints are explicit

(i.e.,
G∑

d=1

δd = 1 and
rp∑
h=1

φph|d = 1 for p = 1, . . . , P , d = 1, . . . , G).

1.2 Latent class profile analysis

Latent class profile analysis (LCPA) has been introduced to explain the longitudinal patterns

when the LCA is applied to the repeated measured responses Chung et al. (2011). In LCPA,

each sets of manifest items measure a categorical latent variable, and the sequential patterns

of identified latent classes are summarize by a latent profile variable. As a result, observations

who share the same latent profile membership will have common sequential patterns of latent

class memberships for each identified latent variables. In this manner, LCPA provides a

statistical tool which allows researchers to discover the meaningful subgroup based on the

representative sequential pattern of unobservable memberships for several latent classes.

Let Cjt denote the jth latent class variable having Kj nominal categories for j = 1, . . . , J

at stage t, where t = 1, . . . T . For each time stage, a vector of J latent variables Ct =

[C1t, . . . , CJt]
T can be summarized as a contingency table with

J∏
j=1

Kj cells, showing all

possible combinations of class memberships. Thus, the T-sequences of J latent class variables

will be written in a contingency table with (
J∏

j=1

Kj)
T cells. Among all possible combinations

of sequential patterns, LCPA discovers the representative sequential patterns and catego-

rize them as latent profiles. Let the latent profile variable U have S nominal categories

describing the most common stage-sequential patterns of J latent class memberships. Let

Yt = [Y1t, . . . ,YJt], where Yjt = [Y1jt, . . . , YMjjt]
T be a set of J vectors of discrete responses

to Mj items to measure the jth latent class membership at stage t, where each variable Ymjjt

can take any value from 1 to rmj
for mj = 1, . . . ,Mj and j = 1, . . . , J . Then, the complete-

data likelihood of the model of the probability of the latent profile U = u, the latent class
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memberships Ct, and the responses Yt for t = 1, . . . , T would be as follows:

L∗i = P (U = u,C1 = c1, . . . ,CT = cT ,Yi1 = yi1, . . . ,YiT = yiT )

= P (U = u)P (C = c | U = u)P (Yi = yi | C = c)

= P (U = u)
T∏
t=1


J∏

j=1

P (Cjt = cjt | U = u)

Mj∏
mj=1

P (Yimjjt = yimjjt | Cjt = cjt)


= γu

T∏
t=1


J∏

j=1

η(j,t)cjt|u

Mj∏
mj=1

kmj∏
k=1

ρ
(j,t)
mjk|cjt

I(yimjjt
=k)

 , (2)

where I(yimjjt = k) is the indicator function which is 1 when yimjjt = k and 0 otherwise.

1.3 Latent class profile analysis with multiple latent group variables

The LCPA with latent group variables (GLCPA) postulates that the distribution of latent

profile variable can be affected by another latent class variable which can be identified

through LCA structure. Combining the LCA structure as group variable and LCPA structure

as an outcome, we propose GLCPA and illustrate the model in Figure 1.

[Figure 1 about here.]

A sequence of J latent variablesCt = [C1t, · · · , CJt]
T for t = 1, · · · , T in Figure 1 constitute

the LCPA that are associated through latent profile variable U , and each latent variable Cjt

is identified by the jth set of manifest items Y ijt = [Yi1jt, . . . , YiMjjt]
T at time stage t.

Another latent variable D is the ordinary latent class model which can be identified through

the manifest items Zi = [Zi1, . . . , ZiP ]T , and the response variable Z can be measured in

any time stage t = 1, · · · , T , or in any other time stage. As discussed in Section ??, the

distribution of outcome latent profile variable U is affected by the latent group membership

D = d.

(a) ρ
(j,t)
mjk|cjt = P (Ymjjt = k | Cjt = cjt) denotes the probability of the response k to the mjth

item measuring the jth latent variable Cjt, for a given class cjt of the jth latent variable

Cjt at stage t.
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(b) φph|d = P (Zip = h | D = d) denotes the probability of the response h to the pth item

measuring the latent variable D, for a given class d.

(c) η
(j,t)
cjt|u = P (Cjt = cjt | U = u) denotes the conditional probability of belonging to class cjt,

the class membership of j latent variable Cjt at stage t, when a latent profile variable U

has a profile membership u.

(d) γu|d = P (U = u | D = d) denotes the probability that individual has a latent profile u

among S latent profiles, given that its latent group membership is d.

(e) δd = P (D = d) denotes the probability that individual belongs to dth latent group D.

The primary measurement parameter ρ and φ idenfity the underlying categorical latent

variables, depicting the probability of responding to the categorical response variable when

the latent class memberships Cjt = cjt, D = d are given, respectively. The secondary

measurement parameter η depicts the relationship between each latent class cjt of Cjt and a

latent profile u of U for u = 1, . . . , S. Each identified latent profile can be explained through

a set of estimated secondary measurement parameters as a individual’s sequential patterns

of changing latent class membership as stage flows.

The GLCPA assumes the following conditions: (1) the latent profile membership is related

to the manifest items only through the class membership of each latent variable at each time

wave, (2) the response variable Yimjjt, Zip are correlated only through the corresponding

latent variable, (3) each latent variables are correlated only through the latent profile variable.

(4) the group latent variable is only related with each identified latent variables in LCPA

model only through latent profile varaible. Based on the condition (1), response variables

Y ijt = [Yimjjt, · · · , Yimjjt]
T corresponding to jth latent variable at time t become mutually

independent when the jth latent class membership at time t (i.e., cjt) is known. Likewise,

condition (2) allows each identified latent variables Cjt for j = 1, · · · , J, t = 1, · · · , T be

independent when the latent profile membership U is given. Using the notation given in (2)
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and (1.3), the complete-data likelihood of the GLCPA for the ith observation is written as

follows:

L∗i = P (U = u,D = d,C1 = c1, . . . ,CT = cT ,Yi1 = yi1, . . . ,YiT = yiT ,Zi)

= P (D = d)P (U = u | D = d)P (C1 = c1, . . . ,CT = cT | U = u)

× P (Yi1 = yi1, . . . ,YiT = yiT ,Zi | C1 = c1, . . . ,CT = cT , D = d) (3)

= P (U = u | D = d)
T∏
t=1


J∏

j=1

P (Cjt = cjt | U = u)

Mj∏
mj=1

P (Ymjjt = ymjjt | Cjt = cjt)


× P (D = d)

P∏
p=1

P (Zp = zp | D = d)

= γu|d

T∏
t=1


J∏

j=1

η(j,t)cjt|u

Mj∏
mj=1

kmj∏
k=1

ρ
(j,t)
mjk|cjt

I(ymjjt
=k)

 δd

P∏
p=1

rp∏
h=1

φ
I(Zip=h)

ph|d

The likelihood of the model that we actually observe (i.e., the observed-data likelihood) can

be derived by the marginal summation of (3) with respect to all considered latent variables:

Li = P (Zi = zi,Yi1 = yi1, · · · ,YiT = yiT ) =
S∑

u=1

K1∑
c11=1

· · ·
KJ∑

cJT=1

G∑
d=1

L∗i (4)

The prevalence of the latent profile may also be affected by the individuals factors such as

gender. As illustrated in Figure 1, we can construct the multinomial logistic regression model

by treating the identified latent profile variables as a response variable. While the conven-

tional multinomial logistic regression untilizes the observed values of response variables and

covariates, the regression on unobservable latent profile memberships relates the covariates

with posterior probabilities which will be discussed on Eq. 9. Suppose we have a vector of

covariates xi = [xi1, . . . , xip]
T for the ith observation, then the latent profile can be written

as a function of covariates in multinomial logistic regression form.

L∗(X i) = γu|d(X i)
T∏
t=1


J∏

j=1

η(j,t)cjt|u

Mj∏
mj=1

rmj∏
k=1

ρ
(j,t)
mjk|cjt

I(yimjjt
=k)

 δd

P∏
p=1

rp∏
h=1

φ
I(Zip=h)

ph|d (5)

γu|d(X i) =
exp(Xiβu|d)

G∑
d=1

exp(X iβu|d)
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Here, the vector of logistic regression coefficients βu|d = [β1u|d, . . . , βpu|d]
T is interpreted as

the log-odds ratio that an individual belongs to a specific latent profile u versus to a baseline

latent class, given the latent group membership D = d. Finally, the likelihood of the model

that we actually observe (i.e., the observed-data likelihood) can be derived by the marginal

summation of (3) with respect to all considered latent variables:

L(X i) = P (Zi = zi,Yi1 = yi1, · · · ,YiT = yiT ) =
S∑

u=1

K1∑
c11=1

· · ·
KJ∑

cJT=1

G∑
d=1

L∗(X i) (6)

2. Parameter estimation and model selection

We adopted the Expectation-Maximization algorithm (Dempster et al., 1977) to estimate

the ML estimates of parameters. To determine the number of classes for each latent variable,

we investigate the model with various number of classes and chose the most appropriate one.

We adopted AIC, BIC criteria.

2.1 Recursive Expectation-Maximization Algorithm

The typical EM algorithm implements Expectation step and Maximization steps for each

iteration, and repeats these steps until the solutions satisfies the convergence threshold.

E-step. The expectation of the complete log-likelihood is computed using the formula in

Eq. (3) as follows:

E

(
n∑

i=1

logL∗(xi)

)
=

n∑
i=1

E[I(D = d)] log δd +
n∑

i=1

E[I(U = u,D = d)] log γu|d(xi)

+
n∑

i=1

P∑
p=1

rp∑
h=1

E[I(D = d | Zip = h)] log φph|d (7)

+
n∑

i=1

T∑
t=1

J∑
j=1

E[I(Cjt = cjt, U = u)] log η
(j,t)
cjt|u

+
n∑

i=1

T∑
t=1

J∑
j=1


Mj∑

mj=1

rmj∑
k=1

E
[
I(Cjt = cjt | Yimjjt = k)

]
log ρ

(j,t)
mjk|cjt





8 Biometrics, December 2008

To obtain the expectations of indicator functions in Eq. (7), we define the joint posterior

probability of latent variables given the ith observed responses and covariates as follows:

θi(u,d,c1,...,cT ) = P (U = u,D = d,C1 = c1, . . . ,CT = cT | yi1, . . . ,yiT , zi,xi) =
L∗(xi)

L(xi)
(8)

for i = 1, . . . , n, u = 1, . . . , S, d = 1, . . . , G, cjt = Kj, j = 1, . . . , J , and t = 1, . . . , T . Since the

conditional distributions of latent variables given response variables follow the multinomial

distribution respectively, the expectations of indicator functions can be expressed in terms

of marginal posterior probabilities θi(u), θi(d), θi(u,cjt), and θi(cjt), respectively:

E [I(D = d | Y i, zi)] = θi(u) =
S∑

u=1

J∏
j=1

T∏
t=1


Kj∑

cjt=1

 θi(u,d,c1,...,cT )

E [I(U = u | Y i, zi)] = θi(u) =
G∑

d=1

J∏
j=1

T∏
t=1


Kj∑

cjt=1

 θi(u,d,c1,...,cT ) (9)

E [I(Cjt = cjt, U = u | Y i, zi)] = θi(u,cjt) =
G∑

d=1

K∏
j′ 6=j

T∏
t′ 6=t


Kj′∑

cj′t′=1

 θi(u,d,c1,...,cT )

E [I(Cjt = cjt | Yi, zi)] = θi(cjt) =
S∑

u=1

S∑
u=1

θi(u,cjt)

Once the overall posterior probability in (8) is obtained, the marginal posterior probabilities

can be easily calculated. We adopt the recursive formula to the E-step using the forward and

backward probabilities introduced in Chang and Chung (2013). Let α and λ represent the

forward and backward probabilities, respectively:

αit (u, ct) = P (Y 1 = y1, . . . ,Y t = yt,Ct = ct | u)

=

K1∑
c1(t−1)=1

· · ·
KJ∑

cJ(t−1)=1

αi(t−1)
(
u, c(t−1)

) J∏
j=1

η(j,t)cjt|u

Mj∏
mj=1

rmj∏
k=1

ρ
(j,t)
mjk|cjt

I(yimjjt
=k)


λit (u, ct) = P (Y t+1 = yt+1, . . . ,Y T = yT | ct, u) (10)

=

K1∑
c1(t+1)=1

· · ·
KJ∑

cJ(t+1)=1

λi(t+1)

(
u, c(t+1)

) J∏
j=1

η(j,t+1)
cj(t+1)|u

Mj∏
mj=1

rmj∏
k=1

ρ
(j,t+1)
mjk|cj(t+1)

I(yimjj(t+1)=k)
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The posterior probability of latent class memberships at stage t can be obtained as follows:

θi(u,d,ct) =

δd
p∏

p=1

rp∏
h=1

φ
I(zip=h)

ph|d γu|d(xi)αit(u, ct)λit(u, ct)

G∑
g=1

δg
p∏

p=1

rp∏
h=1

φ
I(zip=h)

ph|g

S∑
s=1

γs|g(xi)
K1∑

c1T=1

· · ·
KJ∑

cJT=1

αiT (s, cT )

(11)

M-step. The M-step maximizes the expected complete-data likelihood of the GLCPA with

respect to the model parameters. Since the sum of parameters that are used in measuring each

latent variables are constrained to be one (for instance,
G∑

d=1

δd = 1,
S∑

u=1

γu|d = 1, d = 1, · · · , G),

we adopted Lagrange multiplier to obtain the ML estimator under such constraints.

γ̂(u|d) =

n∑
i=1

θi(u,d)

n∑
i=1

θi(d)

, η̂
(j,t)
cjt|u =

n∑
i=1

θi(u,cjt)

n∑
i=1

θi(u)

, δ̂d =

n∑
i=1

θi(d)

n
(12)

φ̂ph|d =

n∑
i=1

θi(d)I(zip = h)

n∑
i=1

θi(d)

, ρ̂
(j,t)
mjk|cjt =

n∑
i=1

θi(cjt)I(yimjjt = k)

n∑
i=1

θi(cjt)

To include the covariate effects on the distribution of latent profiles, γu|d should be re-

written as γu|d(X i) = exp(X iβu|d) /
S∑

s=1

exp(X iβs|d), and thus the estimator for γu|d in (12)

is no more available. Thus, we obtain β estimates by Newton-Raphson method for baseline

multinomial logistic regression. Apart from the estimation problem in conventional baseline

logistic regression, the first and second derivatives of log-likelihood functions were written in

a function of posterior probabilities obtained from Eq.9. The first and second derivatives of

observed-data log-lilkelihood in Eq. (6) are available in Appendix.

2.2 Model diagnosis and selection

Since the models with different number of latent classes are not in nested relationship, LRT

test is not available for testing the goodness of model fit. Alternatively, we adopt AIC and

BIC which are popular criteria to assess relative model fit among candidate models with

different number of classes. The model with smaller AIC (or BIC) is preferred.
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2.3 Simulations

The simulation study was designed to check whether GLCPA model properly provides the

parameter estimates and their asymptotic standard errors. We generated datasets under

GLCPA model, and calculated the ML estimates using the EM algorithm. 95% confidence

interval for each parameters were constructed based on parameter estimates and standard

errors, and the empirical coverage of the confidence intervals were calculated during 100

iterations. The standard errors of the estimates were calculated through asymptotic variance-

covariace matrix, by taking the negative inverse of hessian matrix. Data was simulated to

have three time stages with two latent variable and one group latent variable with two classes

respectivly. Each latent variable was measured by 4 binary item response variables, and the

rho-parameters were designed to be equal over time. The latent profile variable was designed

to have 2-profiles structure. The number of sample size was 500 (see Web Table 1) and 250

(see Web Table 2), respectively. The simulation results can be found in Appendix A.

3. Application to NLSY 97 Data

3.1 Data description

The National Longitudinal Survey on Youth 97 (NLSY 97) Cohort is a longitudinal project

that tracks the lives of a sample of American youth born between 1980 − 84, and 8,984

respondents were first interviewed in 1997, ages from 14 ∼ 17. Five items were adopted for

measuring substance use behaviors, alcohol consumption behaviors, and depression symp-

toms respectively. Response variables related with Depression were collected in 2000 when

respondents are 17 ∼ 20, and the responses for substance use and depression were collected

on 2000, 2002, and 2004.

To measure Depression latent class variable, we select the following five survey questions:

(a) How often respondent has been a nervous person in past month? (b) How often respondent
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felt calm and peaceful in past month? (c) How often respondent felt down and blue in past

month? (d) How often respondent has been a happy person in past month? and (e) How

often respondent depressed in last month? Response variable (b) and (d) were re-coded so

they can be consistent in the manner that the higher response values implies more exposure

to depression symptoms. In this way, we define the each binary manifest item indicating

whether the respondent had suffered that feeling at least one time or not, as Nervous, Not

calm, Down, Not happy, and Depressed, respectively.

For Alcohol Use latent class variable, the following three survey items are selected and

re-coded: (a) Number of days respondent drink alcohol last 30 days? (b) Number of days

respondent had 5 or more drinks per day last 30 days? (c) Number of days drink at schools

or work per day last 30 days? The quantitative question (a) was used for creating two binary

manifest items whether one had ever drunken alcohol in last 30 days (CurrentDRK), whether

had ever drunken 5 and more days (FrequentDRK), and whether had ever drunken 20 and

more days (HeavyDRK). Questionaire (b) and (c) were transformed into binary variable,

having ’Yes’ if its value is higher than 0, ’No’ otherwise.

Similarly, the quantitative question for smoking and marijuana use behaviors were trans-

formed into two binary items whether one had ever smoked in last 30 days (CurrentSMK),

whether had ever smoked in daily manner for last 30 days (FrequentSMK), and whether had

ever tried marijuana 20 or more cigarettes per day in last 30 days (HeavySMK). Finally, the

variable ’CurrentMari’ was ’Yes’ if one had ever smoked in last 30 days, and ’FrequentMari’

was assigned to be ’Yes’ if one used marijuana more than 5 times in last 30 days. Table 4

shows the percentages of respondents who responded ‘yes’ to the 15 binary response variables,

and the proportion of the non-responses.

[Table 1 about here.]

By introducing the GLCPA approach to the substance use and depression measurement
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items, we expect to study the following properties of the population: (a) what kinds of latent

classes may be found for alcohol use, substance use behavior, and depression symptom?:

(b) what kinds of common sequential patterns of alcohol and substance use behavior can

be identified?: (c) how does the prevalence of latent profiles of alcohol and substance use

behavior change as the latent group membership of depression symptom is varied?

3.2 Model selection

Web Table 3 shows the goodness-of-fit statistics with the different number of classes for each

latent variable. Both AIC and BIC selected the 4-class model for Substance Use, 3-class

model for Depression, and 3-class model for Alcohol Use.

Web Table 4 shows the list of AIC and BIC values from GLCPA models whose number of

latent profile are varied from 2 to 6. BIC showed the lowest value in 5-class model. Since the

class interpretations for fourth and fifth profile was obscure, we adopted the 4-latent profile

structure as our final model.

Given the selected latent structure, we tested whether the primary measurement param-

eters can be equal across the time stages. This homogeneity assumption for ρ-parameter

is critical in longitudinal latent class model, because the interpretation of each identified

latent classes are solely determined based on the ρ-parameter estimates, and the meaning of

each latent class should be kept equal across the stages for the identification of sequential

patterns. We adopted a likelihood ratio test because the model with equal ρ-parameters over

time is nested in the one with no constraints.

Web Table 5 shows the LR test result for equal ρ-parameters. The null hypothesis (H0

: ρ-parameters for each latent variables are equal across the time) was not rejected under

α = 0.05 (p-value = 0.067, χ2 = −2(L0−Lsat) = 88.42), and thus we set ρ-parameters to be

equal across time. Such constraints on primary measurement parameters not only reduces

the number of ρ-parameters from 3× (5× 3 + 5× 4) = 105 to 5× 3 + 5× 4 = 35, but also
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allows the each latent classes keep same interpretation for all time stage. Finally, we fitted

GLCPA with covariate using Gender (Male / Female) and Race (White / Black / Others)

as covariate, and obtained the estimated odds ratios to investigate their effect on identified

latent profiles.

3.3 Parameter estimates for multiple latent group variables

Web Table 6 shows the primary measurement parameter estimates for Alcohol Use variable,

which is the latent subgroup of population in GLCPA model. The ρ-estimates in first class

are all close or equal to 0, implying that individuals in the first class are not likely exposed to

alcohol use behavior so named as ’Not Drinker’. The second class shows the high probabilitis

for current drinking behavior, so named as ’Current Drinker’. The individuals in third class

are labeled as ’Heavy Drinker’, because they have large probability of current, frequent, and

binge drinking behaviors.

Web Table 7 shows the five classes of Substance use latent variable and their estimated

ρ-parameter estimates. The first latent class has low probabilities for all items, meaning

‘Not User’. The second class can be named as ’Marijuana User’, because it shows high

probabilities for Current Mari. Third class has high probabilities for ’Current SMK’, Frequent

SMK, and Heavy SMK items, thus named Heavy Smoker. The fourth class was ’Heavy User’,

showing the high probability for all response variables.

For Depression, the estimated ρ-parameters for the three identified latent classes are given

in Web Table 8. The first class has probabilities that are lower than 0.5 for all binary

responses thus named as ‘Not Depressed’. The second class has high probabilities for Nervous,

Down, and Depressed variables compared to the first sub-group, thus named as ‘Middle level

Depressed’. The third class has the high probabilities for all items except Not Happy items,

meaning ‘Seriously Depressed’.

Web Table 9 shows the estimated secondary measurement parameters (i.e., η-parameters)
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for each latent class membership given latent profile membership. In Profile 1, all η-parameter

estimates for Alcohol Use and Substance Use show the highest probabilities for ’Not User’

for all time waves, and thus implies ‘Not involved in any substance disorder’. In Profile

2, parameter estimates for Alcohol Use are mainly concentrated on ’Heavy Drinker’, and

while the prevalence on Substance Use were mainly distributed on ’Not User’. As a result,

the observations in Profile 2 can be named as ’Heavy Alcohol Drinker’. In Profile 3, the

prevalence on Alcohol Use in 2000 is the highest for ’Not User’ and monotonely moved

to ’Heavy User’ across 2002 and 2004. Likewise, the probabilities for ’Heavy Smoker’ in

Subtance Use behaviors showed consistent increase from 0.532 up to 0.818. Consequently,

Profile 3 can be named as ’Developing Heavy Substance User’. On the other hand, Profile

4 identified a subgroup whose conditional probabilities for both Alcohol Use and Substance

Use are distributed on ’Heavy Drinker’ and Serious User. Clealy, Profile 4 represents the

observations who are seriously exposed to the Alcohol Use and Substance Use behavior

throught the all time waves and thus can be labeled as ’Serious Substance User’.

We fitted multinomial logistic regression model to examine the effect of individual charac-

teristics on latent profile memberships. Web Table 10 shows the estimated odds ratios and

their 95% confidence intervals that are obtained from the coefficients of multinomial logistic

regression, given the identified Depression levels. Profile 1 was set as the baseline category,

thus the estimated parameters represents the odds ratios of belonging to the certain latent

profile compared to the Profile 1. We considered gender (female was set to be baseline) and

race (White was set to be baseline) as the individual covariates, and the estimated coefficients

were transformed into odds ratios for interpretation. No covariate effect had significant effect

on prevalence of profiles given the Depression membership is ’Not Depressed’. When the

Depression level is middle, boys were 2.41 times more likely to belong to Profile 4 compared

to baseline than girls, Black and Other students were 0.178, 0.409 times less likely to be in
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Profile 4 versus baseline than White students. In ’Seriously Depressed’ latent groups, male

students were 4.212 times more likely to belong to Profile 4 compared to baseline than girls.

Finally, Web Table 11 shows the γ-estimates which represent the prevalence of four latent

profiles given the Depression class memberships discovered in Web Table 8 and Web Table

9. Profile 1 was the most prevalent class (0.512) among four profiles when the Depression

class was ’Not Depressed’, but decreases to 0.325 as Depression class becomes severe level

to ’Seriously Depressed’. Profile 2 showed relatively consistent proportion throughout the

all depression levels, ranging from 0.219 to 0.261. On the other hand, the Profile 3 and 4

showed the increasing trend as the level of Depression becomes severe, from Not Depressed

to Seriously Depressed. This is a noticeable result from GLCPA model compared to other

previous categorical latent models, in that the γ̂ estimates provide the quantitative measures

for the associations between two categorical latent variables.Web Table 11 evidently shows

that as indicivuals exposed to more severe Depression levels, they are likely to experience

the more serious Alcohol Use and Substance Use behaviors.

4. Discussion

This article suggested a new type of latent variable model to examine the complex structure

of categorical latent variables, especially in the cases that the we study for longitudinal trends

of latent variables that are identified through repeated measured item variables. GLCPA can

systemically specify the effect of a latent group memberhip on the probability of having a

certain sequential patterns.

Through the analysis of NLSY 97 data, we found four representative sequential patterns

of young adolescents who had experienced the Authoritarian parental style. The proportions

of these four latent profiles were varied by the levels of depression symptoms that the

individuals were exposed to. GLCPA model discovered that as the levels of depression

symptoms increase, the probability of not being exposed to the any types of substance
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use behavior decreases, and the prevalence of the adolescents with severe levels of substance

use behaviors increases.

EM algorithm is widely adopted for the parameter estimation of the finite mixture model

due to the difficulties with unobservable structures. Even though it provides the stable

ML estimation, the computational cost is relatively huge compared to the other estimation

strategies, and the burden of computational complexity becomes even worse if the number of

time stage increases. The Reculsive method discussed in Section 2.1 significantly reduced the

computational complexity by skipping the calculation of redundant posterior terms from (8).

For the actual simulation result, see Chang and Chung (2013) which showed the superiority

of reculsive EM estimation for univariate LCPA model in time efficiency. EM algorithm

also requires the appropriate initial values to guarantee the converged solution to be global

maximum. To achieve global maximum, we used 100 different sets of starting values and

chose the one with the highest likelihood as a final solution, which requires another huge

cost of calculation and time. To avoid the difficulty of choosing appropriate initial value, the

deterministic annealing EM algorithm which ensures the global maximum. See Chang and

Chung (2013),Lee and Chung (2017) for more details. To this end, we have made a program

for GLCPA model written in R language (version 3.3.4) which is available on request.

Supplementary Materials

All Web Appendices, Figures, and Tables referenced in this paper are available under the

submitted Wep Material, Supporting Information for (A Multivariate Latent Class Profile

Analysis with Latent Group).
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Figure 1. A diagram of LCPA with latent group variables.
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1. Web Appendix

1.1 Web Appendix A : Elements of the score function

Let Θ be a vector of all free parameters for the GLCPA. The score function S(Θ) is obtained

by the first-ordered derivatives of the log-likelihood of the GLCPA given in observed data

likelihood with respect to the model parameters Θ. Let β be the vectorized β-parameters

in the GLCPA model. The elements of the first-derivative vector with respect to β (i.e.,∑n
i=1 ∂ logL(xi)/∂β) are given by

n∑
i=1

∂ logL(xi)

∂βqu|d
=

n∑
i=1

xiq
[
θi(u,d) − γu|d(xi)θi(d)

]
for q = 1, . . . , p, u = 1, . . . , S − 1, d = 1, . . . , D. Also, let ρ

(j,t)
mj |cjt = [ρ

(j,t)
mj1|cjt , . . . , ρ

(j,t)
mjrmj |cjt

]T ,

and η
(j,t)
t|s = [η

(j,t)
1t|s , . . . , η

(j,t)
Kjt|s]

T be the vectorized ρ-and η-parameters, respectively for mj =

1, . . . ,Mj, cjt = 1, . . . , Kj, j = 1, . . . , J , t = 1, . . . , T , and s = 1, . . . , S. The elements of the

first-derivative vector with respect to ρ
(j,t)
mj |cjt and η

(j,t)
t|s are obtained by

n∑
i=1

∂ logL(xi)

∂ρ
(j,t)
mjk|cjt

=
n∑

i=1

θi(cjt)ζyimjjt
k

ρ
(j,t)
mjk|cjt

,

n∑
i=1

∂ logL(xi)

∂η
(j,t)
cjt|u

=
n∑

i=1

θi(u,cjt)

η
(j,t)
cjt|u

.

Here, ζyimjjt
k is the indicator function which has the value of 1 if yimjjt = k, otherwise 0.

Note that there are rmj
− 1 and Kj − 1 free parameters in ρ

(j,t)
mj |cjt and η

(j,t)
t|s , respectively.

Therefore, the score function of the free parameters for ρ
(j,t)
mj |cjt and η

(j,t)
t|s can be obtained as

follows:

n∑
i=1

∂ logL(xi)

∂ρ
(j,t)
mj |cjt

AT
rmj t

and
n∑

i=1

∂ logL(xi)

∂η
(j,t)
t|s

AT
Kj
,

where Ak is a (k−1)×k matrix, composed of an identity matrix in the first k−1 columns and

a column vector of −1 in the last column for mj = 1, . . . ,Mj, cjt = 1, . . . , Kj, j = 1, . . . , J ,

t = 1, . . . , T , and s = 1, . . . , S. Likewise, let φp|d = [φp1|d, . . . , φprp|d]
T , and δ = [δ1, . . . , δG]T

be the vectorized φ- and δ-parameters, respectively for p = 1, . . . , P , and d = 1, . . . , G. The
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elements of the first-derivative vector with respect to φp|d and δ are obtained as follows:

n∑
i=1

∂ logL(xi)

∂φph|d
=

n∑
i=1

θi(d)ζziph

φph|d
,

n∑
i=1

∂ logL(xi)

∂δd
=

n∑
i=1

θi(d)
δd

.

Here, ζziph is the indicator function which has the value of 1 if zip = h, otherwise 0. Note

that there are rp − 1 and G − 1 free parameters in φp|d and δ, respectively. Therefore, the

score function of the free parameters for φp|d and δ can be obtained by

n∑
i=1

∂ logL(xi)

∂φp|d
AT

rp and
n∑

i=1

∂ logL(xi)

∂δ
AT

G,

where Ak is a (k− 1) × k matrix, composed of an identity matrix in the first k− 1 columns

and a column vector of −1 in the last column for p = 1, . . . , P , d = 1, . . . , G.

1.2 Web Appendix B : Elements of the Hessian Matrix

The Hessian matrix is the second derivatives of the log-likelihood with respect to all model

parameters Θ. The second derivatives of log-observed data likelihood with respect to β and

ρ
(j,t)
mjjt|cjt , η

(j,t)
u , γd and φp|d are obtained as follows:

n∑
i=1

∂2 logL(xi)

∂βqu|d∂βq′u′|d′
=

n∑
i=1

xiqxiq′
{
ζdd′ [ωi(u,d)(ζuu′ − γu|d(xi)) − ωi(u,d′)γu|d(xi)] − ωi(u′,d′)ωi(u,d)

}
n∑

i=1

∂2 logL(xi)

∂δd∂βqu|d′
=

n∑
i=1

xiq
{

(ζdd′ − θi(d))θ(u,d′) − γu|d′(xi)θi(d)θi(d′)
}

∂δd
n∑

i=1

∂2 logL(xi)

∂ηcjt|u∂βqu′|d
=

n∑
i=1

xiq
{
ζuu′θi(cjt,u′,d) − θi(u′,d)θi(u,cjt) − γu′|d(xi)(θi(cjt,u,d) − θi(d)θi(u,cjt))

}
∂η

(j,t)
cjt|u

n∑
i=1

∂2 logL(xi)

∂φph|d∂βqu|d′
=

n∑
i=1

xiq
{
θi(u,d′)(ζdd′ − θi(d)) − γu|d′(xi)θi(d)θi(d′)

}
ζziph

φph|d

n∑
i=1

∂2 logL(xi)

∂ρ
(j,t)
mjj|cjt∂βqu|d

=
n∑

i=1

xiq
{
θi(cjt,u,d) − θi(u,d)θi(cjt) − γu|d(xi)[θi(cjt,d) − θi(cjt)θi(d)]

}
ζyimjjt

k

ρmjkjt|cjt

where ωi(u,d) = θi(u,d)−γu|d(xi)θi(d) for q, q′ = 1, . . . , L, d = 1, . . . , G, βS|d = [β1S|d, · · · , βLS|d] =

0, u, u′ = 1, . . . , S−1, and ζdd′ = 1 if d = d′, 0 otherwise. for mj = 1, . . . ,Mj, k = 1, . . . , rmj
,
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cj = 1, . . . , Kj, w = 1, . . . , D − 1, p = 1, . . . , rp, j = 1, . . . , J , and s = 1, . . . , S. Here, ζyimjj
k

is an indicator function which has the value of 1 if yimjj = k, 0 otherwise. Note that there are

S − 1, rp − 1, rmj
− 1, and Kj − 1 free parameters in γ, φp|w, ρmjj|cj , and η

(j)
u , respectively.

The elements of the Hessian matrix with respect to γ are as follows:

n∑
i=1

∂2 logL(xi)

∂γu|d∂γu′|d′
= −

n∑
i=1

θi(u,d)θi(u′,d′)

γu|dγu′|d′

n∑
i=1

∂2 logL(xi)

∂δd∂γu|d′
=

n∑
i=1

(
ζdd′ − θi(d)

)
θi(u,d′)

δdγu|d′

n∑
i=1

∂2 logL(xi)

∂η
(j,t)
cjt|u∂γu′|d

=
n∑

i=1

ζuu′θi(cjt,u,d) − θi(cjt,u)θi(u′,d)

η
(j,t)
cjt|u γu′|d

n∑
i=1

∂2 logL(xi)

∂φph|d∂γu|d′
=

n∑
i=1

(
ζdd′ − θi(d)

)
θi(u,d′)ζziph

φph|dγu|d′

n∑
i=1

∂2 logL(xi)

∂ρ
(j,t)
mjk|cjt∂γu|d

=
n∑

i=1

(
θi(cjt,u,d) − θi(cjt)θi(u,d)

)
ζyimjj

k

ρ
(j,t)
mjk|cjtγu|d

for d = 1, . . . , G, p = 1, . . . , P , h = 1, . . . , rp, mj = 1, . . . ,Mj, k, k′ = 1, . . . rmj
, cjt =

1, . . . , Kj, u, u′ = 1, . . . S, and j, j′ = 1, . . . , J . Here, ζyimjj
k is an indicator function which

has the value of 1 if yimjj = k, 0 otherwise.

The elements of the Hessian matrix with respect to δ are as follows:

n∑
i=1

∂2 logL(xi)

∂δd∂δd′
= −

n∑
i=1

θi(d)θi(d′)
δdδd′

n∑
i=1

∂2 logL(xi)

∂η
(j,t)
cjt|u∂δd

=
n∑

i=1

θi(cjt,u,d) − θi(u,cjt)θi(d)

η
(j,t)
cjt|uδd

n∑
i=1

∂2 logL(xi)

∂φph|d∂δd′
=

n∑
i=1

(ζdd′ − θi(d))θi(d′)ζziph

φph|dδd′

n∑
i=1

∂2 logL(xi)

∂ρ
(j,t)
mjk|cjt∂δd

=
n∑

i=1

(
θi(d,cjt) − θi(cjt)θi(d)

)
ζyimjjt

k

ρ
(j,t)
mjk|cjtδd

.

for d, d′ = 1, . . . , G.
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The elements of the Hessian matrix with respect to η are as follows:

n∑
i=1

∂2 logL(xi)

∂η
(j,t)
cjt|u∂η

(j′,t′)
c′
j′t′ |u

′

=
n∑

i=1

θi(u,cjt,c′j′t′ )ζuu
′(1 − ζj′jζt′t) − θi(u,cjt)θi(u′,c′

j′t′ )

η
(j,t)
cjt|u η

(j′,t′)
c′
j′t′ |u

′

n∑
i=1

∂2 logL(xi)

∂φph|d∂η
(j,t)
cjt|u

=
n∑

i=1

(
θi(cjt,u,d) − θi(u,cjt)θi(d)

)
ζziph

φph|dη
(j,t)
cjt|u

n∑
i=1

∂2 logLi

∂ρ
(j,t)
mjk|cjt∂η

(j′,t′)
c′
j′t′ |u

=
n∑

i=1

(1 − ζj′jζt′t) θi(u,c′
j′t′ ,cjt)

+ θi(u,c′
j′t′ )

(
ζc′

j′t′cjt
− θi(cjt)

)
ζymjjt

k

η
(j′,t′)
c′
j′t′ |u

ρ
(j,t)
mjk|cjt

for cjt = 1, . . . , Kj, j = 1, . . . , J , t = 1, . . . , T , d = 1, . . . , G and u, u′ = 1, . . . , S. Here, ζj′j is

the indicator function whose value is 1 if j = j′ and 0 otherwise.

The elements of the Hessian matrix with respect to φ are as follows:

n∑
i=1

∂2 logL(xi)

∂φph|d′∂φp′h′|d′
=

n∑
i=1

θi(d)
{

(1 − ζdd′) + (1 − ζpp′) − θi(d′)
}
ζziphζzip′h′

φph|dρp′h′|d′

n∑
i=1

∂2 logL(xi)

∂ρ
(j,t)
mjk|cjt∂φph|d

=
n∑

i=1

(
θi(cjt,d) − θi(cjt)θi(d)

)
ζziphζyimjjt

k

φph|dρmjkjt|cjt

for p = 1, . . . , P , h = 1, . . . rp, d = 1, . . . , G. Here, ζziph is an indicator function which has

the value of 1 if zip = h, otherwise 0.

The second derivatives of log-observed data likelihood with respect to ρ are as follows:

n∑
i=1

∂2 logL(xi)

∂ρ
(j,t)
mjk|cjt∂ρ

(j′,t′)
m′

j′k
′|cj′t′

=
n∑

i=1

ζyimjjt
kζyim′

j′
j′t′k

′

ρ
(j,t)
mjk|cjt ρ

(j′,t′)
m′

j′k
′|c′

j′t′

×
(
θi(cjt,c′j′t′ )(1 − ζj′jζt′t) + θi(cjt)

{
ζj′jζt′t

[
(1 − ζcjtc′j′t′

) + (1 − ζmjm
′
j′

)
]
− θi(c′

j′t′ )

})

for k = 1, . . . , rmj
, mj = 1, . . . ,Mj, k, k′ = 1, . . . rmj

, cjt = 1, . . . , Kj, t, t
′ = 1, . . . T , and j,

j′ = 1, . . . , J . Here, ζyimjj
k is an indicator function which has the value of 1 if yimjj = k, 0

otherwise.
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2. Web Table

2.1 Web Table 1 : Simulation Results 1

[Table 1 about here.]

2.2 Web Table 2 : Simulation Results 2

[Table 2 about here.]

Table 2.1 and 2.2 shows that the average of parameter estimates, mean square errors, and

95% coverage probabilities. The average estimates from the EM algorithm were considerably

similar with the true values, and the coverage probabilities of the 95% confidence intervals

are fairly close to 0.95 in both simulation. This implies that the parameter estimation and

model identification are working properly.

2.3 Web Table 3 : LCA model fit measures

[Table 3 about here.]

2.4 Web Table 4 : The list of AIC and BIC values from GLCPA models

[Table 4 about here.]

2.5 Web Table 5 : Likelihood ratio test for time constraints

[Table 5 about here.]

2.6 Web Table 6 : The estimated ρ-parameters for Substance Use classes.

[Table 6 about here.]

2.7 Web Table 7 : The estimated ρ-parameters for Alcohol Use.

[Table 7 about here.]

2.8 Web Table 8 : The estimated ρ-parameters for Depression.

[Table 8 about here.]
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2.9 Web Table 9 :The estimated conditional probabilities of the latent class membership for

a given latent profile membership (i.e., the η-parameters).

[Table 9 about here.]

2.10 Web Table 10 : The estimated odds ratio for a latent profile memberships given a

Depression membership and 95% confidence intervals.

[Table 10 about here.]

2.11 Web Table 11 : The estimated odds ratio for a latent profile memberships given a

Depression membership and 95% confidence intervals.

[Table 11 about here.]

Received October 2007. Revised February 2008. Accepted March 2008.



Supporting Information for (A Multivariate Latent Class Profile Analysis with Latent Group). 7

T
ab

le
1:

A
ve

ra
ge

es
ti

m
at

es
(E

S
T

),
m

ea
n

sq
u
ar

e
er

ro
r

(M
S
E

),
an

d
co

ve
ra

ge
p
ro

b
ab

il
it

y
(C

P
)

of
95

%
co

n
fi
d
en

ce
in

te
rv

al
s

fo
r

p
ar

am
et

er
es

ti
m

at
es

(N
=

50
0)

.

P
ar

am
et

er
T

ru
e

E
S
T

M
S
E

C
P

P
ar

am
et

er
T

ru
e

E
S
T

M
S
E

C
P

ρ
(1
,t
)

1
1
|1

0.
90

0.
90

0
0.

00
01

0.
94

η
(1
,1
)

1
|1

0.
80

0.
79

9
0.

00
12

0.
93

ρ
(1
,t
)

2
1
|1

0.
90

0.
89

9
0.

00
01

0.
95

η
(1
,2
)

1
|1

0.
80

0.
79

9
0.

00
17

0.
96

ρ
(1
,t
)

3
1
|1

0.
90

0.
90

1
0.

00
01

0.
95

η
(1
,3
)

1
|1

0.
80

0.
79

4
0.

00
09

0.
94

ρ
(1
,t
)

4
1
|1

0.
90

0.
90

1
0.

00
01

0.
98

η
(2
,1
)

1
|1

0.
80

0.
80

2
0.

00
11

0.
93

ρ
(1
,t
)

1
1
|2

0.
10

0.
10

0
0.

00
02

0.
94

η
(2
,2
)

1
|1

0.
20

0.
20

2
0.

00
13

0.
93

ρ
(1
,t
)

2
1
|2

0.
10

0.
10

1
0.

00
01

0.
94

η
(2
,3
)

1
|1

0.
80

0.
79

4
0.

00
10

0.
93

ρ
(1
,t
)

3
1
|2

0.
10

0.
10

2
0.

00
01

0.
97

η
(1
,1
)

1
|1

0.
20

0.
19

4
0.

00
07

0.
93

ρ
(1
,t
)

4
1
|2

0.
10

0.
10

4
0.

00
01

0.
93

η
(1
,2
)

1
|2

0.
80

0.
80

2
0.

00
07

0.
96

ρ
(2
,t
)

1
1
|1

0.
10

0.
10

1
0.

00
02

0.
93

η
(1
,3
)

1
|2

0.
20

0.
20

2
0.

00
08

0.
93

ρ
(2
,t
)

2
1
|1

0.
10

0.
10

1
0.

00
02

0.
94

η
(2
,1
)

1
|2

0.
20

0.
19

7
0.

00
07

0.
98

ρ
(2
,t
)

3
1
|1

0.
10

0.
09

9
0.

00
02

0.
93

η
(2
,2
)

1
|2

0.
20

0.
20

3
0.

00
14

0.
96

ρ
(2
,t
)

4
1
|1

0.
10

0.
10

0
0.

00
02

0.
98

η
(2
,3
)

1
|2

0.
20

0.
19

3
0.

00
10

0.
98

ρ
(2
,t
)

1
1
|2

0.
90

0.
90

1
0.

00
02

0.
99

φ
1
1
|1

0.
90

0.
90

2
0.

00
03

0.
96

ρ
(2
,t
)

2
1
|2

0.
90

0.
89

8
0.

00
02

0.
97

φ
2
1
|1

0.
90

0.
90

2
0.

00
05

0.
94

ρ
(2
,t
)

3
1
|2

0.
90

0.
89

9
0.

00
01

0.
95

φ
3
1
|1

0.
90

0.
89

9
0.

00
04

0.
95

ρ
(2
,t
)

4
1
|2

0.
90

0.
89

9
0.

00
01

0.
96

φ
4
1
|1

0.
90

0.
90

7
0.

00
04

0.
93

γ
1
|1

0.
20

0.
20

2
0.

00
09

0.
95

φ
1
1
|2

0.
10

0.
09

9
0.

00
03

0.
98

γ
1
|2

0.
80

0.
79

7
0.

00
07

0.
96

φ
2
1
|2

0.
10

0.
09

8
0.

00
03

0.
93

δ 1
0.

50
0.

50
1

0.
00

04
0.

97
φ
3
1
|2

0.
10

0.
09

7
0.

00
04

0.
96

φ
4
1
|2

0.
10

0.
10

1
0.

00
04

0.
97



8 Biometrics, December 2008
T

ab
le

2:
A

verage
estim

ates
(E

S
T

),
m

ean
sq

u
are

error
(M

S
E

),
an

d
coverage

p
rob

ab
ility

(C
P

)
of

95%
con

fi
d
en

ce
in

tervals
for

p
aram

eter
estim

ates
(N

=
250).

P
aram

eter
T

ru
e

E
S
T

M
S
E

C
P

P
aram

eter
T

ru
e

E
S
T

M
S
E

C
P

ρ
(1
,t)

1
1|1

0.90
0.897

0.0002
0.97

η
(1
,1
)

1|1
0.80

0.812
0.0027

0.97

ρ
(1
,t)

2
1|1

0.90
0.899

0.0001
0.97

η
(1
,2
)

1|1
0.80

0.799
0.0024

0.97

ρ
(1
,t)

3
1|1

0.90
0.899

0.0001
0.98

η
(1
,3
)

1|1
0.80

0.797
0.0021

0.99

ρ
(1
,t)

4
1|1

0.90
0.901

0.0002
0.95

η
(2
,1
)

1|1
0.80

0.802
0.0021

0.97

ρ
(1
,t)

1
1|2

0.10
0.100

0.0004
0.98

η
(2
,2
)

1|1
0.20

0.201
0.0019

0.99

ρ
(1
,t)

2
1|2

0.10
0.097

0.0004
0.95

η
(2
,3
)

1|1
0.80

0.793
0.0017

0.95

ρ
(1
,t)

3
1|2

0.10
0.098

0.0004
0.95

η
(1
,1
)

1|1
0.20

0.201
0.0024

0.94

ρ
(1
,t)

4
1|2

0.10
0.101

0.0003
0.95

η
(1
,2
)

1|2
0.80

0.808
0.0025

0.97

ρ
(2
,t)

1
1|1

0.10
0.101

0.0003
0.98

η
(1
,3
)

1|2
0.20

0.202
0.0016

0.92

ρ
(2
,t)

2
1|1

0.10
0.100

0.0004
0.96

η
(2
,1
)

1|2
0.20

0.199
0.0021

0.96

ρ
(2
,t)

3
1|1

0.10
0.101

0.0004
0.97

η
(2
,2
)

1|2
0.20

0.202
0.0016

0.98

ρ
(2
,t)

4
1|1

0.10
0.099

0.0004
0.95

η
(2
,3
)

1|2
0.20

0.198
0.0015

0.98

ρ
(2
,t)

1
1|2

0.90
0.899

0.0001
0.95

φ
1
1|1

0.90
0.898

0.0007
0.94

ρ
(2
,t)

2
1|2

0.90
0.899

0.0002
0.99

φ
2
1|1

0.90
0.899

0.0009
0.92

ρ
(2
,t)

3
1|2

0.90
0.901

0.0002
0.95

φ
3
1|1

0.90
0.898

0.0009
0.97

ρ
(2
,t)

4
1|2

0.90
0.900

0.0003
0.96

φ
4
1|1

0.90
0.899

0.0007
0.96

γ
1|1

0.20
0.202

0.0019
0.95

φ
1
1|2

0.10
0.098

0.0007
0.98

γ
1|2

0.80
0.797

0.0021
0.96

φ
2
1|2

0.10
0.098

0.0009
0.93

δ
1

0.50
0.498

0.0004
0.93

φ
3
1|2

0.10
0.099

0.0009
0.96

φ
4
1|2

0.10
0.097

0.0012
0.96



Supporting Information for (A Multivariate Latent Class Profile Analysis with Latent Group). 9

T
ab

le
3:

G
o
o
d
n
es

s-
of

-fi
t

m
ea

su
re

s
fo

r
a

se
ri

es
of

L
C

A
m

o
d
el

s
w

it
h

th
e

d
iff

er
en

t
n
u
m

b
er

of
cl

as
se

s
fo

r
ea

ch
la

te
n
t

va
ri

ab
le

s

L
at

en
t

va
ri

ab
le

N
u
m

b
er

of
cl

as
se

s
A

IC
B

IC
B

o
ot

st
ra

p
p-

va
lu

e

A
lc

oh
ol

2
18

24
6.

5
18

32
0.

1
0.

00
3

18
09

2.
4

18
20

6.
0

0.
06

4
18

09
3.

2
18

24
7.

0
0.

42
5

18
10

5.
2

18
29

9.
1

0.
52

S
u
b
st

an
ce

U
se

2
20

80
2.

1
20

87
5.

6
0.

00
3

19
66

9.
7

19
78

3.
3

0.
04

4
18

93
1.

7
19

08
5.

4
0.

52
5

18
94

2.
4

19
13

6.
3

0.
54

D
ep

re
ss

io
n

2
74

44
.7

75
06

.1
0.

00
3

73
65

.1
74

60
.1

0.
08

4
73

64
.9

74
93

.5
0.

18
5

73
67

.6
75

29
.6

0.
77



10 Biometrics, December 2008

T
ab

le
4:

G
o
o
d
n
ess-of-fi

t
m

easu
res

for
a

series
of

G
L

C
P

A
m

o
d
els

w
ith

th
e

d
iff

eren
t

n
u
m

b
er

of
laten

t
p
rofi

les.

N
u
m

b
er

of
P

rofi
les

2
3

4
5

6

A
IC

42430.9
41847.7

41505.6
41368.8

41297.0
B

IC
42799.6

42317.0
42075.4

42039.2
42067.9



Supporting Information for (A Multivariate Latent Class Profile Analysis with Latent Group). 11

T
ab

le
5:

L
R

te
st

ta
b
le

fo
r

ti
m

e
co

n
st

ra
in

ts

C
on

st
ra

in
ts

fo
r
ρ

lo
g-

li
ke

li
h
o
o
d

d
.f

χ
2
-s

ta
ti

st
ic

s
p
-v

al
u
e

E
q
u
al

b
y

ti
m

e
-2

06
39

.8
10

3
88

.4
2

0.
06

7
U

n
eq

u
al

-2
05

95
.6

17
3



12 Biometrics, December 2008

T
ab

le
6:

T
h
e

estim
ated

ρ
-p

aram
eters

for
S

u
bstan

ce
U

se
classes.

R
esp

on
se

V
ariab

le
S

u
bstan

ce
U

se
N

ot
U

ser
M

ariju
an

a
U

ser
H

eav
y

sm
oker

S
eriou

s
U

ser

C
u

rren
t

S
M

K
0.079

0.380
1.000

†
1.000

†

F
requ

en
t

S
M

K
0.000

†
0.000

†
0.867

0.947
H

eavy
S

M
K

0.000
†

0.000
†

0.524
0.581

C
u

rren
t

M
ari

0.039
1.000

†
0.112

1.000
†

F
requ

en
t

M
ari

0.000
†

0.443
0.000

†
0.737

†
T

h
e

estim
ated

p
rob

ab
ilities

are
con

strain
ed

to
b

e
zero

or
on

e.



Supporting Information for (A Multivariate Latent Class Profile Analysis with Latent Group). 13

T
ab

le
7:

T
h
e

es
ti

m
at

ed
ρ
-p

ar
am

et
er

s
fo

r
A

lc
oh

ol
U

se
.

R
es

p
on

se
V

ar
ia

b
le

A
lc

oh
ol

U
se

N
ot

D
ri

n
ke

r
C

u
rr

en
t

D
ri

n
ke

r
H

ea
v
y

D
ri

n
ke

r

C
u

rr
en

t
D

R
K

0.
06

4
1.

00
0†

1.
00

0†

F
re

qu
en

t
D

R
K

0.
00

0†
0.

30
7

0.
84

2
H

ea
vy

D
R

K
0.

00
0†

0.
00

0†
0.

15
8

B
in

ge
D

R
K

0.
00

0†
0.

22
2

0.
95

4
W

or
k

D
R

K
0.

00
0†

0.
11

7
0.

18
9

†
T

h
e

es
ti

m
at

ed
p
ro

b
ab

il
it

ie
s

ar
e

co
n
st

ra
in

ed
to

b
e

ze
ro

or
on

e.



14 Biometrics, December 2008

T
ab

le
8:

T
h
e

estim
ated

ρ
-p

aram
eters

for
D

epression
.

R
esp

on
se

V
ariab

le
D

epression
N

ot
D

ep
ressed

M
id

d
le

level
D

ep
ressed

S
eriou

sly
D

ep
ressed

N
ervou

s
0.413

0.846
0.925

N
otC

alm
0.021

0.000
†

0.772
D

ow
n

0.423
0.961

0.949
N

otH
appy

0.000
†

0.012
0.280

D
epressed

0.062
0.603

0.764
†

T
h
e

estim
ated

p
rob

ab
ilities

are
con

strain
ed

to
b

e
zero

or
on

e.



Supporting Information for (A Multivariate Latent Class Profile Analysis with Latent Group). 15

T
ab

le
9:

T
h
e

es
ti

m
at

ed
co

n
d
it

io
n
al

p
ro

b
ab

il
it

ie
s

of
th

e
la

te
n
t

cl
as

s
m

em
b

er
sh

ip
fo

r
a

gi
ve

n
la

te
n
t

p
ro

fi
le

m
em

b
er

sh
ip

(i
.e

.,
th

e
η
-p

ar
am

et
er

s)
.

P
ro

fi
le

Y
ea

r
A

lc
oh

ol
U

se
S

u
bs

ta
n

ce
u

se
N

ot
C

u
rr

en
t

H
ea

v
y

N
ot

M
ar

ij
u
an

a
H

ea
v
y

S
er

io
u
s

D
ri

n
ke

r
D

ri
n
ke

r
D

ri
n
ke

r
U

se
r

U
se

r
S
m

ok
er

U
se

r

1
00

0.
89

1
0.

10
9

0.
00

0†
0.

97
5

0.
00

0†
0.

02
5

0.
00

0†

02
0.

79
5

0.
20

5
0.

00
0†

0.
98

1
0.

00
9

0.
01

0
0.

00
0†

04
0.

69
0

0.
27

2
0.

03
8

0.
95

0
0.

01
1

0.
03

9
0.

00
0†

2
00

0.
31

9
0.

34
7

0.
33

4
0.

59
4

0.
38

1
0.

01
3

0.
01

2
02

0.
19

5
0.

35
2

0.
45

3
0.

60
2

0.
37

5
0.

00
0†

0.
02

3
04

0.
16

7
0.

35
2

0.
48

1
0.

63
6

0.
30

2
0.

02
3

0.
03

9

3
00

0.
48

3
0.

23
3

0.
28

4
0.

30
4

0.
05

7
0.

53
2

0.
10

7
02

0.
33

5
0.

27
9

0.
38

6
0.

09
8

0.
00

0†
0.

82
4

0.
07

8
04

0.
33

9
0.

22
3

0.
43

8
0.

14
6

0.
00

0†
0.

81
8

0.
03

6

4
00

0.
16

1
0.

17
3

0.
66

6
0.

05
9

0.
17

0
0.

14
8

0.
62

3
02

0.
12

5
0.

20
1

0.
67

4
0.

03
5

0.
13

7
0.

15
8

0.
67

0
04

0.
05

3
0.

18
2

0.
76

5
0.

03
0

0.
08

4
0.

27
0

0.
61

6
†

T
h
e

es
ti

m
at

ed
p
ro

b
ab

il
it

ie
s

ar
e

co
n
st

ra
in

ed
to

b
e

ze
ro

or
on

e.



16 Biometrics, December 2008

T
ab

le
10:

T
h
e

estim
ated

o
d
d
s

ratio
for

a
laten

t
p
rofi

le
m

em
b

ersh
ip

s
given

a
D

epression
m

em
b

ersh
ip

an
d

95%
con

fi
d
en

ce
in

tervals.

D
epression

P
rofi

le
In

tercep
t

M
ale

B
lack

O
th

ers

2
0.435

1.074
1.237

0.881
[0.263,

0.718]
[0.615,

1.875]
[0.673,

2.275]
0.377,

2.059]
N

ot
3

0.394
1.279

1.197
0.682

D
ep

ressed
[0.228,

0.680]
[0.747,

2.189]
[0.657,

2.179]
[0.341,

1.363]

4
0.186

1.449
0.494

0.229
[0.089,

0.387]
[0.609,

3.444]
[0.177,

1.374]
[0.040,

1.312]

2
0.822

1.370
0.559

0.580
[0.583,

1.161]
[0.865,

2.169]
[0.328,

0.953]
[0.312,

1.076]
M

id
d
le

level
3

0.683
1.392

0.738
0.757

D
ep

ressed
[0.471,

0.989]
[0.902,

2.144]
[0.447,

1.219]
[0.452,

1.266]

4
0.543

2.410
0.178

0.409
[0.378,

0.781]
[1.512,

3.838]
[0.082,

0.384]
[0.229,

0.729]

2
0.686

0.983
1.288

0.834
[0.258,

1.820]
[0.310,

3.111]
[0.344,

4.815]
[0.205,

3.392]
S
eriou

sly
3

0.766
0.950

1.045
0.902

D
ep

ressed
[0.305,

1.926]
[0.314,

2.880]
[0.276,

3.955]
[0.259,

3.146]

4
0.384

4.212
0.154

0.217
[0.113,

1.291]
[1.003,

17.797]
[0.014,

1.650]
[0.036,

1.3010]



Supporting Information for (A Multivariate Latent Class Profile Analysis with Latent Group). 17

T
ab

le
11

:
T

h
e

es
ti

m
at

ed
p
re

va
le

n
ce

of
la

te
n
t

p
ro

fi
le

fo
r

a
gi

ve
n

la
te

n
t

gr
ou

p
(D

ep
re

ss
io

n
).

N
ot

M
id

d
le

le
ve

l
S
er

io
u
sl

y
D

ep
re

ss
ed

D
ep

re
ss

ed
D

ep
re

ss
ed

P
ro

fi
le

1
0.

51
2

0.
33

7
0.

32
5

P
ro

fi
le

2
0.

21
9

0.
26

1
0.

24
8

P
ro

fi
le

3
0.

20
0

0.
24

8
0.

29
7

P
ro

fi
le

4
0.

06
9

0.
15

4
0.

13
0


	biomtemplate_Manuscript
	biomtemplate_Supplymemtary

